Рабочая программа по геометрии для 8 класса
рабочая программа по геометрии (8 класс) на тему

Чимитова Маргарита Митыповна

Рабочая программа составлена с учётом примерной программы основного общего образования по математике и скорректирована на её основе программа: «Геометрия 7-9» авторы Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев, Э. Г. Позняк, И. И. Юдина.

Скачать:

ВложениеРазмер
Файл rabochaya_programma_po_geometrii_dlya_8_klassa.doc.docx41.81 КБ

Предварительный просмотр:

Рабочая программа учебного предмета

«Геометрия»

8 класс


Пояснительная записка

        Рабочая программа составлена с учётом примерной программы основного общего образования по математике и скорректирована на её основе программа: «Геометрия 7-9» авторы Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев, Э. Г. Позняк, И. И. Юдина.

Место предмета в базисном учебном плане

Материалы для рабочей программы составлены на основе:

федерального компонента государственного стандарта общего образования,

  • примерной программы по математике основного общего образования,
  • федерального перечня учебников, рекомендованных Министерством образования Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях на 2012 – 2013 уч. год,
  • с учетом требований к оснащению образовательного процесса в соответствии с содержанием наполнения учебных предметов компонента государственного стандарта общего образования,
  • тематического планирования учебного материала,
  • базисного учебного плана.

        Цели обучения математики в общеобразовательной школе определяются ее ролью в развитии общества в целом и формировании личности каждого отдельного человека. Геометрия – один из важнейших компонентов математического образования. Она необходима для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, развития пространственного воображения и интуиции, математической культуры, эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

        Программа направлена на достижение следующих целей:

  • овладение системой математических знаний и умений, необходимых для применения практической деятельности изучения смежных дисциплин, продолжения образования;
  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений;
  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
  • воспитание культуры личности, отношения к математике как части общечеловеческой культуры, понимание значимости математики для научно технического прогресса;
  • развитие представлений о полной картине мира, о взаимосвязи математики с другими предметами.

В курсе геометрии 8-го класса продолжается решение задач на признаки равенства треугольников, но в совокупности с применением новых теоретических факторов. Теореме о сумме углов выпуклого многоугольника позволяет расширить класс задач. Формируется практические навыки вычисления площадей многоугольников в ходе решения задач. Особое внимание уделяется применению подобия треугольников к доказательствам теорем и решению задач. Даются первые знания о синусе, косинусе и тангенсе острого угла прямоугольного треугольника. Даются учащимся систематизированные сведения об окружности и её свойствах, вписанной и описанной окружностях. Серьезное внимание уделяется формированию умений рассуждать, делать простые доказательства, давать обоснования выполняемых действий. Параллельно закладываются основы для изучения систематических курсов стереометрии, физики, химии и других смежных предметов.

Программой отводится на изучение геометрии по 2 урока в неделю, что составляет 68 часов в учебный год. Данное планирование определяет достаточный объем учебного времени для повышения математических знаний учащихся в среднем звене школы, улучшения усвоения других учебных предметов.

Учебно-тематический план

Содержание учебного материала

Кол-во часов

Кол-во

контрольных

 работ

1

Четырёхугольники

14

1

2

Площадь

14

1

3

Подобные треугольники

19

2

4

Окружность

17

1

5

Итоговое повторение

4

1

Количество часов по темам изменено в связи со сложностью тем.

Промежуточная аттестация проводится в форме тестов, самостоятельных, проверочных работ и математических диктантов (по 10 - 15 минут) в конце логически законченных блоков учебного материала. Итоговая аттестация предусмотрена в виде административной контрольной работы.

Домашнее задание описано на блок уроков. По ходу работы, в зависимости от темпа прохождение материала номера заданий распределяются по урокам так, что по окончании изучения блока все задания выполнены учащимися в обязательном порядке.

Основная форма организации образовательного процесса – классно-урочная система.

Предусматривается применение следующих технологий обучения:

  • традиционная классно-урочная
  • игровые технологии
  • элементы проблемного обучения
  • технологии уровневой дифференциации
  • здоровьесберегающие технологии
  • ИКТ

Уровень обучения – базовый. Срок реализации рабочей учебной программы – один учебный год. 

Требования к уровню подготовки учащихся.

В результате изучения курса геометрии 8-го класса учащиеся должны уметь:

  • пользоваться геометрическим языком для описания предметов окружающего мира;
  • распознавать геометрические фигуры, различать их взаимное расположение;
  • изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразование фигур;
  • вычислять значения геометрических величин (длин, углов, площадей), в том числе: определять значение тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них; находить стороны, углы и площади треугольников, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;
  • решать геометрические задания, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, соображения симметрии;
  • проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
  • решать простейшие планиметрические задачи в пространстве.

Сокращения, используемые в рабочей программе:

Типы уроков:

УОНМ — урок ознакомления с новым материалом.

УЗИМ — урок закрепления изученного материала.

УПЗУ — урок применения знаний и умений.

УОСЗ урок обобщения и систематизации знаний.

УПКЗУ — урок проверки и коррекции знаний и умений.

КУ комбинированный урок.

Виды контроля:

ФО — фронтальный опрос.

ИРД — индивидуальная работа у доски.

ИРК — индивидуальная работа по карточкам.

СР самостоятельная работа.

ПР проверочная работа.

МД математический диктант.

Т – тестовая работа.


Календарно-тематическое планирование

Наименование раздела

 программы

Тема урока

Кол-во часов

Тип урока

Элементы содержания образования

Требования к уровню подготовки обучающихся

Дом

задание

1-2

I. Четырехугольники.

14 часов

Многоугольники.

2

КУ

УОНМ

многоугольник, элементы многоугольника, выпуклый многоугольник, сумма углов выпуклого многоугольника

-уметь строить выпуклый многоугольник;

-знать формулу суммы углов выпуклого многоугольника

п.39, 40, 41 №364, 365(б,г), 369

3-8

Параллелограмм. Свойства параллелограмма.

2

КУ

УОНМ

четырехугольник, параллелограмм, свойства параллелограмма

-уметь доказывать свойства параллелограмма;

-уметь решать задачи

п.42, №372(в), 376(а)

Признаки параллелограмма.

2

КУ

УПЗУ

параллелограмм, свойства параллелограмма, признаки параллелограмма

-уметь доказывать признаки параллелограмма;

-уметь решать задачи

п.43, №375, 379, 383, 382

Трапеция.

2

КУ УЗИМ

трапеция, элементы трапеции, равнобедренная и прямоугольная трапеция

-знать, что называют трапецией;

-уметь решать задачи на доказательство

п.44, №392(б), 390, 389(а)

9-12

Прямоугольник.

1

КУ

прямоугольник, свойства прямоугольника, признак прямоугольника

-уметь доказывать теоремы и свойства прямоугольника;

-уметь решать задачи на их применение;

п.45, №401(а), 400

Ромб и квадрат.

2

КУ УОНМ

ромб, квадрат, свойство ромба и квадрата

-уметь доказывать свойства ромба и квадрата;

-уметь решать задачи

п.46, №405, 406, 408(а)

Осевая и центральная симметрии.

1

КУ

осевая и центральная симметрии, ось симметрии, центр симметрии

-уметь строить симметричные точки;

-уметь распознавать фигуры, обладающие осевой и центральной симметрией

п.47, №419, 423, 422

13

Решение задач.

1

УПЗУ

параллелограмм, трапеция, прямоугольник, ромб, квадрат, осевая и центральная симметрии

-уметь решать задачи, опираясь на изученные свойства

 [3], КР-1,

В-4

14

Контрольная работа №1

1

-уметь применять все изученные свойства, признаки и теоремы в комплексе;

-уметь доказательно решать задачи

15-16

II. Площадь.

14 чаксов

Площадь многоугольника.

2

КУ

УОНМ

единицы измерения площадей, площадь прямоугольника, основные свойства площадей

-уметь вывести формулу площади прямоугольника;

-уметь решать задачи на применение формулы

п.48, 49, 50, №447-453

17-22

Площадь параллелограмма.

2

КУ

УПЗУ

параллелограмм, основание и высота параллелограмма, площадь параллелограмма

-знать формулу площади параллелограмма;

-уметь выводить формулу площади параллелограмма

п.51, №459(а,б), 464(а), 461, 465

Площадь треугольника.

2

КУ УПЗУ

треугольник, основание и высота, площадь треугольника, соотношение площадей

-знать формулу площади треугольника;

-уметь находить площадь прямоугольного треугольника;

- уметь находить площадь треугольника в случае, если равны их высоты или угол

п.52, №468(а,б), 471, 474, 476

Площадь трапеции.

2

КУ УЗИМ

трапеция, высота трапеции, площадь трапеции

-знать и уметь доказывать формулу вычисления площади трапеции;

-уметь решать задачи на применение формулы

п.53, №480, 518

23-25

Теорема Пифагора.

3

КУ

УОНМ

УПЗУ

прямоугольный треугольник, теорема Пифагора, теорема, обратная теореме Пифагора

-уметь доказывать теорему Пифагора;

-уметь решать задачи на нахождение гипотенузы или катета в прямоугольном треугольнике

п.54, 55, №484, 486, 488, 491, 495, 492

26-27

Решение задач.

2

КУ УПЗУ

площадь параллелограмма, треугольника, трапеции, теорема Пифагора

-уметь находить площадь параллелограмма, треугольника, трапеции по формулам;

-уметь применять теорему Пифагора при решении задач

№479, 515, 502, 517, 514

28

Контрольная работа №2.

1

-уметь применять полученные знания в комплексе

29-30

III. Подобные треугольники,

19 часов

Определение подобных треугольников.

2

КУ

УОНМ

пропорциональные отрезки, сходственные стороны, подобные треугольники, коэффициент подобия, отношение площадей

-уметь определять подобные треугольники;

-уметь доказывать теорему об отношении площадей подобных треугольников

п.56-58, №536, 541, 545

31-35

Первый признак подобия треугольников.

2

КУ

УОНМ

подобие треугольников, первый признак подобия

-уметь доказывать первый признак подобия треугольников;

-уметь применять признак при решении задач

п.59, №551, 552, 553

Второй признак подобия треугольников.

2

КУ

УОСЗ

подобие треугольников, второй признак подобия

-уметь доказывать второй признак подобия треугольников;

-уметь применять признак при решении задач

п.60, №559,560

Третий признак подобия треугольников.

1

КУ

подобие треугольников, третий признак подобия

-уметь доказывать третий признак подобия треугольников;

-уметь применять признак при решении задач

п.61, №563,

36

Контрольная работа №3.

1

-уметь применять первый, второй, третий признаки в комплексе при решении задач

37-43

Средняя линия треугольника.

3

КУ УЗИМ

УОНМ

теорема о средней линии треугольника

-уметь определять среднюю линию треугольника;

-уметь доказывать теорему о средней линии треугольника;

уметь решать задачи, используя теорему о средней линии треугольника

п.62, №566, 571, 570

Пропорциональные отрезки в прямоугольном треугольнике.

2

КУ

УОСЗ

среднее пропорциональное, утверждения о среднем пропорциональном

-уметь использовать утверждения о пропорциональных отрезках в прямоугольном треугольнике при решении задач

п.63, №572, 574, 575, 577

Практические приложения подобия треугольников.

2

КУ УПЗУ

метод подобия, построение треугольника по данным двум углам и биссектрисе при вершине третьего угла

-уметь решать задачи на построение методом подобия;

-применять подобия к доказательству теорем и решению задач

п.64, 65, №585, 623

44-46

Синус, косинус и тангенс острого угла прямоугольного треугольника.

1

КУ

синус, косинус и тангенс острого угла прямоугольного треугольника, основное тригонометрическое тождество

-уметь определять синус, косинус и тангенс острого угла прямоугольного треугольника;

-знать основное тригонометрическое тождество

п.66, №591(в,г), 592(а,б), 593(а,б)

Значение синуса, косинуса и тангенса для углов 300, 450, 600.

2

КУ

УПЗУ

таблица значений

-знать таблицу значений синуса, косинуса и тангенса для углов 300, 450, 600

п.67, №599, 601, 602

47

Контрольная работа №4.

1

-уметь применять подобия к доказательству теорем и решению задач;

-уметь решать задачи, используя соотношения между сторонами и углами прямоугольного треугольника

48-50

IV.Окружность.,

17 часов

Взаимное расположение прямой и окружности.

1

УОНМ

окружность, радиус и диаметр окружности, секущая, расстояние от точки до прямой,

-знать все взаимные расположения прямой и окружности;

-уметь находить расстояние от точки до прямой

п.68, №631(а,б), 633

Касательная к окружности.

2

КУ УПЗУ

касательная к окружности, точка касания

-уметь доказывать свойство и признак касательной;

-уметь определять касательную к окружности;

-уметь проводить через данную точку окружности касательную к этой окружности

-уметь решать задачи

п.69,№637, 640, 638, 643, 644

51-54

Центральный угол.

2

КУ УПЗУ

дуга, полуокружность, градусная мера дуги окружности, центральный угол

-уметь определять градусную меру центрального угла;

п.70, №649(в,г), 652, 650

Вписанный угол.

2

КУ УОСЗ

вписанный угол, теорема о вписанном угле

-уметь определять вписанный угол;

-доказывать теорему о вписанном угле и следствия к ней;

-знать в каком отношении пересекаются хорды окружности

п.71, №655, 656, 663, 666, 667

55-57

Четыре замечательные точки треугольника.

3

КУ

УПКЗУ

УЗИМ

свойства биссектрисы угла и серединного перпендикуляра, теорема о пересечении высот треугольника, замечательные точки треугольника

-уметь доказывать указанные теоремы;

-уметь решать задачи на применение этих теорем

п.72, 73, № 676, 678, 679, 681, 688, 720

58-61

Вписанная окружность.

2

КУ УОСЗ

вписанная окружность, описанный многоугольник, теорема о вписанной окружности

-уметь вписывать окружность в многоугольник;

-уметь доказывать теорему о вписанной окружности и свойства;

п.74, №690, 691, 693

Описанная окружность.

2

КУ УПЗУ

описанная окружность, вписанный многоугольник, теорема об описанной окружности, теорема о сумме противоположных углов вписанного многоугольника

-уметь описывать окружность около многоугольника;

-уметь доказывать теорему об описанной окружности и замечания;

-знать, чему равна сумма противоположных углов вписанного многоугольника

п.75, №696, 702, 705, 708

62-63

Решение задач.

2

КУ

УПЗУ

касательная к окружности, центральный угол, вписанный угол, замечательные точки треугольника, вписанная  и описанная окружность

-уметь определять градусную меру центрального и вписанного угла;

-уметь решать задачи с использованием замечательных точек треугольника;

-знать, чему равна сумма противоположных углов вписанного многоугольника

[3], КР-5,

В-4

64

Контрольная работа №5.

1

-уметь применять полученные знания в комплексе

65-67

V. Итоговое повторение курса геометрии 8 класса, 4 часа

Решение задач.

3

КУ УПЗУ УПКЗУ

четырехугольники, площадь многоугольника, подобные треугольники, окружность

-уметь находить площадь многоугольника по формулам;

-знать свойства вписанной и описанной окружности

подготовка к контрольной работе

68

Итоговая административная контрольная работа.

1

-уметь применять все полученные знания за курс геометрии 8 класса


Учебно-методическое обеспечение предмета.

Организация учебного процесса предполагает наличие минимального набора учебного оборудования, как для демонстрационных целей в классе, так и для индивидуального использования.

Минимальный набор демонстрационного учебного оборудования включает:

  • демонстрационные плакаты, содержащие основные математические формулы, соотношения, законы, таблицы метрических мер;
  • модели плоских и объёмных фигур;
  • классные линейки, угольники, транспортир, циркуль;
  • мультимедийный проектор, компьютер.
  • разработанные презентации по отдельным темам.
  • карточки, раздаточный материал

В наборах для индивидуального использования имеется: линейка, угольник, транспортир, циркуль, транспортир.

Литература:

  1. Геометрия: учеб, для 7—9 кл. / [Л. С. Атанасян,   В. Ф. Бутузов, С. В. Кадомцев и др.]. — М.: Просвещение, 2011.
  2. Изучение геометрии в 7, 8, 9 классах: метод, рекомендации: кн. для учителя / [Л.С. Атанасян, В.Ф. Бутузов, Ю.А. Глазков и др.]. - М.: Просвещение, 2003 — 2008.
  3. Л.С. Атанасян, В.Ф. Бутузов, Ю.А. Глазков и др. Рабочая тетрадь по геометрии 7 класс- М: «Просвещение», 2012
  4. Гусев В. А. Геометрия: дидакт. материалы для 8 кл. / В.А. Гусев, А.И. Медяник. — М.: Просвещение, 2012
  5. Зив Б.Г. Геометрия: Дидакт. материалы для 8 кл. / Б.Г. Зив, В.М. Мейлер. — М.: Просвещение, 2012.
  6. Фарков А.В. Тесты по геометрии: 8 класс: к учебнику Л.С. Атанасяна Геометрия 7-9 кл. – М: «Экзамен», 2010
  7. Гаврилова Н.Ф. Поурочные разработки по геометрии. 7 класс. М.: ВАКО, 2010 – (В помощь школьному учителю)
  8. Фарков А.В. Учимся решать олимпиадные задачи. Геометрия 5-11 кл.
  9. Программы общеобразовательных учреждений. Геометрия 7-9 классы, сост. Т.А. Бурмистрова. – М: Просвещение, 2009.
  10. Зив Б. Г., Мейлер В. М. Задачи к урокам геометрии. 7-11 классы. – Мир и семья-95, Интрелайн, Санкт-Петербург, 1998.


По теме: методические разработки, презентации и конспекты

Рабочая программа по геометрии 7 класс по учебнику Атанасян Л. С. Бутузов В. Ф. и др. Геометрия 7-9 классы

Рабочая программа по геометрии 7 класс по учебнику Атанасян Л. С. Бутузов В. Ф. и др. Геометрия 7-9 классы (2 часа в неделю)...

Рабочая программа по геометрии 11 класс (2 часа в неделю, всего 68 часов) Учебник Геометрия 10-11 класс. Погорелов А.В.

Рабочая программа по геометрии 11 класс (2 часа в неделю, всего 68 часов) Учебник Геометрия 10-11 класс. Погорелов А.В. Базовый уровень...

Рабочая программа по геометрии 10 класс (2 часа в неделю, всего 68 часов) Учебник Геометрия 10-11 класс. Погорелов А.В.

Рабочая программа по геометрии 10 класс (2 часа в неделю, всего 68 часов) Учебник Геометрия 10-11 класс. Погорелов А.В. Базовый уровень...

Рабочая программа по геометрии. 9 класс.Л.С.Атанасян и др."Геометрия 7-9 классы"

Предлагаемая рабочая программа разработана в соответствии со всеми требованиями , предъявляемыми к структуре и содержанию рабочих программ.Программа составлена на основе Федерального государственного ...

Аннотация к рабочей программе по геометрии, 11 класс + рабочая программа по геометрии для 11 класса

Аннотация к рабочей программе по МАТЕМАТИКЕ (геометрии). Класс: 11.Программа по геометрии для 11 класса составлена на основе Федерального компонента государственного образовательного стандарта среднег...

Рабочая программа по геометрии 7 класс ФГОС к учебнику «Геометрия 7-9 классы» Л.С. Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др.

Рабочая программа по геометрии содержит в себе цели, задачи предмета на данном этапе изучения. Включает в себя календарный график и тематическое планирование. Рассчитана на 2 урока в неделю, то есть 6...

Рабочая программа по геометрии 8 класс ФГОС к учебнику «Геометрия 7-9 классы» Л.С. Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др.

Рабочая программа по геометрии содержит в себе цели и задачи, предметные результаты, тематическое планирование. Включает в себя календарный график и тематическое планирование. Рассчитана на 2 урока в ...