"Теорема Виета"
план-конспект урока по алгебре (8 класс) на тему

Разработка урока по алгебре.

Скачать:

ВложениеРазмер
Microsoft Office document icon teorema_vieta.doc104.5 КБ

Предварительный просмотр:

Тема урока: Теорема Виета

Тип урока: открытие новых знаний

Технология: проблемно – диалогическая

Цель урока: изучить теорему Виета и теорему, обратную теореме Виета

Задачи урока:

Образовательные:

- формировать умение применять теорему Виета и теорему, обратную теореме Виета в приведенных квадратных уравнениях;

- совершенствовать навык решения квадратных уравнений;

- обеспечить мотивацию к учебной деятельности как одно из средств развития и социализации личности учащихся.

Развивающие:

- формировать самостоятельность и коммуникативность;

- создавать условия для проявления познавательной активности учащихся;

- учить формулировать проблему, выдвигать гипотезы и искать их подтверждение, формулировать и высказывать суждения.

Воспитательные:

- воспитание личностно значимых ценностей (установка на самообразование, самооценку);

- воспитывать культуру умственного труда.

Материалы к занятию: презентация, лист самооценки (Приложение), задания на карточках, эталоны и  критерии для проверки и оценки, карточки для рефлексии.

Ход урока

I.Организационный момент (1 мин)

- Приветствие учителя.

- Прочитайте высказывание Бернарда Шоу  (ирландский драматург, философ и прозаик): «Единственный путь, ведущий к знаниям, - это деятельность»(Слайд 1)

- Как вы понимаете это высказывание?

-Урок не может быть вне деятельности, мы с вами будем трудиться в поисках научной истины. Пожелайте друг другу удачи.

II. Актуализация знаний(5 мин)

- Какую тему мы изучаем последние уроки? (Квадратные уравнения)

- Какие уравнения называются квадратными?

- Какие уравнения называются приведенными квадратными?

- Можно ли неприведенное  квадратное уравнение представить в виде приведенного?

- Каким образом?

-Запишите на доске и в тетрадях общий вид  приведенного квадратного  уравнения

(х2 + px + q = 0) (способ выполнения: 1 ученик у доски, остальные в тетрадях)

- Проверим домашнее задание:

-Задание №1.Преобразуйте квадратное уравнение в приведенное(Слайд 2)

а) 3х2 + 6х – 12 = 0                        

б) 2х2 = 0                                

в) 3х2 – 7 = 0                

г)5х2 - 10х + 2 = 0

д) 4х2 – 13 = 0

- Выполним самопроверку (Слайд  3)

- Возьмите лист самооценки и поставьте себе отметку за это задание по следующим критериям:

«5» - преобразованы правильно 5 уравнений

«4» - преобразованы правильно 4 уравнения

«3» -  преобразованы правильно 3 уравнения

«2» - не выполнено задание или преобразованы правильно 1-2 уравнения

- Задание №2. Решите  уравнения(Слайд 4).

а) х2 + 6х + 5 = 0

б) х2 – х – 12 = 0

в) х2 + 5х + 6 = 0

г) х2 + 3х – 10 = 0

д) х2 – 8х – 9 = 0

- Выполним самопроверку. Возьмите лист самооценки и поставьте себе отметку за это задание по следующим критериям(Слайд 5)

«5» - решены верно 5 уравнений

«4» - решены верно 4 уравнения

«3» -  решены верно 3 уравнения

«2» - не выполнено задание или решены правильно 1-2 уравнения

- Кто по всем заданиям поставил себе отметку «5»? Возможно, «2»?

Итог: Общая оценка результата и индивидуальная словесная оценка учителем (обозначение высоких результатов, указание тем ученикам, кому нужно еще закрепить знания по этой теме).

III.Создание проблемной ситуации (2 мин)

- А сейчас я приглашаю вас в сказку «Попадет ли Золушка на бал»?(Слайд 6)

В некотором царстве, в некотором государстве произошла такая история. Король пригласил всех жителей своей сказочной страны на бал, но злая мачеха не хотела брать с собой свою падчерицу Золушку(Слайд 7).

Мачеха: Золушка, ты сможешь поехать на бал, если за 5 минут найдешь сумму и произведение корней 20 уравнений.

Золушка: Я хорошо решаю уравнения, но за 5 минут мне никак не успеть!!!

Учитель: На помощь Золушке спешит Фея.

Золушка: Здравствуй, дорогая Фея! (Слайд 8)

Фея: Золушка, не горюй. Я открою тебе секрет,   и ты справишься с заданием даже быстрей!

И Фея открыла Золушке секрет. А этот секрет, который вы сами откроете,  и  будет являться темой нашего урока.

Золушка: Я все поняла, дорогая Фея! Спасибо!(Слайд 9)

И через 5 минут Золушка дала ответы. А вы сможете найти суммы и произведения  корней этих уравнений так же быстро? (Слайд 10) (Нет)

IV. Выдвижение гипотез (3 мин)

- Почему вы не можете также быстро выполнить это задание? (Не знаем секрета, не знаем быстрого способа определения суммы и произведения корней приведенных квадратных уравнений).

- Как вы думаете,  с чем могут быть связаны  корни квадратного уравнения? (C коэффициентами).

- Какой у вас возникает вопрос? Что вам предстоит выяснить? (Существует ли связь между корнями и коэффициентами приведенного квадратного уравнения? Если да, то какова эта связь?)(Слайд 11)

-  Сформулируйте цель своей деятельности (Узнать, существует ли связь между корнями и коэффициентами приведенного квадратного уравнения. Если да, то какова эта связь.)

- Предположите, существует связь между корнями и коэффициентами  или нет? Какова она? (Выдвижение гипотез, учитель все принимает)(Слайд 12)

- Если есть версии, нужно их проверить.

V. Открытие нового знания (12 мин)

2 ученика  работают на закрытой доске, находят сумму и произведение корней приведенного квадратного уравнения, записанного в общем виде.

В  уравнении х2 + pх + q = 0   D>0. Найдите сумму и произведение корней.

- Сейчас мы проведем небольшую исследовательскую работу. Работать будете в группах по 4 человека. Прочитайте задание на карточке. Вы должны заполнить  таблицу,  проанализировать ее, найти закономерность, и определить связь корней с коэффициентами, сделать вывод.

Каждая группа получает таблицу: уравнения выписаны из домашнего задания.

Уравнение

х2 + рх + q=0

p

q

Корни

Сумма корней

Произведение корней

х2 + 6х + 5 = 0

6

5

х1= -1,  х2= -5

-6

5

х2 – х – 12 = 0

-1

-12

х1= 4,  х2= -3

1

-12

х2 + 5х + 6 = 0

5

6

х1= -3,  х2= -2

-5

6

х2 + 3х – 10 = 0

3

-10

х1= -5,  х2= 2

-3

-10

х2 – 8х – 9 = 0

-8

-9

х1= -1,  х2= 9

8

-9

Проверка выполнения заданий в группах и на доске, выводы(Слайд 13)

Общий вывод:

- Ваше предположение подтвердилось? (да)

- Сделайте вывод(Связь между корнями и коэффициентами приведенного квадратного уравнения существует) (Слайд 14)

-Какова она? (Сумма корней равна второму коэффициенту р взятому с противоположным знаком, а произведение равно свободному члену q).

- Вывод: Утверждение верно для всех уравнений, имеющих корни (Слайд15)

- Это утверждение называется теоремой Виета, названной в честь французского математика Франсуа Виета.

- Послушайте небольшую историческую справку об этом математике. (Выступление ученика, сопровождающееся презентацией с портретом Виета)

Сообщение. Франсуа Виет  родился в 1540 году во Франции. В родном городке Виет был лучшим  адвокатом, но главным делом его жизни была математика. Занимаясь наукой,  Виет пришел к выводу, что необходимо усовершенствовать алгебру и тригонометрию. В 1591 году Виет ввел буквенные  обозначения и для неизвестных,  и для коэффициентов уравнения. Ввел формулы. Франсуа Виет отличался необыкновенной работоспособностью. Иногда, увлекшись каким-нибудь исследованием, он проводил за письменным столом по трое суток подряд.

- Какой же секрет открыла Фея Золушке (Теорему Виета)(Слайд 16)

- Назовите тему урока.

- Прочитаем теорему  в учебнике (стр.127).

- Запишите теорему в виде символов в тетрадь(Слайд 17)

- В этой теореме о каких квадратных уравнениях идет речь? (О приведенных)

-Как быть  с неприведенными? (Вначале представить в виде приведенных и  применить теорему Виета). Что вы умеете делать с неприведенными квадратными уравнениями?

- Запишите в виде символов в тетрадь(Слайд 18)

- Для закрепления теоремы Виета я предлагаю вам послушать стихотворение «Теорема Виета».

 По праву достойна в стихах быть воспета

 О свойствах корней теорема Виета.

 Что лучше, скажи, постоянства такого:

 Умножишь ты корни – и дробь уж готова:

 В числителе с, в знаменателе а;

 А сумма корней тоже дроби равна.

 Хоть с минусом дробь эта, что за беда –

 В числителе b, в знаменателе а.

- Существует и теорема, обратная теореме Виета. Прочитайте ее в учебнике на стр. 128, а ее доказательство прочитаете дома.

- Запишите теорему в тетрадь (Слайд 19)

Зарядка для  глаз (Слайды 20-23) (1 мин)

VI. Применение новых знаний (18 мин)

Задание №1 (5 мин)

- Теперь вы сможете также быстро,  как Золушка, найти суммы и произведения  корней 20  уравнений? (Да).

- Что будете применять? (Теорему Виета). Сумму и произведение корней первых 10 уравнений находите, работая в паре, а оставшихся 10 решаете самостоятельно.

x2 + pх + q = 0

x1 + x2

x1 · x2

1.

x2 + 17x - 38 = 0

2.

x2- 16x + 4 = 0

3.

3x2 + 8x - 15 = 0

4.

7x2 + 23x + 5 = 0

5.

x2 + 2x - 3 = 0

6.

x2 + 12x + 32 = 0

7.

x2- 7x + 10 = 0

8.

x2- 2x -3 = 0

9.

- x2 + 12x + 32 = 0

10.

2x2- 11x + 15 = 0

11.

3x2 + 3x - 18 = 0

12.

2x2- 7x + 3 = 0

13.

x2 + 17x -18 = 0

14.

x2-17x -18 = 0

15.

x2-11x + 18 = 0

16.

x2 + 7x - 38 = 0

17.

x2-9x + 18 = 0

18.

x2- 13x + 36 = 0

19.

x2- 15x +36 = 0

20.

x2- 5x - 36 = 0

Эталон для самопроверки  задания №1

  1. x1 + x2 = -17;        x1 • x2 = -38.
  2. x1 + x2 = 16;          x1 • x2 = 4

     3.      x1+ x2 = -8/3 ;      x1 • x2 = -5.

  1. x1 + x2 = -23/7;    x1 • x2 = 5/7.
  2. x1 + x2 = - 2;        x1 • x2 = -3.
  3. x1 + x2 = -12;       x1 • x2 = 32.

     7.    x1 + x2 = 7;           x1 • x2 = 10.

     8.    x1 + x2 = 2;           x1• x2 = -3.

     9.    x1 + x2 = 12;         x1 • x2 = 32.

    10.    x1 + x2 = 5,5;       x1 • x2 = 7,5.

  1. x1 + x2 = -1;        x1 • x2 = -6.
  2. x1 + x2 = 3,5;       x1 • x2 = 1,5.
  3. x1 + x2 = -17;      x1 • x2 = -18.
  4. x1 + x2 = 17;        x1 • x2 = -18.
  5. x1 + x2 = 11;        x1 • x2 = 18.
  6. x1 + x2 = -7;        x1 • x2 = -38.
  7. x1 + x2 = 9;          x1 • x2 = 18.
  8. x1 + x2 = 13;        x1 • x2 = 36.
  9. x1 + x2 = 15;        x1 • x2 = 36.
  10. x1 + x2 = 5;          x1 • x2 = -36.

- Выполните самопроверку по эталону и поставьте отметку по критериям:

«5» - правильно найдены суммы и произведения в 9 - 10 уравнениях

«4» - правильно найдены суммы и произведения в 7 -8 уравнениях

«3» - правильно найдены суммы и произведения в 5 - 6 уравнениях

«2» - правильно найдены суммы и произведения менее 5уравнений.

Задание №2.  Решите уравнения и выполните проверку по теореме,  обратной теореме Виета(1 ученик на открытой доске с комментированием, остальные на закрытой доске)

а) х2– 15х – 16 = 0;   х1 =16, х2 = -1,

б) х2– 9х + 20 = 0;   х1 = 5, х2 = 4,

в) х2+ 11х – 12 = 0;   х1 =1, х2 = -12,

г) 3х2 – 4х – 4 = 0;   х1=2, х2 = -2/3,

д) х2– 2х – 9 = 0;   х1, 2=2±¬40/2    или х1, 2 =1±¬10  

- Выполните самопроверку по эталону и оцените себя по критериям:

Решены  уравнения, правильно найдены суммы и произведения корней у

4 уравнений   - «5»;

3 уравнений - «4»;

2 уравнений - «3»;

1 уравнение - «2».

- Кто справился с этим зданием в полном объеме?

- Изучая новый материал, мы повторили ранее изученный.

- А теперь поставьте себе отметку за весь урок,  основываясь на те отметкив листах самооценки, которые вы ставили себе на протяжении урока.

VII. Рефлексия(2 мин)

- Сформулируйте теорему Виета.

- Сформулируйте теорему, обратную теореме Виета.

- Что побудило нас к открытию нового знания? (Поставленная проблема)

- Вы открывали новое знание сами или  учитель сам рассказал вам теорему Виета

VIII. Домашнее задание (1 мин)

Теорема Виета, №580 (а-г), №581 (в, г)


По теме: методические разработки, презентации и конспекты

Сценарий урока по алгебре "Теорема Виета"

Данный урок является первым по теме “Теорема Виета”.Он проводится по методике развивающего обучения, основным требованием которой является то, что знания не предоставляются учителем в готовом ви...

Приведенное квадратное уравнение. Теорема Виета.

Систематизировать знания, выработать умение выбирать рациональный способ решения квадратных уравнений, расширить и углубить представления учащихся о решении уравнений, организовать поисковую деятельно...

Квадратные уравнения. Теорема Виета

Обобщающий урок в форме игры "Звездный час"...

Тема урока: Теорема Виета

Презентация к уроку....

Теорема Виета

Разработка плана-конспекта урока, объяснение нового материала...

Тренажёр по «Теореме Виета»

Тренажёр по теме «Теорема Виета» позволяет выработать у учащихся умение "видеть" корни уравнений и избавить их от многократного повторения алгоритма с использованием дискриминанта....

Конспект урока "Теорема Виета" 8 класс

На уроке обьясняется новый материал с использованием презентации....