рабочая программа по математике 7 класс Мордкович
рабочая программа по алгебре (7 класс) на тему

рабочая программа по математике 7 класс Мордкович

Скачать:

ВложениеРазмер
Microsoft Office document icon rab.progr_._7_klass_mordkovich.doc108 КБ

Предварительный просмотр:

Рабочая программа по математике, 7 класс

Приложение 4.13.3

к Образовательной программе

Рабочая программа по математике

7 класс

(базовый уровень)

Пояснительная записка

          Предмет «Математика» в 7 классе включает в себя учебные курсы: алгебра и геометрия.        

         Предметы изучаются на базовом уровне.

       Согласно федеральному базисному учебному плану на изучение математики в 7 классе отводится не менее 175 часов из расчета 5 ч в неделю, при этом разделение часов на изучение алгебры и геометрии следующее: 3 часа в неделю алгебры и 2 часа в неделю геометрии в течение всего учебного года, итого 105 часов алгебры и 70 часов геометрии.

Рабочая программа составлена на основе:

  • федерального компонента государственного образовательного стандарта основного общего образования 2004 г.;
  • примерной программы основного общего образования;
  • авторской программы И.И.Зубаревой, А.Г.Мордковича;  
  • Т.А.Бурмистрова «Программы общеобразовательных учреждений. Геометрия. 7 – 9 классы». Москва, «Просвещение», 2008.

ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ УЧАЩИХСЯ

В результате изучения математики ученик должен

знать/понимать

  • существо понятия математического доказательства; примеры доказательств;
  • существо понятия алгоритма; примеры алгоритмов;
  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
  • как потребности практики привели математическую науку к необходимости расширения понятия числа;
  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
  • каким образом геометрия возникла из практических задач землемерия;  примеры геометрических объектов и утверждений о них, важных для практики;
  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;
  • каким образом  геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждения о них, важных для практики;

уметь

  • составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
  • выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
  • применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
  • решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
  • изображать числа точками на координатной прямой;
  • определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;
  • находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;
  • определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;
  • описывать свойства изученных функций, строить их графики;
  • пользоваться геометрическим языком для описания предметов окружающего мира;
  • распознавать геометрические фигуры, различать их взаимное расположение;
  • изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур; распознавать на чертежах, моделях и в окружающей обстановке основные фигуры, изображать их;
  • проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования; решать простейшие планиметрические задачи;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;
  • описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;
  • интерпретации графиков реальных зависимостей между величинами;
  • описания реальных ситуаций на языке геометрии;
  • решения геометрических задач;
  • решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);
  • построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).

. Цели обучения алгебре в 7 классах определены следующим образом:

  • овладение системой математических знаний и умений, необходимых для применения  в практической деятельности,  изучения смежных дисциплин, продолжения образования;
  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
  • воспитание культуры личности, отношение к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.

 В ходе обучения алгебре по данной программе с использованием учебника и методического пособия для учителя, решаются следующие задачи:

  • развитие вычислительных и формально-оперативных алгебраических умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов (физика, химия, основы информатики и вычислительной техники и др.);
  • усвоение аппарата уравнений и неравенств как основного средства математического моделирования прикладных задач;
  • осуществление функциональной подготовки учащихся;
  • овладение конкретными знаниями необходимыми для применения в практической деятельности;
  • выявление и развитие математических способностей,  интеллектуального развития ученика.

Курс характеризуется повышением теоретического уровня обучения, постепенным  усилением роли теоретических обобщений и дедуктивных заключений. Прикладная направленность курса обеспечивается  систематическим обращением к примерам, раскрывающим возможности применения алгебры к изучению действительности и решению практических задач.

Методы контроля усвоения материала: фронтальная устная проверка, индивидуальный устный опрос, письменный контроль (контрольные , самостоятельные,  практические работы, тестирование, письменный зачет, тесты). Промежуточная аттестация проводится в форме административной контрольной работы.

Содержание курса «Алгебра»

Содержание программы соответствует  обязательному минимуму содержания образования и имеет большую практическую направленность.

Математический язык. Математическая модель (10 часов)

Числовые и алгебраические выражения. Переменная. Допустимое значение переменной. Недопустимое значение переменной. Первые представления о математическом языке и о математической модели. Линейные уравнения с одной переменной. Линейные уравнения как математические модели реальных ситуаций. Координатная прямая, виды промежутков на ней.

Линейная функция (11 часов)

Координатная плоскость. Алгоритм отыскания координат точки. Алгоритм построения точки М (а; b) в прямоугольной системе координат. Линейное уравнение  с двумя переменными. Решение уравнения ах +  bу + с = 0. График уравнения. Алгоритм построения графика уравнения ах +  bу + с = 0. Линейная функция. Независимая переменная (аргумент). Зависимая переменная. График линейной функции. Наибольшее и  наименьшее значения линейной функции на заданном промежутке. Возрастание и убывание линейной функции. Линейная функция y=kx и её график.  Взаимное расположение графиков линейных функций.

Система двух линейных уравнений с двумя переменными (11 часов)

Система уравнений. Решение системы уравнений. Графический метод решения системы уравнений. Метод подстановки. Метод алгебраического сложения. Системы двух линейных уравнений с двумя переменными как математические модели реальных ситуаций (текстовые задачи).

Степень с натуральным показателем (7 часов)

        Степень. Основание степени. Показатель степени. Свойства степени с натуральным показателем. Умножение и деление степеней с одинаковыми показателями. Степень с нулевым показателем.

Одночлены. Операции над одночленами (9 часов)

Одночлен. Коэффициент одночлена. Стандартный вид одночлена. Подобные одночлены. Сложение одночленов. Умножение одночленов. Возведение одночлена в натуральную степень. Деление одночлена на одночлен.

Многочлены. Арифметические операции над многочленами (17 часов)

        Многочлен. Члены многочлена. Двучлен. Трехчлен. Приведение подобных членов многочлена. Стандартный вид многочлена.  Сложение и вычитание многочленов. Умножение многочлена на одночлен. Умножение многочлена на многочлен. Квадрат суммы и квадрат разности. Разность квадратов. Разность кубов и сумма кубов. Деление многочлена на одночлен.

Разложение многочленов на множители (20  часов)

Вынесение общего множителя за скобки. Способ группировки. Разложение многочлена на множители с помощью формул сокращенного умножения, комбинации различных приемов. Метод  выделения полного квадрата. Понятие алгебраической дроби. Сокращение алгебраической дроби. Тождество. Тождественно равные выражения. Тождественные преобразования.

Функция у = х2  (7 часов)

Функция у = х2  , её свойства и график. Функция у = -  х2 , её свойства и график.  Графическое решение уравнений.  Кусочная функция. Чтение графика функции. Область определения функции. Первое представление  о непрерывных функциях. Точка разрыва. Разъяснение смысла записи у = f (х). Функциональная символика.

Элементы комбинаторики и теории вероятностей (6 часов)

Простейшие комбинаторные задачи. Данные и ряды данных. Упорядоченные ряды данных. Таблица распределения. Нечисловые ряды данных. Составление таблиц распределений без упорядочивания данных. Частота результата. Таблица распределения частот. Процентные частоты.

Обобщающее повторение (5 часов)

Итоговая контрольная работа (2 часа)

  На основании авторской программы А.Г.Мордковича  выделяется 6 часов на изучение курса «Элементы теории вероятностей и математической статистики». А.Г. Мордкович оставляет выбор за учителем, либо изучить весь курс (21 час) «Элементы теории вероятностей и математической статистики» в 9 классе, либо данный курс изучать по частям в 7 – 8 – 9 классах.  Изучение данного курса предполагается изучать  по частям в 7 – 8 – 9 классах с таким расчетом, что к итоговой аттестации учеников за курс средней школы данный курс будет пройден полностью. Изучение данного курса ориентировано на использование пособия авторов Мордкович А.Г., Семёнов П.В. «События. Вероятности. Статистическая обработка данных». Пособие предназначено для ознакомления учащихся с элементами теории вероятностей и математической статистики и состоит из дополнительных параграфов к курсу алгебры 7 – 9 классов общеобразовательных учреждений.

 Геометрия – один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

Цели обучения геометрии в 7 классе

  • Овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
  • Интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;
  • Формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
  • Воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса.

Основное содержание курса «Геометрия»

Начальные понятия и теоремы геометрии (10 часов)

 Возникновение геометрии из практики.

Геометрические фигуры. Равенство в геометрии. Точка, прямая и плоскость. Отрезок, луч. Расстояние.

Угол. Прямой угол. Острые и тупые углы. Вертикальные и смежные углы. Биссектриса угла.

Параллельные и пересекающиеся прямые. Определения, доказательства, аксиомы и теоремы, следствия. Перпендикулярность прямых. Контрпример, доказательство от противного. Теоремы о параллельности и перпендикулярности прямых.

Перпендикуляр и наклонная к прямой.

Треугольники (19 часов)

Прямоугольные, остроугольные и тупоугольные треугольники. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренные и равносторонние треугольники. Прямая и обратная теоремы, свойства и признаки равнобедренного треугольника.

Признаки равенства треугольников. Неравенство треугольника. Сумма углов треугольника. Внешние углы треугольника. Зависимость между величинами сторон и углов треугольника.

Признаки равенства прямоугольных треугольников.

Параллельные прямые (13 часов)

Признаки параллельности двух прямых. Аксиома параллельных прямых.

Теорема об углах, образованными двумя параллельными прямыми и секущей

Соотношения между сторонами и углами треугольника (20 часов)

Сумма углов треугольника. Соотношение между сторонами и углами треугольника. Неравенство треугольника. Прямоугольные треугольники. Построение треугольника по трём элементам.

      Повторение. Решение задач (8  часов).

Нормы оценки знаний, умений и навыков обучающихся.

  1. Оценка письменных контрольных работ обучающихся по математике.

Ответ оценивается отметкой «5», если:

  • работа выполнена полностью;
  • в логических рассуждениях и обосновании решения нет пробелов и ошибок;
  • в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

  • работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
  • допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

  • допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

 Отметка «2» ставится, если:

  • допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

Отметка «1» ставится, если:

  • работа показала полное отсутствие у обучающегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.

2. Оценка устных ответов обучающихся.

Ответ оценивается отметкой «5», если ученик:

  • полно раскрыл содержание материала в объеме, предусмотренном программой и учебником
  • изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;
  • правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
  • показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;
  • продемонстрировал знание теории ранее изученных сопутствующих тем,  сформированность  и устойчивость используемых при ответе умений и навыков;
  • отвечал самостоятельно, без наводящих вопросов учителя;
  • возможны одна – две  неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя

Ответ оценивается отметкой «4»,если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;
  • допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;
  • допущены ошибка или более двух недочетов  при освещении второстепенных вопросов или в выкладках,  легко исправленные после замечания учителя.

Отметка «3» ставится в следующих случаях:

  • неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке учащихся» в настоящей программе по математике);
  • имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя
  • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
  • при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

 Отметка «2» ставится в следующих случаях

  • не раскрыто основное содержание учебного материала;
  • обнаружено незнание учеником большей или наиболее важной части учебного материала;
  • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

Отметка «1» ставится, если:

  • ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изученному материалу

2.Общая классификация ошибок.

При оценке знаний, умений и навыков учащихся следует учитывать все ошибки (грубые и негрубые) и недочёты.

  1. Грубыми считаются ошибки:
  • незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;
  • незнание наименований единиц измерения;
  • неумение выделить в ответе главное;
  • неумение применять знания, алгоритмы для решения задач;
  • неумение делать выводы и обобщения;
  • неумение читать и строить графики;
  • неумение пользоваться первоисточниками, учебником и справочниками;
  • потеря корня или сохранение постороннего корня;
  • отбрасывание без объяснений одного из них;
  • равнозначные им ошибки;
  • вычислительные ошибки, если они не являются опиской;
  • логические ошибки.

  1. К негрубым ошибкам следует отнести
  • неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;
  • неточность графика;
  • нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);
  • нерациональные методы работы со справочной и другой литературой;
  • неумение решать задачи, выполнять задания в общем виде.

  1. Недочетами являются:
  • нерациональные приемы вычислений и преобразований;
  • небрежное выполнение записей, чертежей, схем, графиков.

Контрольно-измерительные материалы

Итоговая контрольная работа по математике 7 класс

Вариант 1.

Алгебра

  1. Упростите выражение:     2х ( 2х + 3у) – (х + у)2 .
  2. Решите систему уравнений :      4х – у = 9;

                                                                  3х + 7у = - 1.

  1. а) Постройте график функции у = 2х + 2.  

            б) Определите, проходит ли график функции через точку  А(- 10; - 18).

  1. Разложите на множители:       а) 3а2 – 9аb ;  б)    х3 – 25х.

  1. По электронной почте послано три сообщения объемом  600 килобайт. Объем первого сообщения на 300 килобайт меньше объема третьего сообщения и в 3 раза меньше объема второго. Найдите объем каждого сообщения.

Геометрия

  1. Сумма вертикальных углов AND и CNB , образованных при пересечении прямых AB и CD, равна 208º . Найдите угол ANC
  2. Докажите равенство треугольников KOE и DOC, используя данные рисунка.

                                                K                                     C

                                                                  O

                                            E                                     D

  1. Угол, противолежащий  основанию равнобедренного треугольника, равен 120°.  Высота, проведенная к боковой стороне, равна 8 см. Найдите основание этого треугольника.

Итоговая контрольная работа по математике 7 класс

Вариант 2

Алгебра

  1. Упростите выражение:   (у – 4)  + 2) – (у – 2)2 .

  1.  Решите систему уравнений :        х + 8у = - 6;

                                                                     5х - 2у =  12.

  1. а) Постройте график функции у = - 2х -  2.  

           б) Определите, проходит ли график функции через точку А(10; - 20).

  1. Разложите на множители:    а) 2х2у + 4ху2 ;      б) 100а – а3 .

  1. Три бригады рабочих изготовили за смену 100 деталей. Вторая бригада изготовила на 5 деталей больше, чем первая бригада, и на 15 деталей больше, чем третья. Сколько деталей изготовила каждая бригада?

Геометрия

  1. Сумма вертикальных углов МОЕ и DOC, образованных при пересечении прямых MC и DE,

равна 204° . Найдите угол MOD.

  1. Докажите равенство треугольников DFC и DKC, используя данные рисунка.

                                                    F                                                          

                                                                                         C

                                               D                                          

                                                    K

  1. Высота, проведенная к основанию равнобедренного треугольника, равна 8,2 см, а боковая

сторона треугольника равна 16,4 см. Найдите углы этого треугольника.

Источники информации и средства обучения.

Список литературы для учителя:

  1. Александрова Л.А. «Самостоятельные работы. Алгебра -7» - М.: Мнемозина, 2007
  2. Лысенко Ф.Ф. «Учебно-тренировочнные тестовые задания » - Ростов на Дону: Легион, 2008
  3. Контрольно- измерительные материалы. Алгебра: 7 класс \ Сост Л.И.Мартышова. – М.:ВАКО, 2010.- 96с.
  4. Математика: еженедельное приложение к газете «Первое сентября»
  5. Математика в школе: ежемесячный научно-методический журнал.
  6. Мордкович А.Г. «Алгебра-7» часть 1 , учебник – М.: Мнемозина, 2009
  7. Мордкович А.Г. «Алгебра-7» часть 2, задачник – М.: Мнемозина, 2009
  8. Мордкович А.Г. «Тесты по алгебре для 7 – 9 классов» - М.: Мнемозина, 2007
  9.  Мордкович А.Г. «Алгебра 7-9»: методическое пособие для учителей - М.: Мнемозина, 2007
  10.  Мордкович А.Г., Семенов П.В. «События. Вероятности. Статистическая обработка данных»: дополнительные параграфы к курсу алгебры 7 – 9 классов - М.: Мнемозина, 2008
  11. Л.С.Атанасян  и др. «Геометрия. Учебник для 7 – 9 классов общеобразовательных учреждений», 18 издание, Москва, «Просвещение», 2009.
  12. Геометрия, 7 класс поурочные планы, Т. Л. Афанасьева, «Учитель , Волгоград-2006
  13. Б.Г.Зив и др. «Геометрия. Дидактические материалы для 7 класса», Москва, «Просвещение», 2004.
  14. Б.Г.Зив и др. «Задачи по геометрии для 7 – 11 классов», Москва, «Просвещение», 2004
  15. Л.С.Атанасян  и др. «Геометрия. Учебник для 7 – 9 классов общеобразовательных учреждений», 18 издание, Москва, «Просвещение», 2009.
  16. Л.С.Атанасян и др. «Геометрия: рабочая тетрадь для 7 класса», Москва, «Просвещение», 2009.
  17. Б.Г.Зив и др. «Геометрия. Дидактические материалы для 7 класса», Москва, «Просвещение», 2004.
  18. Л.С.Атанасян и др. «Изучение геометрии в 7, 8, 9 классах: методические рекомендации. Книга для учителя», Москва, «Просвещение», 2008.
  19. Федеральный центр тестирования «Тесты. Геометрия. 9 класс. Варианты и ответы централизованного итогового тестирования», Москва, «ФГУ «Федеральный центр тестирования», 2007.
  20. Н.Б.Мельникова «Тематический контроль по геометрии. 7 (8, 9) класс», Москва, «Интеллект Центр», 2000.
  21. А.И.Медянник «Контрольные и проверочные работы по геометрии 7 – 11 классы», Москва, «Дрофа», 1997.
  22. П.И.Алтынов «Геометрия. 7 – 9 классы. Тесты», Москва, «Дрофа», 2002.

Литература для учеников:

  1. Александрова Л.А. «Самостоятельные работы. Алгебра -7» - М.: Мнемозина, 2007
  2. Ключникова Е.М., Комиссарова И.В. «Тесты по алгебре» к учебнику А.Г.Мордковича «Алгебра.7 класс» - М.: Экзамен, 2010
  3. Мордкович А.Г. «Алгебра-7» часть 1 , учебник – М.: Мнемозина, 2009
  4. Мордкович А.Г. «Алгебра-7» часть 2, задачник – М.: Мнемозина, 2009
  5. Мордкович А.Г. «Тесты по алгебре для 7 – 9 классов» - М.: Мнемозина, 2007
  6. Мордкович А.Г., Семенов П.В. «События. Вероятности. Статистическая обработка данных»: дополнительные параграфы к курсу алгебры 7 – 9 классов - М.: Мнемозина, 2005
  7. Л.С.Атанасян  и др. «Геометрия. Учебник для 7 – 9 классов общеобразовательных учреждений», 18 издание, Москва, «Просвещение», 2009.
  8. Л.С.Атанасян и др. «Геометрия: рабочая тетрадь для 7 класса», Москва, «Просвещение», 2009.
  9. Б.Г.Зив и др. «Геометрия. Дидактические материалы для 7 класса», Москва, «Просвещение», 2004.
  10. Б.Г.Зив и др. «Задачи по геометрии для 7 – 11 классов», Москва, «Просвещение», 2004

Для информационно-компьютерной поддержки учебного процесса предполагается использование следующих программно-педагогических средств, реализуемых с помощью компьютера:

1. CD «1С: Репетитор. Математика» (КиМ);

2. CD «АЛГЕБРА не для отличников» (НИИ экономики авиационной промышленности);

3. Математика, 5–11.

Для обеспечения плодотворного учебного процесса предполагается использование информации и материалов следующих Интернет-ресурсов:

Министерство образования РФ: http://www.informika.ru/; http://www.ed.gov.ru/; http://www.edu.ru/.

Тестирование online: 5–11 классы: http://www.kokch.kts.ru/cdo/.

Педагогическая мастерская, уроки в Интернет и многое другое: http://teacher.fio.ru, http://www.zavuch.info/, http://festival.1september.ru, http://school-collection.edu.ru, http://www.it-n.ru, http://www.prosv.ru.

Новые технологии в образовании: http://edu.secna.ru/main/.

Путеводитель «В мире науки» для школьников: http://www.uic.ssu.samara.ru/~nauka/.

Мегаэнциклопедия Кирилла и Мефодия: http://mega.km.ru.


По теме: методические разработки, презентации и конспекты

Рабочая программа по математике (линия Мордкович)

Рабочая программа по математике 5 класс 170 часов в год....

Рабочие программы по математике для 5 класса, по алгебре для 8 класса. УМК А. Г. Мордкович. Рабочие программы по геометрии для 7 и 8 класса. Программа соответствует учебнику Погорелова А.В. Геометрия: Учебник для 7-9 классов средней школы.

Рабочая программа содержит пояснительную записку, содержание учебного материала, учебно - тематическое планирование , требования к математической подготовке, список рекомендованной литературы, календа...

Рабочая программа по математике класс (автор Виленкин Н.Я.))

Рабочая проргамма содержит пояснительную записку, календарно-тематическое планирование, требования  к подготовке учащихся...

Рабочая программа. Алгебра. 7 класс, Мордкович А.Г.

Рабочая программапо алгебредля 7 классана 2014-2015 гг. Количество часов:Общее:102В неделю:3...

РАБОЧАЯ ПРОГРАММА Предмет математика Класс 5 Учитель Асессорова Е.М.

РАБОЧАЯ ПРОГРАММА        Предмет    математика      Класс         5 Учитель      Асессорова Е.М...