Рабочая программа по геометрии в 8 классе.
рабочая программа (8 класс) на тему

Прошина Людмила Николаевна

Программа составлена к учебнику "Геометрия 7-9" Л.С. Атанасяна.

Скачать:

ВложениеРазмер
Microsoft Office document icon rabochaya_programma_geometriya_8_klass.doc131 КБ

Предварительный просмотр:

НОУ СОШ «Венда»

«Согласовано»                        «Согласовано»                                «Утверждаю»

Председатель МО                        Зам.директора по УР        Директор НОУ СОШ «Венда» _______________                        _________________                        _________________

«___» ________ 2011г.                «___» ________ 2011г.                «___» ________ 2011г.

_____________________                 _____________________         _______________________

Рабочая программа

на 2011/ 12учебный год

Геометрия

8 класс

Автор - составитель

Прошина Л.Н.

г.Москва

Пояснительная записка

Рабочая программа составлена на основе:

  • Государственного стандарта общего образования,
  • примерной программы общеобразовательных учреждений по геометрии 7–9 классы,  к учебному комплексу для 7-9 классов (авторы Л.С. Атанасян, В.Ф. Бутузов, С.В. Кадомцев и др., составитель Т.А. Бурмистрова – М: «Просвещение», 2008. – с. 19-21)
  • федерального перечня учебников, рекомендованных Министерством образования Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях на 2011-12 учебный год,
  • Методическое письмо «О преподавании математики в 2010/2011 учебном году» под ред. И.В. Ященко, А.В. Семенова. – М.: МИОО, 2010.
  • базисного учебного плана 2011/ 12 уч. года.

Общая характеристика учебного предмета.

Геометрия — один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

Таким образом, в ходе освоения содержания курса учащиеся получают возможность развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими фигурами и их свойствами.

Цели

Изучение геометрии в 8 классе направлено на достижение следующих целей:

Продолжить овладение системой геометрических знаний и умений, необходимых для применения  в практической деятельности, изучения смежных дисциплин, продолжения образования.

  • Продолжить интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе; ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
  • Формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
  • Воспитание культуры личности, отношение к геометрии как к части общечеловеческой культуры, понимание значимости геометрии для научно-технического прогресса.

В ходе преподавания геометрии в 8 классе, работы над формированием у учащихся перечисленных в программе знаний и умений следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

  • планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;
  • овладевали приемами аналитико-синтетической деятельности при доказательстве теории и решении задач;
  • целенаправленно обращались к примерам из практики, что развивает умения учащихся вычленять геометрические факты, формы и отношения в предметах и явлениях действительности, использовали язык геометрии для их описания, приобретали опыт исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;
  • ясного, точного, грамотного изложения своих мыслей в устной и письменной речи; проведения доказательных рассуждений, аргументаций, выдвижения гипотез и их обоснования; поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.

Количество часов по плану:

всего – 70 ч,

в неделю – 2 ч,

контрольные работы – 6 ч.

Тематическое и примерное поурочное планирование составлено в соответствии с учебником «Геометрия 7-9», Л.С.Атанасян и др., М.: Просвещение, 2010.

СОДЕРЖАНИЕ    ОБУЧЕНИЯ

  1. Четырехугольники (13 ч, из них 1 контрольная работа)

Основные понятия: 

 Понятия  многоугольника,  выпуклого многоугольника. Параллелограмм и его признаки и свойства. Трапеция. Прямоугольник, ромб,  квадрат и их свойства. Осевая и центральная симметрии.

Основная цель: дать систематические сведения  о четырехугольниках и их свойствах; сформировать представления о фигурах, симметричных, относительно точки или прямой.

В результате изучения темы учащийся должен

знать/понимать

- понятие многоугольника и выпуклого многоугольника, элементов многоугольника, внутренней и внешней области;

- понятие периметра многоугольника;

 - формулу суммы углов выпуклого многоугольника;

- понятие параллелограмма,  его признаки и свойства;

- понятие трапеции, равнобедренной и прямоугольной трапеции;

- понятие прямой и обратной теоремы;

- понятия прямоугольника, ромба и квадрата, их свойства и признаки;

- понятие симметричных точек и фигур относительно прямой и точки;

уметь

- объяснить, какая фигура называется многоугольником, назвать его элементы;

- выводить и пользоваться формулой суммы углов выпуклого многоугольника;

- доказывать и применять свойства и признаки параллелограмма и трапеции  при решении задач;

- доказывать и применять свойства и признаки   прямоугольника, ромба и квадрата при решении задач;

- выполнять чертежи по условию задачи;

- делить отрезок на n равных частей с помощью циркуля и линейки;

- решать задачи на построение;

- строить симметричные точки, распознавать фигуры, обладающие осевой и центральной симметрией;

использовать в практической деятельности

- умения строить и исследовать простейших математических моделей;

приобретать опыт

- алгоритмической деятельности при составлении математической модели заданной ситуации.

  1. Площади фигур (12 ч, из них 1 контрольная работа)

Основные понятия:

 Понятие площади многоугольника. Площади прямоугольника, параллелограмма, треугольника, трапеции. Теорема Пифагора.

Основная цель: сформировать понятие площади многоугольника, развить умение вычислять площади фигур, применяя изученные свойства  и формулы, применять теорему Пифагора.

В результате изучения темы учащийся должен

знать/понимать

- основные свойства площадей;

- формулу для вычисления площади прямоугольника;

- формулы для вычисления площади параллелограмма, треугольника и трапеции;

- теорему об отношении площадей треугольников, имеющих по равному углу;

- теорему Пифагора и обратную ей теорему;

уметь

- вывести формулу площади прямоугольника, параллелограмма, треугольника и трапеции;

- доказывать теорему об отношении площадей треугольников, имеющих по равному углу;

- доказывать Пифагора и обратную ей теорему;

- применять все изученные формулы при решении задач;

- выполнять чертежи по условию задачи;

использовать в практической деятельности

- конструирования новых алгоритмов;

приобретать опыт

- вычислений при осуществлении алгоритмической деятельности.

  1. Подобные треугольники. (16 ч, из них 2 контрольные работы)

Основные понятия:

 Подобные треугольники. Признаки подобия треугольников. Применение подобия к доказательствам теорем и решению задач.  Соотношения между сторонами и углами треугольника.

Основная цель: сформировать понятия подобных треугольников, выработать умение применять признаки подобия треугольников, сформировать аппарат решения прямоугольного треугольника.

В результате изучения темы учащийся должен

знать/понимать

- понятие пропорциональных отрезков и подобных треугольников;

- теорему об отношении площадей подобных треугольников и свойство биссектрисы треугольника;

- признаки подобия  треугольников;

- утверждении о пропорциональности отрезков, отсеченными параллельными прямыми на сторонах угла;

- теоремы о средней линии и пропорциональных отрезках в прямоугольном треугольнике;

- понятие синуса, косинуса, тангенса острого угла прямоугольного треугольника;

- основное тригонометрическое тождество;

- значения синуса, косинуса, тангенса для углов 30˚, 45˚, 60˚;

уметь

- доказывать признаки подобия  треугольников;

- доказывать теоремы о средней линии и пропорциональных отрезках в прямоугольном треугольнике;

- доказывать  основное тригонометрическое тождество;

- выполнять чертежи по условию задачи;

- применять все изученные формулы при решении задач;

- с помощью циркуля и линейки делить отрезок в данном отношении;

- решать задачи на построение;

использовать в практической деятельности

- умения строить и исследовать простейших математических моделей;

приобретать опыт

- алгоритмической деятельности при составлении математической модели заданной ситуации.

  1. Окружность (11 ч, из них 1 контрольная работа)

Основные понятия:  Касательная к окружности и ее свойства. Центральные и вписанные углы. Четыре замечательные точки треугольника. Вписанная и описанная окружности.

Основная цель: систематизировать сведения об окружности и ее свойствах, вписанной или описанной окружностях.

В результате изучения темы учащийся должен

знать/понимать

- возможные случаи взаимного расположения прямой и окружности;

- понятие касательной, ее свойство и признак;

- понятие центрального и вписанного угла;

- как определяется градусная мера дуги окружности;

- теорему о вписанном угле, следствия из нее;

- теорему о произведении отрезков пересекающихся хорд;

- теорему о биссектрисе угла и о серединном перпендикуляре к отрезку, их следствия;

- теорему о пересечении высот треугольника;

- понятие окружности, вписанной в многоугольник, и окружности, описанной около многоугольника;

- теорему об окружности, вписанной в многоугольник, и об окружности, описанной около многоугольника;

- свойства вписанного и описанного четырехугольника;

-  при каком условии  четырехугольник является вписанным и описанным;

уметь

- доказывать признак и свойства касательной;

- доказывать теорему о произведении отрезков пересекающихся хорд;

- доказывать теорему о вписанном угле, следствия из нее;

- доказывать теорему о биссектрисе угла и о серединном перпендикуляре к отрезку, их следствия;

 - доказывать теорему о пересечении высот треугольника;

 - доказывать теорему об окружности, вписанной в многоугольник, и об окружности, описанной около многоугольника;

- доказывать свойства вписанного и описанного четырехугольника;

- выполнять чертежи по условию задачи;

- применять все изученные теоремы и утверждения при решении задач;

- доказывать подобие треугольников с использованием соответствующих признаков;

- вычислять элементы подобных треугольников;

использовать в практической деятельности

- умения строить и исследовать простейших математических моделей;

приобретать опыт

- алгоритмической деятельности при составлении математической модели заданной ситуации.

5. Векторы. (8 часов, из них 1 контрольная работа)

Основные понятия:  . Равенство векторов. Сложение и вычитание векторов. Умножение вектора на число. Применение векторов и при решении задач. Средняя линия трапеции.

Основная цель: научить выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; познакомить с использованием векторов при решении геометрических задач.

В результате изучения темы учащийся должен

знать/понимать 

  • понятие вектора,
  • нулевого вектора,
  • длины вектора,
  • коллинеарные векторы,
  • равные векторы,
  • теорему о средней линии трапеции.

 уметь

  • выполнять операции над векторами (складывать векторы по правилам треугольника и параллелограмма, строить вектор, равный разности двух данных векторов, а также вектор, равный произведению данного вектора на данное число):
  • могут применяться к решению геометрических задач..

  1. Повторение. Решение задач.  (3ч)

 Основные понятия: Параллелограмм и его признаки и свойства. Трапеция. Прямоугольник, ромб,  квадрат и их свойства. Площади прямоугольника, параллелограмма, треугольника, трапеции. Теорема Пифагора. Признаки подобия треугольников. Применение подобия к доказательствам теорем и решению задач.  Соотношения между сторонами и углами треугольника. Касательная к окружности и ее свойства. Центральные и вписанные углы. Вписанная и описанная окружности.

Основная цель: систематизация знаний учащихся

В результате изучения темы учащийся должен

знать/понимать

- формулу суммы углов выпуклого многоугольника;

- понятие и свойства равнобедренной и прямоугольной трапеции;

- понятия параллелограмма, прямоугольника, ромба и квадрата, их свойства и признаки;

- формулы для вычисления площади  прямоугольника, параллелограмма, треугольника и трапеции;

- теорему об отношении площадей треугольников, имеющих по равному углу;

- теорему Пифагора;

- признаки подобия  треугольников;

- теоремы о средней линии и пропорциональных отрезках в прямоугольном треугольнике;

- основное тригонометрическое тождество;

- теорему о вписанном угле, следствия из нее;

- теорему о произведении отрезков пересекающихся хорд;

- теорему об окружности, вписанной в многоугольник, и окружности, описанной около многоугольника;

- свойства вписанного и описанного четырехугольника;

уметь

- выводить и пользоваться формулой суммы углов выпуклого многоугольника;

- доказывать и применять свойства и признаки параллелограмма, трапеции, прямоугольника, ромба и квадрата  при решении задач;

- выполнять чертежи по условию задачи;

- делить отрезок на n равных частей,  в данном отношении  с помощью циркуля и линейки;

- решать задачи на построение;

- строить симметричные точки, распознавать фигуры, обладающие осевой и центральной симметрией;

- выводить и использовать  формулу площади прямоугольника, параллелограмма, треугольника и трапеции;

- применять все изученные  формулы и теоремы  при решении задач, проводя  аргументацию  в ходе решения задач;

- доказывать подобие треугольников с использованием соответствующих признаков;

- вычислять элементы подобных треугольников;

использовать в практической деятельности

- умения строить и исследовать простейших математических моделей;

-умение решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства);

приобретать опыт

- алгоритмической деятельности при составлении математической модели заданной ситуации;

- вычислений при осуществлении алгоритмической деятельности.

7. Резерв(7 часов). 

Резервные часы предназначены для:

- использования при изучении основного курса в случае необходимости( карантин, экскурсия…)

- формирования прочных вычислительных навыков с использованием тренажеров,

- уроков коррекции знаний,

- проведения дополнительной промежуточной аттестации,

- уроков – игр, соревнований и т.п. занимательного характера.

Учебно-тематическое планирование

№ п/п

Наименование разделов и тем

Всего часов

В том

числе к/р

   1.

Четырехугольники

13

1

2.

Площади фигур

12

1

3.

Подобные треугольники.

16

2

4.

Окружность

11

1

5.

Векторы

8

1

6.

Повторение

3

7.

Резерв

7

Итого: (в том числе 6 контрольных работ)

70

6

                  Требования к уровню подготовки обучающихся.

В результате изучения курса геометрии 8-го класса обучающиеся должны

знать/понимать:  

  • существо понятия математического доказательства; примеры доказательств;
  • существо понятия алгоритма; примеры алгоритмов;
  • примеры геометрических объектов и утверждений о них, важных для практики;

уметь

  • пользоваться языком геометрии для описания предметов окружающего мира;
  • распознавать геометрические фигуры, различать их взаимное расположение;
  • изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;
  • вычислять значения геометрических величин (длин, углов, площадей), в том числе: для углов от 0˚ до 90˚ определять значения  тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по  значению одной из них,  находить стороны, углы и площади треугольников, площадей основных геометрических фигур и фигур, составленных из них;
  • решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя  дополнительные построения, алгебраический и тригонометрический аппарат, идеи симметрии;
  • проводить доказательные рассуждения при решении задач, используя  известные теоремы, обнаруживая возможности для их использования;

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • описания реальных ситуаций на языке геометрии;
  • расчетов, включающих простейшие тригонометрические формулы;
  • решения геометрических задач с использованием тригонометрии;
  • решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);
  • построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).

Учебно-методическое обеспечение предмета и перечень литературы.

Основная литература.

Учебник: Геометрия, 7-9: учеб. для общеобразоват. учреждений / [Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др.] – 16-е изд. – М. : Просвещение, 2010.

Рабочая тетрадь Геометрия 8кл. Пособие для учащихся общеобразовательных учреждений. [Л.С. Атанасян, В.Ф. Бутузов, и др.] – 14-е изд. – М. : Просвещение, 2011.

Дополнительная литература.

  1. Атанасян Л. С. Изучение геометрии в 7-9 классах: методические       рекомендации для учителя /Л. С. Атанасян, В. Ф. Бутузов и др. _ М, : Просвещение, 2009.
  2. Универсальные поурочные разработки по геометрии. 8 класс. Н.Ф. Гаврилова. М, : «Вако», 2010.
  3. Геометрия. Тесты. 7-9 кл.: Учебно-метод. пособие. Алтынов П.И. – М. : Дрофа, 2009. – 112 с.
  4. Дидактические материалы по геометрии для 8 класса. Зив Б.Г., Мейлер В.М. – М.  Просвещение, 2009. – 128 с.      
  5. Упражнения по планиметрии на готовых чертежах Саврасова С.М., Ястребинецкий Г.А.: Пособие для учителя. – М. : Просвещение, 2009. – 112 с.  

Тематическое планирование уроков геометрии, 8 класс

при 2 уроках в неделю  (70 уроков за год).

Учебник: Атанасян Л.С.

№ урока

Тема

кол-во

 I. Четырёхугольники

13(1к/р)

1, 2

Многоугольник. Выпуклый многоугольник. Четырехугольник

2

3-5

Параллелограмм. Признаки параллелограмма.

3

6-7

Трапеция.

2

8-11

Прямоугольник, ромб, квадрат. Осевая и центральная симметрии

4

12

Решение задач по теме

1

13

Контрольная работа №1

1

14

Резерв. Решение задач.

 II. Площади фигур

12(1к/р)

15-16

Площадь многоугольника. Площадь квадрата. Площадь прямоугольника

2

17-20

Площадь параллелограмма, треугольника, трапеции

4

21-24

Теорема Пифагора. Теорема, обратная теореме Пифагора

4

25

Решение задач по теме

1

26

Контрольная работа № 2

1

27

Резерв. Решение задач.

III. Подобные треугольники

16(2к/р)

28-29

Определение подобных треугольников. Отношение площадей подобных треугольников

2

30-32

Признаки подобия треугольников

3

33

Решение задач по теме

1

34

Контрольная работа № 3

1

35-36

Средняя линия треугольника

2

37-38

Пропорциональные отрезки в прямоугольном треугольнике

2

39

Практические приложения подобия треугольников. О подобии произвольных фигур

1

40-41

Синус, косинус и тангенс острого угла прямоугольного треугольника. Значения синуса, косинуса и тангенса для углов 30°, 45° и 60°

2

42

Решение задач по теме

1

43

Контрольная работа № 4

1

44

Резерв. Решение задач.

 IV. Окружность

11(1к/р)

45-46

Взаимное расположение прямой и окружности. Касательная к окружности

2

47-49

Центральные и вписанные углы. Градусная мера дуги окружности. Теорема о вписанном угле

3

50-51

Свойства биссектрисы угла и серединного перпендикуляра к отрезку. Теорема о пересечении высот треугольника

2

52-53

Вписанные и описанные окружности

2

54

Решение задач по теме

1

55

Контрольная работа № 5

1

56

Резерв. Решение задач.

V. Векторы

8(1к/р)

57

Понятие вектора. Равенство векторов. Откладывание вектора от данной точки

1

58-59

Сумма двух векторов. Законы сложения векторов. Правило параллелограмма. Сумма нескольких векторов. Вычитание векторов

2

60-62

Произведение вектора на число. Применение векторов к решению задач. Средняя линия трапеции

3

63

Решение задач по теме

1

64

Контрольная работа № 6

1

65

Резерв. Решение задач.

VI. Повторение

3

66-68

Итоговое повторение курса геометрии 8 класса

69-70

Резерв. Решение задач.



По теме: методические разработки, презентации и конспекты

Рабочая программа по геометрии 7 класс по учебнику Атанасян Л. С. Бутузов В. Ф. и др. Геометрия 7-9 классы

Рабочая программа по геометрии 7 класс по учебнику Атанасян Л. С. Бутузов В. Ф. и др. Геометрия 7-9 классы (2 часа в неделю)...

Рабочая программа по геометрии 11 класс (2 часа в неделю, всего 68 часов) Учебник Геометрия 10-11 класс. Погорелов А.В.

Рабочая программа по геометрии 11 класс (2 часа в неделю, всего 68 часов) Учебник Геометрия 10-11 класс. Погорелов А.В. Базовый уровень...

Рабочая программа по геометрии 10 класс (2 часа в неделю, всего 68 часов) Учебник Геометрия 10-11 класс. Погорелов А.В.

Рабочая программа по геометрии 10 класс (2 часа в неделю, всего 68 часов) Учебник Геометрия 10-11 класс. Погорелов А.В. Базовый уровень...

Рабочая программа по геометрии. 9 класс.Л.С.Атанасян и др."Геометрия 7-9 классы"

Предлагаемая рабочая программа разработана в соответствии со всеми требованиями , предъявляемыми к структуре и содержанию рабочих программ.Программа составлена на основе Федерального государственного ...

Аннотация к рабочей программе по геометрии, 11 класс + рабочая программа по геометрии для 11 класса

Аннотация к рабочей программе по МАТЕМАТИКЕ (геометрии). Класс: 11.Программа по геометрии для 11 класса составлена на основе Федерального компонента государственного образовательного стандарта среднег...

Рабочая программа по геометрии 7 класс ФГОС к учебнику «Геометрия 7-9 классы» Л.С. Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др.

Рабочая программа по геометрии содержит в себе цели, задачи предмета на данном этапе изучения. Включает в себя календарный график и тематическое планирование. Рассчитана на 2 урока в неделю, то есть 6...

Рабочая программа по геометрии 8 класс ФГОС к учебнику «Геометрия 7-9 классы» Л.С. Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др.

Рабочая программа по геометрии содержит в себе цели и задачи, предметные результаты, тематическое планирование. Включает в себя календарный график и тематическое планирование. Рассчитана на 2 урока в ...