Рабочая учебная программа по математике 10-11 класс
рабочая программа по математике (10 класс)

Изучение математики на базовом уровне среднего (полного) общего образования направлено на достижение следующих целей:

  • формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;
  • развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для будущей профессиональной деятельности, а также последующего обучения в высшей школе;
  • овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;
  • воспитание средствами математики культуры личности, понимания значимости математики для научно-технического прогресса, отношения к математике как к части общечеловеческой культуры через знакомство с историей развития математики, эволюцией математических идей.

Скачать:

ВложениеРазмер
Файл rabochaya_programma_matematika_10-11.docx54.65 КБ

Предварительный просмотр:

Муниципальное автономное общеобразовательное учреждение

«Комплекс средняя общеобразовательная школа- детский сад»

Рассмотрено

 на педагогическом совете    

Протокол №01 от 31.08.2017                                                                                                          

«Утверждаю»

 Директор    МАОУ «КСОШ-ДС»

( приказ № 308-од от 31.08.2017)

                                               

Рабочая программа

по предмету

Математика

для учащихся 10-11  классов

                                                                   

2017/2018 учебный год

I. Пояснительная записка

   Рабочая программа курса «Математика» для 10-11 классов (базовый уровень)  составлена в соответствии с федеральным компонентом государственного стандарта среднего (полного) общего образования, на основе примерной программы общеобразовательных учреждений по алгебре и началам математического анализа 10-11 классы, авторской программы А.Н. Колмогоров, А.М. Абрамов, Ю.П. Дудницын и др., составитель Т.А. Бурмистрова – М: «Просвещение», 2012., на основе примерной программы общеобразовательных учреждений по геометрии 10-11 классы, авторской программы  Л.С. Атанасян, В.Ф. Бутузов, С.В. Кадомцев и др., составитель   Т.А. Бурмистрова – М: «Просвещение», 2010.

         Изучение математики на базовом уровне среднего (полного) общего образования направлено на достижение следующих целей:

  • формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;
  • развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для будущей профессиональной деятельности, а также последующего обучения в высшей школе;
  • овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;
  • воспитание средствами математики культуры личности, понимания значимости математики для научно-технического прогресса, отношения к математике как к части общечеловеческой культуры через знакомство с историей развития математики, эволюцией математических идей.

Программа реализуется с помощью УМК:

  1. Алгебра и начала  анализа: Учеб. для 10-11 кл. общеобразоват. учреждений/ Колмогоров А.Н., Абрамов А.М. и др.; Под ред. А.Н. Колмогорова. - М.:Просвещение,2012г.
  2. Геометрия, 10–11: Учебник  для общеобразовательных учреждений/ [Л.С. Атанасян, Буткзов, С.Б. Кадомцев  и др.] – М.: Просвещение, 2013

II.  Общая характеристика учебного предмета

При изучении курса математики на базовом уровне продолжаются и получают развитие содержательные линии: «Алгебра», «Функции», «Уравнения и неравенства», « Геометрия», «Элементы комбинаторики, теории вероятностей, статистики и логики», вводится линия «Начала математического анализа». В рамках указанных содержательных линий решаются следующие задачи:

1. систематизация сведений о числах; изучение новых видов числовых выражений и формул; совершенствование практических навыков и вычислительной культуры, расширение и совершенствование алгебраического аппарата, сформированного в основной школе, и его применение к решению математических и нематематических задач;

2. расширение и систематизация общих сведений о функциях, пополнение класса изучаемых функций, иллюстрация широты применения функций для описания и изучения реальных зависимостей;

3. развитие представлений о вероятностно-статистических закономерностях в окружающем мире, совершенствование интеллектуальных и речевых умений путем обогащения математического языка, развития логического мышления;

4. знакомство с основными идеями и методами математического анализа.

В ходе освоения содержания математического образования учащиеся овладевают разнообразными способами деятельности, приобретают и совершенствуют опыт:

         1. построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин;

         2. выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; выполнения расчетов практического характера; использования математических формул и самостоятельного составления формул на основе обобщения частных случаев и эксперимента;

         3. самостоятельной работы с источниками информации, обобщения и систематизации полученной информации, интегрирования ее в личный опыт;

         4. проведения доказательных рассуждений, логического обоснования выводов, различения доказанных и недоказанных утверждений, аргументированных и эмоционально убедительных суждений;

        5. самостоятельной и коллективной деятельности, включения своих результатов в результаты работы группы, соотнесение своего мнения с мнением других участников учебного коллектива и мнением авторитетных источников.

III.  Место предмета в федеральном базисном учебном плане

Согласно Федерального базисного учебного плана на изучение математики в 10-11 классах отводится 5 часов в неделю всего 350 часов.

В 10-11 классах изучение курса математики ведется в форме последовательности тематических блоков с чередованием материала по алгебре, анализу и геометрии.

Распределение учебного времени между этими предметами представлено в таблице.

Классы

Предметы математического цикла

Количество часов

10

Алгебра и начала математического анализа

105

Геометрия

70

11

Алгебра и начала математического анализа

105

Геометрия

70

Всего

350

IV. Результаты изучения предмета «Математика»

       В   результате   изучения   математики   на   базовом уровне в старшей школе ученик должен

Знать/понимать:

  • значение математической науки для решения задач, возникающих в теории и практике; широту и ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
  • значение практики и вопросов, возникающих в самой математике, для формирования и развития математической науки;
  • идеи расширения числовых множеств как способа построения нового математического аппарата для решения практических задач и внутренних задач математики;
  • значение идей, методов и результатов алгебры и математического анализа для построения моделей реальных процессов и ситуаций;
  • возможности геометрического языка как средства описания свойств реальных предметов и их взаимного расположения;
  • универсальный характер законов логики математических рассуждений, их применимость в различных областях человеческой деятельности;
  • различие требований, предъявляемых к доказательствам в математике, естественных, социально-экономических и гуманитарных науках, на практике;
  • роль аксиоматики в математике; возможность построения математических теорий на аксиоматической основе; значение аксиоматики для других областей знания и для практики;
  • вероятностный характер различных процессов и закономерностей окружающего мира.

АЛГЕБРА

уметь

• выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня

натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться

оценкой и прикидкой при практических расчетах;

• проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы, логарифмы и

тригонометрические функции;

• вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: • практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при

необходимости справочные материалы и простейшие вычислительные устройства;

ФУНКЦИИ И ГРАФИКИ

уметь

• определять значение функции по значению аргумента при различных способах задания функции;

• строить графики изученных функций;

• описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;

• решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

• описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков;

НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА

уметь

• вычислять производные и первообразные элементарных функций, используя справочные материалы;

• исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и

простейших рациональных функций с использованием аппарата математического анализа;

• вычислять в простейших случаях площади с использованием первообразной;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

• решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения;

УРАВНЕНИЯ И НЕРАВЕНСТВА

уметь

• решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, их системы;

• составлять уравнения и неравенства по условию задачи;

• использовать для приближенного решения уравнений и неравенств графический метод;

• изображать на координатной плоскости множества решений простейших уравнений и их систем;

           использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

           • построения и исследования простейших математических моделей.

 ГЕОМЕТРИЯ

уметь

  • распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;
  • описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;
  • анализировать в простейших случаях взаимное расположение объектов в пространстве;
  • изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;
  • строить простейшие сечения куба, призмы, пирамиды;
  • решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей);
  • использовать при решении стереометрических задач планиметрические факты и методы;
  • проводить доказательные рассуждения в ходе решения задач;

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;
  • вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.

                  Элементы комбинаторики, статистики и теории вероятностей

Уметь

  • решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул;
  • вычислять в простейших случаях вероятности событий на основе подсчета числа исходов.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для

  • анализа реальных числовых данных, представленных в виде диаграмм, графиков;
  •  для анализа информации статистического характера.

V.  Основное содержание курса

Содержание материала по алгебре и началу анализа 10 класс

Тригонометрические функции. Тождественные преобразования тригонометрических выражений. Тригонометрические функции числового аргумента: синус, косинус и тангенс. Периодические функции. Свойства и графики тригонометрических функций.

Основная цель – расширить и закрепить знания и умения, связанные с тождественными преобразованиями тригонометрических выражений; изучить свойства тригонометрических функций и познакомить учащихся с их графиками.

Изучение темы начинается с вводного повторения, в ходе которого напоминаются основные формулы тригонометрии, известные из курса алгебры, и выводятся некоторые новые формулы. От учащихся не требуется точного запоминания всех формул. Предполагается возможность использования различных справочных материалов: учебника, таблиц, справочников.

Особое внимание следует уделить работе с единичной окружностью. Она становится основой для определения синуса и косинуса числового аргумента и используется далее для вывода свойств тригонометрических функций и решения тригонометрических уравнений.

Систематизируются сведения о функциях и графиках, вводятся новые понятия, связанные с исследованием функций (экстремумы, периодичность), и общая схема исследования функций. В соответствии с этой общей схемой проводится исследование функций синус, косинус, тангенс и строятся их графики.

Тригонометрические уравнения. Простейшие тригонометрические уравнения. Решение тригонометрических уравнений.

Основная цель – сформировать умение решать простейшие тригонометрические уравнения и познакомить с некоторыми приемами решения тригонометрических уравнений.

Решение простейших тригонометрических уравнений основывается на изученных свойствах тригонометрических функций. При этом целесообразно широко использовать графические иллюстрации с помощью единичной окружности. Отдельного внимания заслуживают уравнения вида sinx=1, cosx=0 и т. п. их решение нецелесообразно сводить к применению общих формул.

Отработка каких-либо специальных приемов решения более сложных тригонометрических уравнений не предусматривается. Достаточно рассмотреть отдельные примеры решения таких уравнений, подчеркивая общую идею решения: приведение уравнения к виду, содержащему лишь одну тригонометрическую функцию одного и того же аргумента, с последующей заменой.

Материал, касающийся тригонометрических неравенств и систем уравнений, не является обязательным. Как и в предыдущей теме, предполагается возможность использования справочных материалов.

Производная. Производная. Производные суммы, произведения и частного. Производная степенной функции с целым показателем. Производные синуса и косинуса.

Основная цель – ввести понятие производной; научить находить производные функций в случаях, не требующих трудоемких выкладок. При введении понятия производной и изучении ее свойств следует опираться на наглядно-интуитивные представления учащихся о приближении значений функции к некоторому числу, о приближении участка кривой к прямой линии и т. п.

Формирование понятия предела функции, а также умение воспроизводить доказательства каких-либо теорем в данном разделе не предусматриваются. В качестве примера вывода правил нахождения производных в классе рассматривается только теорема о производной суммы, все остальные теоремы раздела принимаются без доказательства. Важно отработать достаточно свободное умение применять эти теоремы в несложных случаях.

В ходе решения задач на применение формулы производной сложной функции можно ограничиться случаем f(kx + b): именно этот случай необходим далее.

Применение производной. Геометрический и механический смысл производной. Применение производной к построению графиков функций и решению задач на отыскание наибольшего и наименьшего значений.

Основная цель – ознакомить с простейшими методами дифференциального исчисления и выработать умение применять их для исследования функций и построения графиков.

Опора на геометрический и механический смысл производной делает интуитивно ясными критерии возрастания и убывания функций, признаки максимума и минимума.

Основное внимание должно быть уделено разнообразным задачам, связанным с использованием производной для исследования функций. Остальной материал (применение производной к приближенным вычислениям, производная в физике и технике) дается в ознакомительном плане.

Повторение. Решение задач.

Содержание материала по геометрии 10 класс

Введение.

Предмет стереометрии. Аксиомы стереометрии. Некоторые следствия из аксиом.

Основная цель – познакомить учащихся с содержанием курса стереометрии, с основными понятиями и аксиомами, принятыми в данном курсе, вывести первые следствия из аксиом, дать представление о геометрических телах и их поверхностях, об изображении пространственных фигур на чертеже, о прикладном значении геометрии.

        Параллельность прямых и плоскостей.

Параллельность прямых, прямой и плоскости. Взаимное расположение двух прямых в пространстве. Угол между двумя прямыми. Параллельность плоскостей. Тетраэдр и параллелепипед.

Основная цель – сформировать представления учащихся о возможных случаях взаимного расположения двух прямых в пространстве, прямой и плоскости, изучить свойства и признаки параллельности прямых и плоскостей.

        Перпендикулярность прямых и плоскостей.

Перпендикулярность прямой и плоскости. Перпендикуляр и наклонные. Угол между прямой и плоскостью. Двугранный угол. Перпендикулярность плоскостей. Трехгранный угол. Перпендикулярность плоскостей.

Основная цель – ввести понятия перпендикулярности прямых и плоскостей, изучить признаки перпендикулярности прямой и плоскости, двух плоскостей.

        Многогранники.

Понятие многогранника. Призма. Пирамида. Правильные многогранники.

Основная цель – познакомить учащихся с основными видами многогранников (призма, пирамида, усеченная пирамида), с формулой Эйлера для выпуклых многогранников, с правильными многогранниками и элементами их симметрии.

 Повторение. Решение задач.

Содержание материала по алгебре и началу анализа 11класс

Первообразная и интеграл 

       Первообразная. Первообразные степенной функции с целым показателем (п≠ -1), синуса и косинуса. Простейшие правила нахождения первообразных.

Площадь криволинейной трапеции. Интеграл. Формула Ньютона - Лейбница. Применение интеграла к вычислению площадей и объемов.

    Основная цель — ознакомить с интегрированием как операцией, обратной дифференцированию; показать применение интеграла к решению геометрических задач.

Задача отработки навыков нахождения первообразных не ставится, упражнения сводятся к простому применению таблиц и правил нахождения первообразных.

       Интеграл вводится на основе рассмотрения задачи о площади криволинейной трапеции и построения интегральных сумм. Формула Ньютона — Лейбница вводится на основе наглядных представлений.

       В качестве иллюстрации применения интеграла рассматриваются только задачи о вычислении площадей и объемов. Следует учесть, что формула объема шара выводится при изучении данной темы и используется затем в курсе геометрии.

Материал, касающийся работы переменной силы и нахождения центра масс, не является обязательным.

       При изучении темы целесообразно широко применять графические иллюстрации.

Показательная и логарифмическая функции 

      Понятие о степени с иррациональным показателем. Решение иррациональных уравнений.

       Показательная функция, ее свойства и график. Тождественные преобразования показательных уравнений, неравенств и систем.

       Логарифм числа. Основные свойства логарифмов. Логарифмическая функция, ее свойства и график. Решение логарифмических уравнений и неравенств.

       Производная показательной функции. Число е и натуральный логарифм. Производная степенной функции.

       Основная цель — привести в систему и обобщить сведения о степенях; ознакомить с показательной, логарифмической и степенной функциями и их свойствами; научить решать несложные показательные, логарифмические и иррациональные уравнения, их системы.

       Серьезное внимание следует уделить работе с основными логарифмическими и показательными тождествами, которые используются как при изложении теоретических вопросов, так и при решении задач.

       Исследование показательной, логарифмической и степенной функций проводится в соответствии с ранее введенной схемой. Проводится краткий обзор свойств этих функций в зависимости от значений параметров.

       Раскрывается роль показательной функции как математической модели, которая находит широкое применение при изучении различных процессов.

Повторение. Решение задач.

Содержание материала по геометрии 11 класс

Векторы в пространстве

Понятие вектора в пространстве. Сложение и вычитание векторов. Умножение вектора на число. Компланарные векторы.

Основная цель – закрепить известные учащимся из курса планиметрии сведения о векторах и действиях над ними, ввести понятие компланарных векторов в пространстве и рассмотреть вопрос о разложении любого вектора по трем данным некомпланарным векторам.

Основные определения, относящиеся к действиям над векторами в пространстве, вводятся так же, как и для векторов на плоскости. Поэтому изложение этой части материала является довольно сжатым. Более подробно рассматриваются вопросы, характерные для векторов в пространстве: компланарность векторов, правило параллелепипеда сложения трех некомпланарных векторов, разложение вектора по трем некомпланарным векторам.

Метод координат в пространстве. Движения

Координаты точки и координаты вектора. Скалярное произведение векторов. Движения.

Основная цель – сформировать умение учащихся применять векторно-координатный метод к решению задач на вычисление углов между прямыми и плоскостями и расстояний между двумя точками, от точки до плоскости.

Данный раздел является непосредственным продолжением предыдущего. Вводится понятие прямоугольной системы координат в пространстве, даются определения координат точки и координат вектора, рассматриваются простейшие задачи в координатах. Затем вводится скалярное произведение векторов, кратко перечисляются его свойства (без доказательства, поскольку соответствующие доказательства были в курсе планиметрии) и выводятся формулы для вычисления угла между прямыми, между прямой и плоскостью. Дан также вывод уравнения плоскости и формулы расстояния от точки до плоскости.

В конце раздела изучаются движения в пространстве: центральная симметрия, осевая симметрия, зеркальная симметрия, параллельный перенос.

Цилиндр, конус, шар

Понятие цилиндра. Площадь поверхности цилиндра. Понятие конуса. Площадь поверхности конуса. Усеченный конус. Сфера и шар. Уравнение сферы. Взаимное расположение сферы и плоскости. Касательная плоскость к сфере. Площадь сферы.

Основная цель – дать учащимся систематические сведения об основных телах и поверхностях вращения – цилиндре, конусе, сфере, шаре.

Изучение круглых тел (цилиндра, конуса, шара) и их поверхностей завершает знакомство учащихся с основными пространственными фигурами. Вводятся понятия цилиндрической и конической поверхностей, цилиндра, конуса, усеченного конуса. С помощью разверток  определяются площади их боковых поверхностей, выводятся соответствующие формулы. Затем даются определения сферы и шара, выводится уравнение сферы и с его помощью исследуется вопрос о взаимном расположении сферы и плоскости. Площадь сферы определяется как предел последовательности площадей описанных около сферы многогранников при стремлении к нулю наибольшего размера каждой грани. В задачах рассматриваются различные комбинации круглых тел  многогранников, в частности описанные и вписанные призмы и пирамиды.

Объемы тел

Объем прямоугольного параллелепипеда. Объемы прямой призмы и цилиндра. Объемы наклонной призмы, пирамиды и конуса. Объем шара и площадь сферы. Объемы шарового сегмента, шарового слоя и шарового сектора.

Основная цель – ввести понятие объема тела и вывести формулу для вычисления объемов основных многогранников и круглых тел, изученных в курсе стереометрии.

Понятие объема тела вводится аналогично понятию площади плоской фигуры. Формулируются основные свойства объемов и на их основе выводится формула объема прямоугольного параллелепипеда, а затем прямой призмы и цилиндра. Формулы объемов других тел выводятся с помощью интегральной формулы. Формула объема шара используется для вывода формулы площади сферы.

VI.  Тематическое планирование

10 класс

Тема

Всего часов на тему

Из них

Теоретические занятия

Контрольные работы

1

Тригонометрические функции любого угла

5

5

2

Основные тригонометрические формулы

9

8

1

3

Формулы сложения и их следствия

7

7

4

Тригонометрические функции числового аргумента

6

5

1

5

Основные свойства функций

13

12

1

6

Аксиомы стереометрии и их следствия

5

5

7

Параллельность прямых и плоскостей

19

17

2

8

Решение тригонометрических уравнений неравенств

14

13

1

9

Перпендикулярность прямых и плоскостей

24

23

1

10

Производная

14

13

1

11

Многогранники

9

9

1

12

Применение непрерывности и производной

10

9

1

13

Векторы

6

5

Зачёт №1

14

Применение производной к исследованию функций

16

15

1

15

Итоговое повторение

18

16

2

175

161 часа

14

                         

11 класс

Тема

Всего часов на тему

Из них

Теоретические занятия

Контрольные работы

1

Повторение

5

5

2

Первообразная

10

9

1

3

Интеграл

12

11

1

4

Метод координат в пространстве

15

113

2

5

Обобщение понятия степени

15

4

1

6

Цилиндр, конус, шар.

16

15

1

7

Показательная и логарифмическая функции

23

22

1

8

Производная показательной и логарифмической функций

13

12

1

9

Объем тел

21

19

2

10

Элементы теории вероятностей

13

13

11

Итоговое повторение

32

31

1

175

Всего:1 64 часа

11

VII. Методическое обеспечение  

Рабочая программа обеспечена учебно-методическим комплектом, утвержденным  приказом Минобрнауки РФ, используемого для достижения поставленной цели в соответствии с образовательной программой учреждения:

1. Программы А.Н. Колмогоров, А.М. Абрамов, Ю.П. Дудницын и др. «Алгебра и начала математического анализа 10-11 классы», составитель Т.А. Бурмистрова – М: «Просвещение», 2012.,

2. Алгебра и начала  анализа: Учеб. для 10-11 кл. общеобразоват. учреждений/ Колмогоров А.Н., Абрамов А.М. и др.; Под ред. А.Н. Колмогорова. - М.:Просвещение,2016г.

3. Программы Л.С. Атанасян, В.Ф. Бутузов, С.В. Кадомцев и др. «Геометрия 10-11 классы», составитель   Т.А. Бурмистрова – М: «Просвещение», 2010.

4. Геометрия, 10–11: Учебник  для общеобразовательных учреждений/ [Л.С. Атанасян, Буткзов, С.Б. Кадомцев  и др.] – М.: Просвещение, 2006.

5. Алгебра и начала математического анализа. Тематические тесты. 10 класс. Базовый уровень. Ткачева М.В.-м. Просвещение, 2012.

6. Алгебра и начала математического анализа. Тематические тесты. 10 класс. Базовый уровень. Ткачева М.В.- М.Просвещение, 2012

7.Геометрия. Тесты для текущего и обобщающего контроля. 10-11 классы, авт-сост. Г.И. Ковалева, Н.И. Мазурова. «Учитель» Волгоград. 2009

8.Задачи по алгебре и началам анализа: Пособие для учащихся 10–11 кл. общеобразоват. учреждений /С.М. Саакян, А.М. Гольдман, Д.В. Денисов. – М.: Просвещение,1990.

9. Алгебра и начала математического анализа. Тематические тесты. 10 кл: базовый уровень/ М.В.Ткачева – Москва, Просвещение, 2012.

10.Контрольные и проверочные работы по алгебре. 10-11 классы. Методическое пособие. Звавич Л.И., Шляпочник Л.Я., Москва,: Дрофа, 1997.

11.Самостоятельные и контроьные работы по алгебре и началам анализа для 10-11 классов. Ершва А.П., Голобородько В.В., Москва, Илекса, 2008.

12.Лукин Р.Д. и др. Устные упражнения по алгебре и началам анализа. Книга для учителя/ Москва, Просвещение, 1989.

13.Дидактический материал по геометрии для 11 класса. Разрезные карточки./ Сост. Т.И. Ковалева, Волгоград: Учитель, 2004.

VIII.  Банк оценочных средств


Контроль и учёт достижений учащихся ведётся по отметочной системе и направлен на диагностирование достижения учащимися уровня функциональной грамотности.
Формы контроля и учёта учебных и внеучебных достижений учащихся:
1. текущая аттестация (тестирование, работа по индивидуальным карточкам,   самостоятельные работы,  проверочные работы, устный и письменный опросы)
2. аттестация по итогам обучения за год.

Тексты контрольных работ взяты :

  1. Алгебра и начала математического анализа.10 класс. Контрольные работы в новом формате. Дудницын Ю.П. Семенов А.Р.( 2011)
  2. Алгебра и начала математического анализа.11 класс. Контрольные работы в новом формате. Дудницын Ю.П. Семенов А.Р.( 2011)
  3. Контрольные работы по геометрии. 10 класс.  Дудницын Ю.П., Кронгауз В.Л.                                             

Критерии и нормы оценки знаний, умений и навыков обучающихся по математике.

Контроль и оценивание результатов обучения осуществляется в соответствии с рекомендациями, опубликованными в сборнике нормативных документов «Математика в школе» (М.; Просвещение, 1988. Серия «Библиотека учителя математики»)

1. Оценка письменных контрольных работ обучающихся по математике.

Ответ оценивается отметкой «5», если:

  • работа выполнена полностью;
  • в логических рассуждениях и обосновании решения нет пробелов и ошибок;
  • в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

  • работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
  • допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

  •  допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

 Отметка «2» ставится, если:

  • допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

Отметка «1» ставится, если:

  • работа показала полное отсутствие у обучающегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.

2.Оценка устных ответов обучающихся по математике

Ответ оценивается отметкой «5», если ученик:

  • полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
  • изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;
  • правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
  • показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;
  • продемонстрировал знание теории ранее изученных сопутствующих тем,  сформированность  и устойчивость используемых при ответе умений и навыков;
  • отвечал самостоятельно, без наводящих вопросов учителя;
  • возможны одна – две  неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;
  • допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;
  • допущены ошибка или более двух недочетов  при освещении второстепенных вопросов или в выкладках,  легко исправленные после замечания учителя.

Отметка «3» ставится в следующих случаях:

  • неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);
  • имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
  • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
  • при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

 Отметка «2» ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;
  • обнаружено незнание учеником большей или наиболее важной части учебного материала;
  • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

Отметка «1» ставится, если:

  • ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изученному материалу.

Общая классификация ошибок.

При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.

3.1. Грубыми считаются ошибки:

  • незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;
  • незнание наименований единиц измерения;
  • неумение выделить в ответе главное;
  • неумение применять знания, алгоритмы для решения задач;
  • неумение делать выводы и обобщения;
  • неумение читать и строить графики;
  • неумение пользоваться первоисточниками, учебником и справочниками;
  • потеря корня или сохранение постороннего корня;
  • отбрасывание без объяснений одного из них;
  • равнозначные им ошибки;
  • вычислительные ошибки, если они не являются опиской;
  •  логические ошибки.

3.2. К негрубым ошибкам следует отнести:

  • неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;
  • неточность графика;
  • нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);
  • нерациональные методы работы со справочной и другой литературой;
  • неумение решать задачи, выполнять задания в общем виде.

3.3. Недочетами являются:

  • нерациональные приемы вычислений и преобразований;
  • небрежное выполнение записей, чертежей, схем, графиков

                                         


По теме: методические разработки, презентации и конспекты

Рабочая учебная программа для 5 класса

Рабочая программа составлена на основе федерального компонента государственного стандарта основного  общего образования (приказ МОиН РФ от 05.03.2004г. № 1089), учебного ...

Рабочая учебная программа для 6 класса

Рабочая программа составлена на основе федерального компонента государственного стандарта основного  общего образования (приказ МОиН РФ от 05.03.2004г. № 1089), учебного плана школы, примерных пр...

Рабочая учебная программа для 10 класса к учебнику Ю.Н. Гладкий В.В.Николина

Рабочая программа для 10 класса к учебнику Ю.Н.Гладкий, В.В.Николина "География Современный мир"...

Рабочая учебная программа для 5 класса по математике

Рабочая программа по математике для 5 клас­са составлена рамках проекта «Разработка, апробация и внедрение ФГОС» и ориентирована на использование учеб­ника: А.Г.Мерзляк, В.Б.Полонский, М.С. Якир....

Рабочая учебная программа История 7 класс

Программа предлагается для синхронно-параллельного изучения истории...

Рабочая учебная программа для 6 классов по ФГОС

Рабочая учебная программа для 6 класса по ФГОС, предмет история...

Рабочая учебная программа для 5 классов на основе ФГОС ,предмет- обществознание

Программа курса составлена на основе Федерального государственного образовательного стандарта основного общего образования, утвержденного приказом Министерства образования и науки РФ от 17.12.2010г. №...