программа по геометрии 9 класс
календарно-тематическое планирование по геометрии (9 класс)

Рабочая программа по геометрии для 9 класса (базовый уровень) составлена в соответствии с ФГОС ООО, федерального перечня учебников, рекомендованных или допущенных к использованию в образовательном процессе в образовательных учреждениях на 2019-2020 учебный год,

 

             Учебно-методический комплект:

 

  1. Атанасян Л. С.  Геометрия.  7-9 кл.: учебник  /  Л.С. Атанасян,  В.Ф. Бутузов, С. Б. Кадомцев и др. – М.: Просвещение, 2017.
  2. Атанасян Л. С. Изучение геометрии в 7-9 классах: методические рекомендации: книга для учителя / Л. С. Атанасян, В.Ф. Бутузов, Ю.А. Глазков и др.]- М.: Просвещение, 2014.

3.      Дидактические материалы по геометрии. 9 класс. Б.Г. Зив, В.М..: Просвещение, 2018.

 

Скачать:

ВложениеРазмер
Файл geometriya_9kl.docx41.85 КБ

Предварительный просмотр:

.Пояснительная записка

Рабочая программа по геометрии для 9 класса (базовый уровень) составлена в соответствии

-с ФГОС ООО,

-федерального перечня учебников, рекомендованных или допущенных к использованию в образовательном процессе в образовательных учреждениях на 2019-2020 учебный год,

-базисного учебного плана для общеобразовательных организаций Брянской области на 2019-2020 учебный год,

- учебным планом МБОУ Клетнянская  СОШ №2  им. Героя Советского Союза Н.В.Можаева  на 2019-2020 учебный год (приказ №1___________ от ___________ года)

- в соответствии с требованиями к результатам основного образования, с учетом преемственности с программами начального общего образования,

Данная рабочая программа составлена на основе примерной программы основного общего образования по учебным предметам «Стандарты второго поколения. Математика 5-9 класс» - М.: Просвещение, 2014г.

         Учебно-методический комплект:

  1. Атанасян Л. С.  Геометрия.  7-9 кл.: учебник  /  Л.С. Атанасян,  В.Ф. Бутузов, С. Б. Кадомцев и др. – М.: Просвещение, 2017.
  2. Атанасян Л. С. Изучение геометрии в 7-9 классах: методические рекомендации: книга для учителя / Л. С. Атанасян, В.Ф. Бутузов, Ю.А. Глазков и др.]- М.: Просвещение, 2014.
  3. Дидактические материалы по геометрии. 9 класс. Б.Г. Зив, В.М..: Просвещение, 2018.

Цели  обучения:

- овладение системой математических знаний и умений, необходимых в практической деятельности, продолжения образования;

- приобретение опыта планирования и осуществления алгоритмической деятельности;

- освоение навыков и умений проведения доказательств, обоснования  выбора решений;

- приобретение умений ясного и точного изложения мыслей;

- развить пространственные представления и умения, помочь освоить основные факты и методы планиметрии;

- научить пользоваться геометрическим языком для описания предметов.

Задачи обучения:

- учить учащихся выполнять действия над векторами как направленными отрезками;

-познакомить с использованием векторов и метода координат при решении геометрических     задач;

- развить умение учащихся применять тригонометрический аппарат при решении геометрических задач;

- расширить знания учащихся о многоугольниках;

- рассмотреть понятия длины окружности и площади круга для их вычисления;

- познакомить учащихся с понятием движения и его свойствами на плоскости: симметриями, параллельным переносом, поворотом;

- выделить основные методы доказательств, с целью обоснования (опровержения) утверждений и для решения ряда геометрических задач;

- учить проводить рассуждения, используя математический язык, ссылаясь на соответствующие геометрические утверждения;

- использовать алгебраический аппарат для решения геометрических задач;

- дать начальное представление о телах и поверхностях в пространстве.

Общая характеристика учебного предмета

Геометрия является одним из опорных предметов основной школы: она обеспечивает изучение не только математических предметов, но и смежных дисциплин.

В курсе геометрии 9-го класса формируется понятие вектора. Особое внимание уделяется выполнению операций над векторами в геометрической форме. Учащиеся дополняют знания о треугольниках сведениями, о методах вычисления элементов произвольных треугольниках, основанных на теоремах синусов и косинусов. Даются систематизированные сведения о правильных многоугольниках, об окружности, вписанной в правильный многоугольник и описанной. Особое место занимает решение задач на применение формул. Даются первые знания о движении, повороте и параллельном переносе. Серьезное внимание уделяется формированию умений рассуждать, делать простые доказательства, давать обоснования выполняемых действий. Параллельно закладываются основы для изучения систематических курсов стереометрии, физики, химии и других смежных предметов.

Курс характеризуется рациональным сочетанием логической строгости и геометрической наглядности. Увеличивается теоретическая значимость изучаемого материала, расширяются внутренние логические связи курса, повышается роль дедукции, степень абстрактности изучаемого материала. Учащиеся овладевают приемами аналитико-синтетической деятельности при доказательстве теорем и решении задач. Систематическое изложение курса позволяет продолжить работу по формированию представлений учащихся о строении математической теории, обеспечивает развитие логического мышления школьников. Изложение материала характеризуется постоянным обращением к наглядности, использованием рисунков и чертежей на всех этапах обучения и развитием геометрической интуиции на этой основе. Целенаправленное обращение к примерам из практики развивает умения учащихся вычленять геометрические факты, формы, и отношения.

Место предмета в учебном плане

Согласно базисному учебному плану для общеобразовательных организаций Брянской области на 2019-2020 учебный год  и учебному плану МБОУ Клетнянская  СОШ №2  им. Героя Советского Союза Н.В.Можаева  на 2019-2020 г. на изучение геометрии в 9 классе отводится 68 часов из расчета 2 ч в неделю.

Личностные, метапредметные, предметные результаты

освоения учебного предмета

Личностные:

  • использование приобретенных знаний и умений в практической деятельности и повседневной жизни для моделирования практических ситуаций и исследования построенных моделей с использованием аппарата геометрии;
  • формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учётом устойчивых познавательных интересов;
  • формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;
  • формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;
  • умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
  • критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
  • креативность мышления, инициативу, находчивость, активность при решении геометрических задач;
  • умение контролировать процесс и результат учебной математической деятельности;
  • способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.

Метапредметные:

При изучении геометрии обучающиеся усовершенствуют приобретенные навыки работы с информацией и пополнят их. Они смогут работать с текстами, преобразовывать и интерпретировать содержащуюся в них информацию, в том числе:

  • систематизировать, сопоставлять, анализировать, обобщать и интерпретировать информацию, содержащуюся в готовых информационных объектах;
  • выделять главную и избыточную информацию, выполнять смысловое свертывание выделенных фактов, мыслей; представлять информацию в сжатой словесной форме (в виде плана или тезисов) и в наглядно-символической форме (в виде таблиц, графических схем и диаграмм, карт понятий — концептуальных диаграмм, опорных конспектов);
  • заполнять и дополнять таблицы, схемы, диаграммы, тексты.

Регулятивные:

  • определять цель деятельности на уроке с помощью учителя и самостоятельно;
  • учиться совместно с учителем обнаруживать и формулировать учебную проблему;
  • учиться планировать учебную деятельность на уроке;
  • высказывать свою версию, пытаться предлагать способ её проверки (на основе продуктивных заданий в учебнике);
  • работая по предложенному плану, использовать необходимые средства (учебник, компьютер и инструменты);
  • определять успешность выполнения своего задания в диалоге с учителем.

Познавательные:

  • ориентироваться в своей системе знаний: понимать, что нужна дополнительная информация (знания) для решения учебной задачи в один шаг;
  • делать предварительный отбор источников информации для решения учебной задачи;
  • добывать новые знания: находить необходимую информацию, как в учебнике, так и в предложенных учителем словарях, справочниках и интернет- ресурсах;
  • добывать новые знания: извлекать информацию, представленную в разных формах (текст, таблица, схема, иллюстрация и др.);
  • перерабатывать полученную информацию: наблюдать и делать самостоятельные выводы. 

Коммуникативные:

  • доносить свою позицию до других: оформлять свою мысль в устной и письменной речи (на уровне предложения или небольшого текста);
  • слушать и понимать речь других;
  • выразительно читать и пересказывать текст;
  • вступать в беседу на уроке и в жизни;
  • совместно договариваться о правилах общения и поведения в школе и следовать им;
  • учиться выполнять различные роли в группе (лидера, исполнителя, критика).

Предметные:

  • овладение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучаемых понятиях (геометрическая фигура, величина) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;
  • умение работать с геометрическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики, использовать различные языки математики, проводить классификации, логические обоснования, доказательства математических утверждений;
  • овладение навыками устных письменных, инструментальных вычислений;
  • овладение геометрическим языком, умение использовать его для описания предметов окружающего мира, развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;
  • усвоение систематических знаний о плоских фигурах и их свойствах, умение применять систематические знания о них для решения геометрических и практических задач;
  • умение измерять длины отрезков, величины углов;
  • умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочные материалы и технические средства.

Содержание тем учебного курса

Векторы и метод координат (19 ч.)

Понятие вектора. Равенство векторов. Сложение и вычитание векторов. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Простейшие задачи в координатах. Уравнения окружности и прямой. Применение векторов и координат при решении задач.

Основная цель — научить учащихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; познакомить с использованием векторов и метода координат при решении геометрических задач. Вектор определяется как направленный отрезок и действия над векторами вводятся так, как это принято в физике, т. е. как действия с направленными отрезками.

Основное внимание должно быть уделено выработке умений выполнять операции над векторами (складывать векторы по правилам треугольника и параллелограмма, строить вектор, равный разности двух данных векторов, а также вектор, равный произведению данного вектора на данное число).

На примерах показывается, как векторы могут применяться к решению геометрических задач. Демонстрируется эффективность применения формул для координат середины отрезка, расстояния между двумя точками, уравнений окружности и прямой в конкретных геометрических задачах, тем самым дается представление об изучении геометрических фигур с помощью методов алгебры.

Соотношения между сторонами и углами треугольника. Скалярное произведение векторов (11 ч.)

Синус, косинус и тангенс угла. Теоремы синусов и косинусов. Решение треугольников. Скалярное произведение векторов и его применение в геометрических задачах.

Основная цель — развить умение учащихся применять тригонометрический аппарат при решении геометрических задач.

Синус и косинус любого угла от 0° до 180° вводятся с помощью единичной полуокружности, доказываются теоремы синусов и косинусов и выводится еще одна формула площади треугольника (половина произведения двух сторон на синус угла между ними). Этот аппарат применяется к решению треугольников.

Скалярное произведение векторов вводится как в физике (произведение длин векторов на косинус угла между ними). Рассматриваются свойства скалярного произведения и его применение при решении геометрических задач.

Основное   внимание   следует   уделить   выработке   прочных   навыков   в   применении тригонометрического аппарата при решении геометрических задач.

Длина окружности и площадь круга (12 ч.)

Правильные многоугольники. Окружности, описанная около правильного многоугольника и вписанная в него. Построение правильных многоугольников. Длина окружности. Площадь круга.

Основная цель — расширить знание учащихся о многоугольниках; рассмотреть понятия длины окружности и площади круга и формулы для их вычисления В начале темы дается определение правильного многоугольника и рассматриваются теоремы об окружностях, описанной около правильного многоугольника и вписанной в него. С помощью описанной окружности решаются задачи о построении правильного шестиугольника и правильного 12-угольника, если дан правильный п-угольник.

Формулы, выражающие сторону правильного многоугольника и радиус вписанной в него окружности через радиус описанной окружности, используются при выводе формул длины окружности и площади круга. Вывод опирается на интуитивное представление о пределе: при неограниченном увеличении числа сторон правильного многоугольника, вписанного в окружность, его периметр стремится к длине этой окружности, а площадь — к площади круга, ограниченного окружностью.

Движения (8 ч.)

Отображение плоскости на себя. Понятие движения. Осевая и центральная симметрии. Параллельный перенос. Поворот. Наложения и движения.

Основная цель — познакомить учащихся с понятием движения и его свойствами, с основными видами движений, с взаимоотношениями наложений и движений.

 Движение   плоскости   вводится   как   отображение   плоскости   на   себя, сохраняющее расстояние между точками.  При рассмотрении видов движений основное внимание уделяется построению образов точек, прямых, отрезков, треугольников при осевой и центральной симметриях, параллельном переносе, повороте. На эффектных примерах показывается применение движений при решении геометрических задач. Понятие наложения относится в данном курсе к числу основных понятий. Доказывается, что понятия наложения и движения являются эквивалентными: любое наложение является движением плоскости и обратно. Изучение доказательства не является обязательным, однако следует рассмотреть связь понятий наложения и движения.

Начальные сведения из стереометрии (6 ч.)

Предмет стереометрия. Многогранник. Призма. Параллелепипед. Цилиндр. Конус. Сфера и шар.

Основная цель – познакомить учащихся с многогранниками; телами и поверхностями вращения.

Об аксиомах планиметрии  (1 ч.)

Об аксиомах планиметрии. Некоторые сведения о развитии геометрии

Основная цель — дать более глубокое представление о системе аксиом планиметрии и аксиоматическом методе

Повторение (11 ч.)

Формой проведения занятий по программе является урок.  

Типы  уроков: Урок изучения нового материала, комбинированные уроки, урок контроля и оценки, урок обобщения и систематизации, урок совершенствования знаний, умений и навыков.

Контроль за результатами обучения осуществляется через использование следующих видов контроля: входной, текущий, тематический, итоговый. При этом используются различные формы контроля: контрольная работа, самостоятельная работа, тест, устный опрос, практическая деятельность (решение задач, выполнение практических работ).

Виды работы

1-я ч.

(кол-во часов.)

2-я ч.

(кол-во часов.)

І полуг.

(кол-во часов)

3-я ч.

(кол-во часов.)

4-я ч.

(кол-во часов.)

ІІ полуг.

(кол-во часов.)

ИТОГО

Контрольные  работы

-

2

2

2

1

1

5

Самостоятельные работы

1

1

2

1

-

1

3

Дата

 план

Дата

факт

Тема урока

Вводное повторение (2 ч.)

1

Повторение. Треугольники

2

Повторение. Четырехугольники

Векторы (9 ч.)

3

Понятие вектора, равенство векторов.

4

Откладывание вектора от данной точки

5

Сумма двух векторов. Законы сложения.

6

Сумма нескольких векторов

7

Вычитание векторов

8

Умножение вектора на число

9

Средняя линия трапеции

10

Применение векторов к решению задач

11

Самостоятельная работа  по теме «Векторы»

Метод координат (10 ч)

12

 Разложение вектора по двум неколлинеарным векторам

13

Координаты вектора

14

Простейшие задачи в координатах.

15

Решение задач по теме: «Метод координат»

16

Уравнение окружности.

17

Уравнение прямой

18

Уравнения окружности и прямой

19

Решение задач с использованием метода координат

20

Решение задач с использованием метода координат

21

Контрольная работа №1 по теме: «Векторы»

Соотношения между сторонами и углами треугольника.

Скалярное произведение векторов (11 ч)

22

Синус, косинус и тангенс угла. Основное тригонометрическое тождество

23

Синус, косинус и тангенс угла.

24

Синус, косинус и тангенс угла. Формулы для вычисления координат точки

25

Теорема о площади треугольника

26

Теорема синусов

27

Теорема косинусов

28

Решение треугольников. Самостоятельная работа «Соотношения между сторонами и углами треугольника».

29

Скалярное произведение векторов.

30

Скалярное произведение векторов и его свойства

31

Применение скалярного произведения векторов к решению задач.

32

Контрольная работа №2 по теме: «Соотношение между сторонами и углами треугольника»

Длина окружности и площадь круга (12 ч)

33

Правильные многоугольники.

34

Окружность, описанная около правильного многоугольника и вписанная в правильный многоугольник

35

Формулы для вычисления площади правильного многоугольника, его стороны и радиуса вписанной окружности.

36

Решение задач по теме «Правильные многоугольники»

37

Длина окружности

38

Длина окружности. Решение задач.

39

Площадь круга и кругового сектора

40

Площадь круга и кругового сектора

41

Решение задач «Длина окружности. Площадь круга». Самостоятельная работа по теме «Длина окружности и площадь круга»

42

Решение задач «Длина окружности. Площадь круга»

43

Решение задач «Длина окружности. Площадь круга»

44

Контрольная работа № 3 «Длина окружности. Площадь круга"

Движение (8 ч)

45

Понятие движения. Отображение плоскости на себя.

46

 Понятие движения.  Осевая и центральная симметрия

47

Параллельный перенос.

48

Поворот

49

Параллельный перенос. Поворот

50

Решение задач по теме «Движение»

51

Решение задач по теме «Движение»

52

Контрольная работа № 4 «Движение»

Начальные сведения из стереометрии (6 ч)

53

Многогранники

54

Призма. Параллелепипед. Свойства параллелепипеда

55

Многогранники

56

Тела и поверхности вращения. Цилиндр. Конус.

57

Сфера. шар

58

Тела и поверхности вращения.

Об аксиомах планиметрии ( 1ч)

59

Об аксиомах планиметрии.

Повторение (9 ч.)

60

Треугольники. Признаки равенства треугольников

61

Подобие треугольников

62

Окружность

63

Итоговая контрольная работа в форме ОГЭ

64

Анализ  контрольной работы

65

Четырехугольники

66

Векторы. Метод координат

67

Решение задач ОГЭ

68

Решение задач ОГЭ


По теме: методические разработки, презентации и конспекты

Рабочая программа по геометрии 7 класс по учебнику Атанасян Л. С. Бутузов В. Ф. и др. Геометрия 7-9 классы

Рабочая программа по геометрии 7 класс по учебнику Атанасян Л. С. Бутузов В. Ф. и др. Геометрия 7-9 классы (2 часа в неделю)...

Рабочая программа по геометрии 11 класс (2 часа в неделю, всего 68 часов) Учебник Геометрия 10-11 класс. Погорелов А.В.

Рабочая программа по геометрии 11 класс (2 часа в неделю, всего 68 часов) Учебник Геометрия 10-11 класс. Погорелов А.В. Базовый уровень...

Рабочая программа по геометрии 10 класс (2 часа в неделю, всего 68 часов) Учебник Геометрия 10-11 класс. Погорелов А.В.

Рабочая программа по геометрии 10 класс (2 часа в неделю, всего 68 часов) Учебник Геометрия 10-11 класс. Погорелов А.В. Базовый уровень...

Рабочие программы по математике для 5 класса, по алгебре для 8 класса. УМК А. Г. Мордкович. Рабочие программы по геометрии для 7 и 8 класса. Программа соответствует учебнику Погорелова А.В. Геометрия: Учебник для 7-9 классов средней школы.

Рабочая программа содержит пояснительную записку, содержание учебного материала, учебно - тематическое планирование , требования к математической подготовке, список рекомендованной литературы, календа...

Рабочая программа по геометрии. 9 класс.Л.С.Атанасян и др."Геометрия 7-9 классы"

Предлагаемая рабочая программа разработана в соответствии со всеми требованиями , предъявляемыми к структуре и содержанию рабочих программ.Программа составлена на основе Федерального государственного ...

Аннотация к рабочей программе по геометрии, 11 класс + рабочая программа по геометрии для 11 класса

Аннотация к рабочей программе по МАТЕМАТИКЕ (геометрии). Класс: 11.Программа по геометрии для 11 класса составлена на основе Федерального компонента государственного образовательного стандарта среднег...

РАБОЧАЯ ПРОГРАММА Предмет геометрия Класс 9 Учитель Асессорова Е.М.

РАБОЧАЯ ПРОГРАММА        Предмет    геометрия      Класс         9 Учитель      Асессорова Е.М....