Рабочая программа по математике 11 класс (А.Ш. Алимов; Л.С. Атанасян)
рабочая программа по математике (11 класс)

Трофимова Елена Александровна

Рабочая программа по математике  11 класс (А.Ш. Алимов; Л.С. Атанасян)

Скачать:

ВложениеРазмер
Файл mat_11.docx66.28 КБ

Предварительный просмотр:

Пояснительная записка

Рабочая программа разработана в соответствии с

- Федеральным законом  от 29 декабря 2012 года № 273 «Об образовании в Российской Федерации» ст.2, п.9;

- Законом Курской области от 09.12.2013г. № 121-ЗКО «Закон об образовании в Курской области»;

- Федеральным базисным учебным планом, утвержденным  приказом Минобразования РФ № 1312 от 09.03.2004.;

- Письмом Министерства образования и науки Российской Федерации от 02.02.2015г. № НТ-136/08 «О федеральном перечне учебников»;

- Постановлением главного государственного санитарного врача РФ от 29.12.2010 № 189 «Об утверждении  СанПиН 2.4.2 2821-10 «Санитарно-эпидемиологические требования к условиям организации обучения в общеобразовательных учреждениях»;

- Основной образовательной программой среднего общего образования МБОУ «Верхнемедведицкая средняя общеобразовательная школа»;

- Уставом и локальными актами  МБОУ «Верхнемедведицкая средняя общеобразовательная школа».

Рабочая программа разработана на основе авторских  программ:

- Программы общеобразовательных учреждений. Алгебра и начала математического анализа. 10-11 классы. Сост. Бурмистрова Т.А. М: «Просвещение».

- Программы общеобразовательных учреждений. Геометрия. 10-11 классы. Составитель Т.А. Бурмистрова. М.: Просвещение.

Для обеспечения учебного процесса  используется учебно-методический комплект:

1) Алимов А.Ш, Колягин Ю.М. и др. Алгебра и начала математического анализа. 10-11 классы. Учебник. (базовый уровень). М.: Просвещение ,2017.

2)Геометрия, 10-11: учеб.для общеобразоват. учреждений: базовый и профил. уровни/ [Л.С. Атанасян, В.Ф. Бутузов,   С.Б. Кадомцев и др.] М.: Просвещение, 2017.

Цель: овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования, интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей.

Задачи:

-систематизация сведений о числах; изучение новых видов числовых выражений и формул; совершенствование практических навыков и вычислительной культуры,

-расширение и совершенствование алгебраического аппарата, сформированного в основной школе, и его применение к решению математических и нематематических задач;

-расширение и систематизация общих сведений о функциях, пополнение класса изучаемых функций, иллюстрация широты применения функций для описания и изучения реальных зависимостей;

-развитие представлений о вероятностно-статистических закономерностях в окружающем мире, совершенствование интеллектуальных и речевых умений путем обогащения математического языка, развития логического мышления;

-знакомство с основными идеями и методами математического анализа.

  1. Общая характеристика учебного предмета

Согласно  учебному  плану образовательного учреждения на 2019-2020 учебный год на изучение математики в 11 классе отводится 170 часов из расчета 5 ч в неделю.

Учебный предмет математика представлен двумя модулями «Математика. Алгебра и начала математического анализа»  и «Математика. Геометрия». На изучение модуля «Алгебра и начала математического анализа» отводится 102 часа. На изучение модуля «Геометрия» отводится 68 часов.

Математическое образование является обязательной и неотъемлемой частью общего образования на всех ступенях школы, играет важную роль как в практической, так и в духовной жизни общества. Практическая сторона математического образования связана с формированием способов деятельности, духовная – с интеллектуальным развитием человека, формированием характера и общей культуры.

Практическая полезность математики обусловлена тем, что ее предметом являются фундаментальные структуры реального мира: пространственные формы и количественные отношения — от простейших, усваиваемых в непосредственном опыте, до достаточно сложных, необходимых для развития научных и технологических идей. Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие и интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. Каждому человеку в своей жизни приходится выполнять достаточно сложные расчеты, находить в справочниках нужные формулы и применять их, владеть практическими приемами геометрических измерений и построений, читать информацию, представленную в виду таблиц, диаграмм, графиков, понимать вероятностный характер случайных событий, составлять несложные алгоритмы и др.

Без базовой математической подготовки невозможно стать образованным современным человеком. В школе математика служит опорным предметом для изучения смежных дисциплин. В послешкольной жизни реальной необходимостью в наши дни является непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической. И наконец, все больше специальностей, где необходим высокий уровень образования, связано с непосредственным применением математики (экономика, бизнес, финансы, физика, химия, техника, информатика, биология, психология и др.). Таким образом, расширяется круг школьников, для которых математика становится значимым предметом.

Для жизни в современном обществе важным является формирование математического стиля мышления, проявляющегося в определенных умственных навыках. В процессе математической деятельности в арсенал приемов и методов человеческого мышления естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений и правила их конструирования вскрывают механизм логических построений, вырабатывают умения формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мышление. Ведущая роль принадлежит математике в формировании алгоритмического мышления и воспитании умений действовать по заданному алгоритму и конструировать новые. В ходе решения задач — основной учебной деятельности на уроках математики — развиваются творческая и прикладная стороны мышления.

Обучение математике дает возможность развивать у учащихся точную, экономную и информативную речь, умение отбирать наиболее подходящие языковые (в частности, символические, графические) средства.

Математическое образование вносит свой вклад в формирование общей культуры человека. Необходимым компонентом общей культуры в современном толковании является общее знакомство с методами познания действительности, представление о предмете и методе математики, его отличия от методов естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач.

Изучение математики способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии.

История развития математического знания дает возможность пополнить запас историко-научных знаний школьников, сформировать у них представления о математике как части общечеловеческой культуры. Знакомство с основными историческими вехами возникновения и развития математической науки, с историей великих открытий, именами людей, творивших науку, должно войти в интеллектуальный багаж каждого культурного человека.

При изучении курса математики в 10 классе на базовом уровне продолжаются и получают развитие содержательные линии «Алгебра», «Геометрия», «Элементы комбинаторики, теории вероятностей, статистики и логики», вводится линия «Начала математического анализа».

Алгебра нацелена на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира. Одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у учащихся представлений о роли математики в развитии цивилизации и культуры.

Геометрия – один из важнейших компонентов математического образования, необходимая для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

Элементы логики, комбинаторики, статистики и теории вероятностей становятся обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности – умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах. При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.

Таким образом, в ходе освоения содержания курса учащиеся получают возможность:

- развить представления о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;

- овладеть символическим языком алгебры, выработать формально- оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;

- изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;

- развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;

- получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;

- развить логическое мышление и речь – умение логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контр примеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;

- сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.

  1. Требования к  уровню подготовки обучающихся

В результате изучения математики на базовом  уровне ученик должен

знать/понимать

- значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

- значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;

- универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;

- вероятностный характер различных процессов окружающего мира;

В ходе освоения содержания математического образования учащиеся овладевают разнообразными способами деятельности, приобретают и совершенствуют опыт:

- построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин;

- выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; выполнения расчетов практического характера; использования математических формул и самостоятельного составления формул на основе обобщения частных случаев и эксперимента;

- самостоятельной работы с источниками информации, обобщения и систематизации полученной информации, интегрирования ее в личный опыт;

- проведения доказательных рассуждений, логического обоснования выводов, различения доказанных и недоказанных утверждений, аргументированных и эмоционально убедительных суждений;

- самостоятельной и коллективной деятельности, включения своих результатов в результаты работы группы, соотнесение своего мнения с мнением других участников учебного коллектива и мнением авторитетных источников.

  1. Содержание учебного предмета
  1. Тригонометрические функции (14 ч.)

Тождественные преобразования тригонометрических выражений. Тригонометрические функции числового аргумента: синус, косинус и тангенс. Периодические функции. Свойства и графики тригонометрических функций.

  1. Векторы в пространстве (6 ч.)

Понятие вектора в пространстве. Сложение и вычитание векторов. Умножение вектора на число. Компланарные векторы.

  1. Производная и её геометрический смысл (16 ч.)

Приращение функции. Понятие производной. Производная функций. Производная степенной функции. Правила дифференцирования. Производная суммы функций. Производная сложной функции. Производная показательной функции. Производная логарифмической функции. Производные тригонометрических функций. Применение правил дифференцирования и формул производных к решению задач.

  1. Метод координат в пространстве. Движения. (14 ч.)

Прямоугольная система координат в пространстве. Координаты вектора. Координаты точки и координаты вектора.

Простейшие задачи в координатах. Угол между векторами. Скалярное произведение векторов. Центральная симметрия.

Осевая симметрия. Зеркальная симметрия. Параллельный перенос.

  1. Применение производной к исследованию функций (16 ч.)

Возрастание и убывание функции. Экстремумы функции. Применение производной к построению графиков функций. Построение графиков с помощью производной. Наибольшее и наименьшее значения функции. Производная второго порядка. Выпуклость графика функции, точки перегиба. Исследование функции с помощью производной.

  1. Цилиндр, конус, шар (17 ч.)

Цилиндр. Площадь поверхности цилиндра. Конус. Площадь поверхности конуса. Усечённый конус. Сфера и шар. Уравнение сферы. Взаимное расположение сферы и плоскости. Касательная плоскость к сфере. Площадь сферы.

  1. Интеграл (13 ч.)

Первообразная. Правила нахождения первообразной. Площадь криволинейной трапеции и интеграл. Формула Ньютна-Лейбница. Нахождение площади криволинейной трапеции с помощью формулы Ньютона – Лейбница. Вычисление площадей с помощью интегралов.

  1. Объемы тел (17 ч.)

Объем прямоугольного параллелепипеда. Объем прямой призмы и цилиндра. Объем наклонной призмы. Объем пирамиды. Объем конуса. Объем шара. Площадь сферы.

  1. Комбинаторика (10 ч.)

Правила произведения. Перестановки. Размещения. Сочетания и их свойства. Бином Ньютона.

  1.  Итоговое повторение курса геометрии (15 ч.)
  2. Элементы теории вероятностей. Статистика ( 11 ч.)

События. Комбинации событий. Противоположное событие. Вероятность  события. Сложение вероятностей. Независимые события. Умножение вероятностей. Статистическая вероятность. Случайные величины. Центральные тенденции. Меры разброса.

  1. Итоговое повторение курса алгебры.  (15 ч.)

4.Календарно-тематическое планирование

№ п/п

Дата

Тема

Количество часов

Предпол.

Факт.

1. Тригонометрические функции (14 ч.)

1

Область определения и область значений тригонометрических функций.

1

2

Четность, нечетность тригонометрических функций.

1

3

Периодичность тригонометрических функций.

1

4

Функция у=cos x и ее график.

1

5

Свойства функции у=cos x.

1

6

Функция  у=sinx и ее график.

1

7

Свойства функции  у=sinx.

8

Административная контрольная работа.

1

9

Свойства функции  у= tgx и ее график.

1

10

Свойства функции  у= сtgx и ее график.

1

11

Обратные тригонометрические функции.

1

12

Решение задач по теме «Обратные тригонометрические функции».

1

13

Повторение по теме «Тригонометрические функции».

1

14

Контрольная работа по теме «Тригонометрические функции».

1

2.Векторы в пространстве (6 ч.)

15

Анализ контрольной работы. Понятие вектора в пространстве.

1

16

Сложение и вычитание векторов.

1

17

Умножение вектора на число.

1

18

Компланарные векторы.

1

19

Решение задач: «Действия с векторами».

1

20

Контрольная работа по теме «Векторы в пространстве»

1

3.Производная и её геометрический смысл (16 ч.)

21

Анализ контрольной работы. Приращение функции. Понятие производной.

1

22

Производная функций.

1

23

Производная степенной функции

1

24

Правила дифференцирования

1

25

Производная суммы функций.

1

26

Производная сложной функции.

1

27

Применение правил дифференцирования.

1

28

Производная показательной функции.

1

29

Производная логарифмической функции.

1

30

Производные тригонометрических функций.

1

31

Применение правил дифференцирования и формул производных к решению задач.

1

32

Решение задач по теме «Производная».

1

33

Геометрический смысл производной.

1

34

Решение задач по теме: «Геометрический смысл производной»

1

35

Повторение по теме: «Производная и ее геометрический смысл»

1

36

Контрольная работа по теме «Производная и её геометрический смысл».

1

4.Метод координат в пространстве. Движения. (14 ч.)

37

Анализ контрольной работы. Прямоугольная система координат в пространстве.

1

38

Координаты вектора.

1

39

Административная контрольная работа.

1

40

Анализ контрольной работы. Координаты точки и координаты вектора.

1

41

Простейшие задачи в координатах.

1

42

Решение задач по теме: «Координаты вектора».

1

43

Угол между векторами.

1

44

Скалярное произведение векторов.

1

45

Центральная симметрия.

1

46

Осевая симметрия.

1

47

Зеркальная симметрия.

1

48

Параллельный перенос.

1

49

Контрольная работа по теме:  «Метод координат в пространстве».

1

50

Анализ контрольной работы.

1

5.Применение производной к исследованию функций (16 ч.)

51

Анализ контрольной работы. Возрастание и убывание функции.

1

52

Возрастание и убывание функции.

1

53

Решение задач на нахождение промежутков монотонности функций.

1

54

Экстремумы функции.

1

55

Нахождение экстремумов функции.

1

56

Решение задач на нахождение экстремумов функции.

1

57

Применение производной к построению графиков функций.

1

58

Построение графиков с помощью производной.

1

59

Наибольшее и наименьшее значения функции.

1

60

Нахождение наибольшее и наименьшее значения функции.

1

61

Производная второго порядка.

1

62

Выпуклость графика функции, точки перегиба.

1

63

Исследование функции с помощью производной.

1

64

Применение производной для исследования функции.

1

65

Повторение по теме «Применение производной к исследованию функций».

1

66

Контрольная работа по теме « Применение производной к исследованию функций».

1

6.Цилиндр, конус, шар (17 ч.)

67

Анализ контрольной работы. Цилиндр.

1

68

Площадь поверхности цилиндра

1

69

Решение задач на тему «Цилиндр».

1

70

Конус.

1

71

Площадь поверхности конуса.

1

72

Усечённый конус.

1

73

Решение задач на тему «Конус».

1

74

Сфера и шар.

1

75

Административная контрольная работа.

1

76

Анализ контрольной работы. Уравнение сферы.

1

77

Взаимное расположение сферы и плоскости.

1

78

Касательная плоскость к сфере.

1

79

Площадь сферы.

1

80

Решение задач на тему «Сфера».

1

81

Решение задач на многогранники.

1

82

Контрольная работа по теме: «Тела вращения».

1

83

Анализ контрольной работы.

1

7.Интеграл (13 ч.)

84

Первообразная.

1

85

Нахождение первообразной.

1

86

Правила нахождения первообразной.

1

87

Нахождение первообразной.

1

88

Решение задач по теме: «Первообразная».

1

89

Площадь криволинейной трапеции и интеграл.

1

90

Формула Ньютна-Лейбница.

1

91

Нахождение площади криволинейной трапеции с помощью формулы Ньютона – Лейбница.

1

92

Вычисление интегралов.

1

93

Решение задач по теме: «Интеграл».

1

94

Вычисление площадей с помощью интегралов.

1

95

Повторение по теме «Интеграл».

1

96

Контрольная работа  по теме: «Интеграл».

1

8.Объемы тел (17 ч.)

97

Анализ контрольной работы. Объем прямоугольного параллелепипеда.

1

98

Решение задач на тему объем прямоугольного параллелепипеда.

1

99

Объем прямой призмы и цилиндра.

1

100

Решение задач на тему объем прямой призмы и цилиндра.

1

101

Объем наклонной призмы.

1

102

Решение задач на тему объем наклонной призмы.

1

103

Объем пирамиды.

1

104

Решение задач на тему объем пирамиды.

1

105

Объем конуса.

1

106

Решение задач на тему объем конуса.

1

107

Объем шара.

1

108

Площадь сферы.

1

109

Решение задач на тему: «Объем шара».

1

110

Решение задач на тему: «Площадь сферы».

1

111

Решение задач на тему: «Объемы тел».

1

112

Контрольная работа по теме:  «Объемы тел».

1

113

Анализ контрольной работы.

1

9.Комбинаторика (10 ч.)

114

Правила произведения.

1

115

Перестановки.

1

116

Размещения.

1

117

Решение задач по теме: «Перестановки. Размещения».

1

118

Сочетания и их свойства.

1

119

Решение задач по теме: «Сочетания и их свойства».

1

120

Бином Ньютона.

1

121

Решение задач по теме: «Бином Ньютона».

1

122

Повторение по теме: «Комбинаторика».

1

123

Контрольная работа по теме: «Комбинаторика».

1

  1.  Итоговое повторение курса геометрии (15 ч.)

124

Анализ контрольной работы. Параллельность прямых и плоскостей.

1

125

Перпендикулярность прямых и плоскостей

1

126

Решение задач: «Перпендикулярность прямых и плоскостей».

1

127

Площади и объемы многогранников

1

128

Решение задач по теме: «Площади и объемы многогранников».

1

129

Площади и объемы тел вращения

1

130

Решение задач «Площади и объемы тел вращения».

1

131

Решение задач на конфигурацию многогранников и тел вращения.

1

132

Административная контрольная работа.

1

133

Решение задач на конфигурацию многогранников.

1

134

Решение задач на конфигурацию тел вращения.

1

135

Декартовы координаты пространстве.

1

136

Векторы в пространстве.

1

137

Итоговая контрольная работа.

1

138

Анализ контрольной работы.

1

  1. Элементы теории вероятностей. Статистика ( 11 ч.)

139

События.

1

140

Комбинации событий. Противоположное событие.

1

141

Вероятность  события.

1

142

Сложение вероятностей.

1

143

Независимые события. Умножение вероятностей.

1

144

Статистическая вероятность.

1

145

Случайные величины.

1

146

Центральные тенденции.

1

147

Меры разброса.

1

148

Решение задач на вероятности.

1

149

Контрольная работа  по теме: «Элементы теории вероятностей. Статистика».

1

  1. Итоговое повторение курса алгебры (15 ч.)

150

Анализ контрольной работы. Числа.

1

151

Алгебраические выражения.

1

152

Преобразование алгебраических выражений.

1

153

Степенная функция.

1

154

Логарифмическая функция.

1

155

Тригонометрические функции.

1

156

Исследование тригонометрических функций.

1

157

Решение показательных уравнений.

1

158

Решение показательных неравенств.

1

159

Решение логарифмических уравнений.

1

160

Решение логарифмических неравенств.

1

161

Решение тригонометрических уравнений и неравенств.

1

162

Административная контрольная работа.

1

163

Анализ контрольной работы. Производная.

1

164

Применение производной.

1

165

Вычисление интегралов.

1

166

Вычисление площади криволинейной трапеции

1

167

Решение текстовых задач.

1

168

Решение текстовых задач.

1

169

Итоговое повторение.

1

170

Итоговое повторение.

1

  1. Информационно - материальное обеспечение

  1. Программа общеобразовательных учреждений. Алгебра и начала математического анализа. 10-11 классы. Сост. Бурмистрова Т.А. М: «Просвещение», 2010 г.
  2. Алимов А.Ш, Колягин Ю.М. и др. Алгебра и начала математического анализа. 10-11 классы. Учебник. (базовый уровень). М.: Просвещение, 2017 г.
  3. Шабунин М.И. и др. Алгебра и начала математического анализа. Дидактические материалы. 10 класс. (Базовый уровень) М.: Просвещение, 2018 г.
  4. Большакова О.В.Алгебра и начала анализа. 10 класс. Тематические тестовые задания для подготовки ЕГЭ. Ярославль: Академия развития, 2017 г.
  5. Ященко И.В. и др. ЕГЭ. Математика. Тематическая рабочая тетрадь + 20 вариантов тестов ЕГЭ.     М.: МЦНМО, 2018 г.
  6. Большакова О.В. Готовимся к ЕГЭ. Алгебра и начала анализа. 10 класс. Итоговое тестирование в формате экзамена.  Ярославль: Академия развития, 2018 г.
  7. Семенко Е.А. Тематический сборник заданий для подготовки к ЕГЭ по математике: 10-11 классы. М.: Вентана-Граф, 2017 г.
  8. Математика. 10-й класс. Тесты для промежуточной аттестации и текущего контроля. Под ред. Лысенко Ф.Ф., Кулабухова С.Ю. Ростов-на-Дону: Легион-М, 2018 г.
  9. ЕГЭ 2014. Математика. Рабочие тетради:  В1 – В14. Под ред. Семенова А.Л., Ященко И.В. М.: МЦНМО, 2013.
  10. Геометрия, 10–11: Учеб.для общеобразоват. учреждений/ Л.С. Атанасян,  В.Ф. Бутузов, С.Б. Кадомцев и др. – М.: Просвещение, 2017 г.
  11. Б.Г. Зив. Дидактические материалы по геометрии для 10 класса. – М. Просвещение,       2017 г.
  12. В.Ф. Бутузов, Ю.А. Глазков, И.И. Юдина. Рабочая тетрадь по геометрии для 10 класса. – М.: Просвещение, 2013.
  13. Б.Г. Зив, В.М. Мейлер, А.П. Баханский. Задачи по геометрии для 7 – 11 классов. – М.:      Просвещение, 2012.
  14. С.М. Саакян, В.Ф. Бутузов. Изучение геометрии в 10 – 11 классах: Методические рекомендации к учебнику. Книга для учителя. – М.: Просвещение, 2012.
  15. А.П. Киселев. Элементарная геометрия. – М.: Просвещение, 1980.
  16. Настольная книга учителя математики. М.: ООО «Издательство АСТ»: ООО   «Издательство Астрель», 2004;
  17. Методические рекомендации к учебникам математики для 10-11 классов, журнал «Математика в школе»  №1-2015год;


По теме: методические разработки, презентации и конспекты

Рабочая программа Математика 10 класс А.Г. Мордкович Л.С. Атанасян

Рабочая программа по математике для 10 класса  УМК А.Г. Мордкович Л.С. Атанасян Базовый уровень...

Рабочая программа Математика 11 класс А.Г.Мордкович Л.С.Атанасян

Рабочая программа Математика 11 класс А.Г.Мордкович Л.С.Атанасян Базовый уровень 5 часов в неделю...

Рабочая программа Математика 9 класс А.Г.Мордкович Л.С.Атанасян

Рабочая программа (тем.план) по математики для 9 класса Авторы учебников А.Г. Мордкович, Л.С. Атанасян...

рабочая программа по математике 9 класс. Ш.А.Алимов, Л.С.Атанасян

Программа расчитана на 5 часов в неделю. В тематическое планирование включен материал по алгебре, геометрии, теории вероятности. Предполагается изучение алгебры и геометрии по главам, поочередно....

Рабочая программа по алгебре10 класс ФГОС, Ш.А. Алимов

Рабочая программа по предмету «Алгебра и начала математического анализа» для 10 класса составлена в соответствии с приказом Министерства образования и науки РФ от 17 мая 2012 г. N 413 &laq...

Рабочая программа по математике 10 класс (А.Ш. Алимов; Л.С. Атанасян)

Рабочая программа по математике  10 класс (А.Ш. Алимов; Л.С. Атанасян)...

Рабочая программа по алгебре и началам анализа Алимов 10-11 класс (базовый уровень) обновлённый фгос 2024

Рабочая программа учебного курса «Алгебра и начала математического анализа» базового уровня для обучающихся 10 –11 классов разработана на основе Федерального государственного образов...