Рабочая программа и календарно-тематическое планирование по геометрии для 7-9 классов по учебнику Атанасяна
рабочая программа по геометрии (7, 8, 9 класс) по теме
В данной рабочей программе объединены такие разделы, как пояснительная записка, требования к уровню подготовки, содержание учебных курсов и т.п..Отдельно по каждому классу составляются только календарно-тематические планы. Особенно актуально в школах, где преподаёт несколько учителей.
Скачать:
Вложение | Размер |
---|---|
geometriya_7-9klassy.doc | 452 КБ |
Предварительный просмотр:
Муниципальное бюджетное общеобразовательное учреждение
Пушкинского муниципального района
«Средняя общеобразовательная школа № 6 г. Пушкино»
УТВЕРЖДАЮ Директор МБОУ СОШ № 6 г. Пушкино ______________ Мельникова Г.А «____»_________________2015 г. |
РАБОЧАЯ ПРОГРАММА
ПО МАТЕМАТИКЕ (ГЕОМЕТРИИ)
(базовый уровень)
7-9 класс
2015
Пояснительная записка
Данная рабочая программа адресована для учащихся 7-9 классов.
Материалы для рабочей программы составлены на основе:
- федерального компонента государственного стандарта общего образования,
- примерной программы по математике основного общего образования,
- федерального перечня учебников, рекомендованных Министерством образования Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях на 2015-2016 учебный год,
- базисного учебного плана,
- авторской программы общеобразовательных учреждений. Геометрия.7-9 классы, сост. Т.А. Бурмистрова, М.Просвещение, 2013г.; Программа по геометрии авт. Л.С. Атанасян,
- учебного плана МБОУ СОШ №6 на 2015-2016 учебный год.
Программа соответствует учебнику «Геометрия 7- 9 класс», автор Л.С. Атанасян М.: Просвещение, 2013г.
Программа рассчитана на 2 часа в неделю в 7 классе (68 часов в год), 2 часа в неделю в 8 классе (68 часов в год), 2 часа в неделю в 9 классе (68 часов в год).
Рабочая программа выполняет две основные функции:
Информационно-методическая функция позволяет всем участникам образовательного процесса получить представление о целях, содержании, общей стратегии обучения, воспитания и развития учащихся средствами данного учебного предмета.
Организационно-планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, определение его количественных и качественных характеристик на каждом из этапов, в том числе для содержательного наполнения промежуточной аттестации учащихся.
Геометрия – один из важнейших компонентов математического образования, необходимая для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.
Цели и задачи, решаемые при реализации рабочей программы
Изучение математики на ступени основного общего образования направлено на достижение следующих целей:
- овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
- интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;
- формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
- воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса.
Задачи учебного предмета:
- Развитие алгоритмического мышления
- Овладение навыками дедуктивных рассуждений
- Систематическое изучение свойств геометрических фигур на плоскости
- Формирование функциональной грамотности – умений воспринимать и анализировать информацию, представленную в различных формах
- Приобретение конкретных знаний о пространстве и практически значимых умений
- Подготовка аппарата, необходимого для изучения смежных дисциплин (физика, черчение и т.д.) и курса стереометрии в старших классах
- Понимание роли статистики как источника социально значимой информации
- Развитие пространственного воображения и интуиции, математической культуры
- Эстетическое воспитание учащихся
- Развитие логического мышления
- Формирование понятия доказательства
Цель изучения курса математики в 7 - 9 классах:
- планирование и осуществление алгоритмической деятельности, выполнение заданных и конструирование новых алгоритмов;
- решение разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;
- исследовательская деятельность, развитие идей, проведение экспериментов, обобщение, постановка и формулирование новых задач;
- ясное, точное, грамотное изложение своих мыслей в устной и письменной речи, использование различных языков математики, свободный переход с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;
- проведение доказательных рассуждений, аргументации, выдвижение гипотез и их обоснование;
- поиск, систематизация, анализ и классификация информации, использование разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.
Требования к работе по геометрии
в соответствии с подготовкой к ГИА и ЕГЭ.
Уметь выполнять действия с геометрическими фигурами, координатами:
- решать планиметрические задачи на нахождение геометрических величин (длин, углов, площадей);
- распознавать геометрические фигуры на плоскости, различать их взаимное расположение, изображать геометрические фигуры;
- выполнять чертежи по условию задачи;
- определять координаты точки плоскости.
Структура документа:
рабочая программа по математике включает разделы:
- пояснительная записка;
- цели изучения математики;
- основное содержание с примерным распределением учебных часов по разделам курса;
- требования к уровню подготовки выпускников;
- календарно-тематическое планирование;
- учебно-методический комплект.
Согласно федеральному базисному учебному плану для общеобразовательных учреждений Российской Федерации на изучение математики на ступени основного общего образования отводится 2 часа в неделю, в год 68 часов.
Контроль осуществляется в виде самостоятельных работ, контрольных работ по разделам учебника. Всего будет проведено по 5 контрольных работ в 7, 8 и 9 классах.
Срок реализации рабочей учебной программы – один учебный год.
Уровень обучения: базовый.
Межпредметные и межкурсовые связи:
Умения, приобретаемые при изучении геометрии, имеют прикладной и практический характер. Они широко используются при изучении школьных предметов - физики, химии, географии, биологии, находят широкое применение в практической деятельности человека.
Формы организации учебного процесса: индивидуальные, групповые, индивидуально-групповые, фронтальные, классные и внеклассные.
Формы контроля:
самостоятельная работа, математические диктанты, контрольная работа, уроки контроля
знаний, умений и навыков, работа по карточкам.
Содержание курса математики (геометрии) в 7 – 9 классах
Содержание учебного курса математики 7 класса
- Начальные геометрические сведения(12час).
Возникновение геометрии из практики. Геометрические фигуры. Равенство в геометрии. Точка, прямая и плоскость. Отрезок, луч. Расстояние.
Угол. Прямой угол. Острые и тупые углы. Вертикальные и смежные углы. Биссектриса угла. Сравнение отрезков и углов. Измерение отрезков и углов.
Параллельные и пересекающиеся прямые. Определения, доказательства, аксиомы и теоремы, следствия. Перпендикулярность прямых. Контрпример, доказательство от противного. Теоремы о параллельности и перпендикулярности прямых.
В ходе изучения учащиеся должны
Знать:
- понятие равенства фигур;
- понятие отрезок, равенство отрезков;
- длина отрезка и её свойства;
- понятие угол, равенство углов величина угла и её свойства;
- понятие смежные и вертикальные углы и их свойства.
- понятие перпендикулярные прямые.
Уметь:
- строить угол;
- определять градусную меру угла;
- решать задачи.
- Треугольники(16час).
Признаки равенства треугольников. Медианы, биссектрисы и высоты треугольника. Задачи на построение. Решение задач.
В ходе изучения учащиеся должны
Знать:
- признаки равенства треугольников;
- понятие перпендикуляр к прямой;
- понятие медиана, биссектриса и высота треугольника;
- равнобедренный треугольник и его свойства;
- основные задачи на построение с помощью циркуля и линейки.
Уметь:
- решать задачи, используя признаки равенства треугольников;
- пользоваться понятиями медианы, биссектрисы и высоты в треугольнике при решении задач;
- использовать свойства равнобедренного треугольника;
- применять задачи на построение с помощью циркуля и линейки.
- Параллельные прямые(16час)
Признаки параллельности двух прямых. Аксиома параллельных прямых.
В ходе изучения учащиеся должны
Знать:
- признаки параллельности прямых;
- аксиому параллельности прямых;
- свойства параллельных прямых.
Уметь:
- применять признаки параллельности прямых;
- использовать аксиому параллельности прямых;
- применять свойства параллельных прямых.
- Соотношения между сторонами и углами треугольника(20час).
Сумма углов в треугольнике. Соотношения между сторонами и углами треугольника. Неравенство треугольника. Прямоугольный треугольник, его свойства и признаки равенства.
Построения с помощью циркуля и линейки. Основные задачи на построение: деление отрезка пополам, построение треугольника по трем сторонам, построение перпендикуляра к прямой, построение биссектрисы.
В ходе изучения учащиеся должны
Знать:
- понятие суммы углов треугольника;
- соотношение между сторонами и углами треугольника;
- некоторые свойства прямоугольных треугольников;
- признаки равенства прямоугольных треугольников;
Уметь:
- решать задачи, используя теорему о сумме углов треугольника;
- использовать свойства прямоугольного треугольника;
- решать задачи на построение.
- Повторение(4час).
Повторение пройденного учебного материала
Содержание учебного курса математики 8 класса
1. Четырёхугольники (14ч.)
Четырехугольники, выпуклые, невыпуклые. Параллелограмм, его свойства и признаки. Трапеция, свойства трапеции. Равнобедренная трапеция. Теорема Фалеса, её применение при решении задач.
В ходе изучения учащиеся должны
Знать:
- определение параллелограмма и его свойства; формулировки свойств и признаков параллелограмма;
- определение трапеции, свойства равнобедренной трапеции;
- формулировку теоремы Фалеса, основные типы задач на построение.
Уметь:
- распознавать на чертежах среди четырёхугольников; доказывать, что данный четырёхугольник является параллелограммом;
- выполнять чертежи по условию задачи, находить углы и стороны параллелограмма, используя свойства углов и сторон;
- распознавать трапецию, её элементы, виды на чертежах, находить углы и стороны равнобедренной трапеции, используя её свойства;
- применять теорему Фалеса в процессе решения задач; делить отрезок на п равных частей, выполнять необходимые построения.
2. Площадь (14ч.)
Площади параллелограмма, треугольника и трапеции. Теорема об отношении площадей треугольников. Формулы площадей. Площадь треугольника по известной стороне и высоте.
В ходе изучения учащиеся должны
Знать:
- формулы вычисления площади параллелограмма, треугольника и трапеции; формулировки теорем об отношении площадей треугольников, имеющих по равному углу,
- формулировки теорем о площади трапеции
Уметь:
- выводить формулы площадей и находить с их помощью площади данных фигур;
- доказывать теоремы и применять их для решения задач;
- решать задачи на вычисление площадей;
- находить площадь треугольника по известной стороне и высоте, проведённой к ней;
- применять формулу Герона.
3. Подобные треугольники (20ч.)
Пропорциональные отрезки подобных треугольников. Теорема об отношении площадей подобных треугольников. Признаки подобия треугольников, основные этапы их доказательства. Стороны, углы, отношения сторон, отношение периметров и площадей подобных треугольников.
В ходе изучения учащиеся должны
Знать:
- определение пропорциональных отрезков подобных треугольников,
- свойство биссектрисы о делении противоположной стороны;
- формулировку теоремы об отношении площадей подобных треугольников,
- формулировки признаков подобия треугольников, основные этапы их доказательства,
Уметь:
- находить элементы треугольника, используя свойство биссектрисы о делении противоположной стороны;
- находить отношения площадей, составлять уравнения, исходя из условия задачи,
- проводить доказательства признаков, применять их при решении задач; доказывать подобия треугольников и находить элементы треугольника, используя признаки подобия;
- находить стороны, углы, отношения сторон, отношение периметров и площадей подобных треугольников, используя признаки подобия;
- доказывать подобия треугольников, используя наиболее эффективные признаки подобия.
4.Окружность (16 ч.)
Касательная, свойства касательной. Вписанный угол, теорема о вписанном угле. Теорема об отрезках пересекающихся хорд. Серединный перпендикуляр, теорема о серединном перпендикуляре. Четыре замечательные точки треугольника. Вписанная и описанная окружности, теорема об окружностях, вписанных и описанных около треугольника. Теорема о вписанном четырёхугольнике.
В ходе изучения учащиеся должны
Знать:
- случаи взаимного расположения прямой и окружности;
- понятие касательной, точек касания, свойство касательной и её признак;
- понятие градусной меры дуги окружности, понятие центрального угла;
- определение вписанного угла, теорему о вписанном угле и следствия из неё; формулировку теоремы об отрезках пересекающихся хорд;
- формулировку теоремы о свойстве равноудалённости каждой точки биссектрисы угла и этапы её доказательства;
- понятие серединного перпендикуляра, формулировку теоремы о серединном перпендикуляре;
- четыре замечательные точки треугольника, формулировку теоремы о пересечении высот треугольника;
- понятие вписанной и описанной окружностей, теоремы об окружностях, вписанных и описанных около треугольника;
- свойство описанного четырёхугольника;
- формулировку теоремы о вписанном четырёхугольнике;
- формулировки определений и свойств.
Уметь:
- определять взаимное расположение прямой и окружности, выполнять чертёж по условию задачи; доказывать теорему о свойстве касательной и ей обратную, проводить касательную к окружности;
- находить радиус окружности, проведенной в точку касания, по касательной и наоборот;
- решать простейшие задачи на вычисление градусной меры дуги окружности;
- распознавать на чертежах вписанные углы, находить величину вписанного угла; применять теорему об отрезках пересекающихся хорд при решении задач, выполнять чертёж по условию задачи;
- находить элементы треугольника, используя свойство биссектрисы; выполнять чертёж по условию задачи;
- применять теорему о серединном перпендикуляре для решения задач на нахождение элементов треугольника;
- распознавать на чертежах вписанные и описанные окружности, находить элементы треугольника, используя свойства вписанной и описанной окружности;
- применять свойство описанного четырёхугольника
- решать простейшие геометрические задачи, опираясь на изученные свойства; находить один из отрезков касательных, проведенных из одной точки по заданному радиусу окружности;
- находить центральные и вписанные углы по отношению дуг окружности;
- находить отрезки пересекающихся хорд окружности, используя теорему о произведении отрезков пересекающихся хорд.
- Повторение (4 ч.)
Повторение пройденного учебного материала.
Содержание учебного курса математики 9 класса
1. Векторы(10ч).
Понятие вектора. Равенство векторов. Сложение и вычитание векторов. Умножение вектора на число и его свойства. Применение векторов к решению задач. Средняя линия трапеции.
В ходе изучения учащиеся должны
Знать:
- законы сложения векторов;
- свойства умножения вектора на число;
- определение средней линией трапеции;
Уметь:
- изображать и обозначать векторы;
- откладывать от любой точки плоскости вектор, равный данному;
- уметь строить сумму двух и более векторов;
- пользоваться правилом треугольника, параллелограмма, многоугольника;
- формулировать и доказывать теорему о средней линии трапеции.
2. Метод координат (10ч).
Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Связь между координатами вектора и его концами. Простейшие задачи в координатах. Уравнение окружности. Уравнение прямой.
В ходе изучения учащиеся должны
Знать:
- правила действий над векторами с заданными координатами;
- выводить формулы координат вектора через координаты его конца и начала, координат середины отрезка, длины вектора и расстояния между двумя точками;
- уравнения окружности и прямой;
Уметь:
- применять теорему о разложении вектора по двум неколлинеарным векторам;
- выводить уравнения окружности и прямой;
- строить окружность и прямые, заданные уравнениями.
3. Соотношения между сторонами и углами треугольника (13ч).
Синус, косинус, тангенс. Основное тригонометрическое тождество. Формулы приведения. Формулы для вычисления координат точки. Теорема синусов. Теорема косинусов. Решение треугольников. Скалярное произведение векторов.
В ходе изучения учащиеся должны
Знать:
- как вычисляется синус, косинус, тангенс для углов от 0 до 180;
- основное тригонометрическое тождество;
- формулу для вычисления координат точки;
- определение скалярного произведения векторов и его свойства;
- условие перпендикулярности векторов;
Уметь:
- доказывать теорему синусов, теорему косинусов;
- применять эти теоремы при решении задач;
- применять свойства скалярного произведения при решении задач.
4. Длина окружности и площадь круга (12ч).
Правильный многоугольник. Окружность около правильного многоугольника. Окружность, вписанная в правильный многоугольник. Формулы для вычисления площади правильного многоугольника, его стороны и радиуса вписанной окружности. Длина окружности. Площадь круга. Площадь кругового сектора.
В ходе изучения учащиеся должны
Знать:
- определение правильного многоугольника, формулу длины окружности и её дуги, площади сектора;
Уметь:
- вычислять стороны, площади и периметры правильных многоугольников, длину окружности и длину дуги;
- применять площади круга, сектора при решении задач.
5. Движения (8ч).
Понятие движения. Параллельный перенос. Поворот.
В ходе изучения учащиеся должны
Знать:
- определение движения плоскости.
Уметь:
- объяснять, что такое отображение плоскости на себя;
- доказывать, что осевая и центральная симметрии являются движениями;
- объяснять, что такое параллельный перенос и поворот, доказывать, что параллельный перенос и поворот являются движениями плоскости.
6. Начальные сведения из стереометрии (8ч). Об аксиомах в планиметрии(2ч).
Предмет стереометрии. Многогранник. Призма. Параллелепипед. Пирамида. Цилиндр. Конус. Сфера и шар.
В ходе изучения учащиеся должны
Знать:
- определения и свойства геометрических тел.
Уметь:
- использовать основные формулы для вычисления объёма и площади поверхности геометрических тел.
7. Повторение. Решение задач (5ч).
Закрепление знаний, умений и навыков.
Требования к уровню подготовки учащихся 7- 9 классов
В результате изучения курса геометрии основной школы учащийся должен
знать/понимать:
- существо понятия математического доказательства; примеры доказательств;
- существо понятия алгоритма; примеры алгоритмов;
- как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
- как потребности практики привели математическую науку к необходимости расширения понятия числа;
- вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
- каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;
- смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;
уметь:
- пользоваться основными единицами длины, площади, объема; выражать более крупные единицы через более мелкие и наоборот;
- изображать числа точками на координатной прямой;
- определять координаты точки плоскости, строить точки с заданными координатами;
- проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;
- пользоваться языком геометрии для описания предметов окружающего мира;
- распознавать геометрические фигуры, различать их взаимное расположение;
- изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;
- распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;
- в простейших случаях строить сечения и развертки пространственных тел;
- проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;
- вычислять значения геометрических величин (длин, углов, площадей, объемов), в том числе: для углов от 0 до 180 определять значения тригонометрических функций по заданным значениям углов;
- находить значения тригонометрических функций по значению одной из них, находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;
- решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, идеи симметрии;
- проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
- решать простейшие планиметрические задачи в пространстве;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
описания реальных ситуаций на языке геометрии;
решения геометрических задач;
решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);
построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).
Учебно – методический комплект
- Л.С.Атанасян, В.Ф. Бутузов и др. «Геометрия. Учебник для 7 – 9 классов общеобразовательных учреждений», Москва, Просвещение, 2013.
- Л.С.Атанасян, В.Ф. Бутузов и др. «Геометрия: рабочая тетрадь для 7 (8,9) класса», Москва, Просвещение, 2013.
- Б.Г.Зив и др. «Геометрия. Дидактические материалы для 7 (8,9) класса», Москва, Просвещение, 2010.
- Л.С.Атанасян и др. «Изучение геометрии в 7, 8, 9 классах: методические рекомендации. Книга для учителя», Москва, Просвещение, 2013.
- А.П.Ершова, В.В.Голобородько «Геометрия: самостоятельные и контрольные работы» Москва, ИЛЕКСА, 2011
- Л. И. Звавич «Дидактические материалы по геометрии для 7 (8,9) класса»– М., Просвещение, 2010
- Г.Д.Карташова «Сборник тестовый заданий для контроля. Геометрия» – М.: Интеллект-Центр, 2010
СОГЛАСОВАНО
Протокол заседания школьного
методического объединения
учителей математики
МБОУ СОШ № 6 г. Пушкино
от «___» _______2015г.
№ ___________
СОГЛАСОВАНО
Зам. директора по УВР
МБОУ СОШ № 6 г. Пушкино
___________Евтушенко Е.М.
«__»________ 2015г.
Календарно – тематическое планирование по математике (геометрии)
в 7В классе на 2015 – 2016 учебный год
(2 часа в неделю, 68 в год)
№ урока | Наименование разделов и тем | Количество часов | Плановые сроки проведения | Скорректи рованные сроки проведения |
1.Начальные геометрические сведения | 12 | |||
1 | Прямая и отрезок | 1 | 02.09 | |
2 | Луч и угол | 1 | 02.09 | |
3 | Сравнение отрезков и углов | 1 | 09.09 | |
4 | Измерение отрезков | 1 | 09.09 | |
5 | Измерение отрезков | 1 | 16.09 | |
6 | Измерение углов | 1 | 16.09 | |
7 | Измерение углов | 1 | 23.09 | |
8 | Решение задач | 1 | 23.09 | |
9 | Перпендикулярные прямые | 1 | 30.09 | |
10 | Перпендикулярные прямые | 1 | 30.09 | |
11 | Решение задач | 1 | 07.10 | |
12 | Контрольная работа№1 «Начальные геометрические сведения». | 1 | 07.10 | |
2. Треугольники | 16 | |||
13 | Первый признак равенства треугольников | 1 | 14.10 | |
14 | Решение задач | 1 | 14.10 | |
15 | Перпендикуляр к прямой | 1 | 21.10 | |
16 | Медианы, биссектрисы и высоты треугольника. | 1 | 21.10 | |
17 | Медианы, биссектрисы и высоты треугольника. | 1 | 28.10 | |
18 | Решение задач | 1 | 28.10 | |
19 | Свойства равнобедренного треугольника | 1 | 11.11 | |
20 | Решение задач | 1 | 11.11 | |
21 | Второй признак равенства треугольников | 1 | 18.11 | |
22 | Решение задач | 1 | 18.11 | |
23 | Третий признак равенства треугольников | 1 | 25.11 | |
24 | Решение задач | 1 | 25.11 | |
25 | Задачи на построение | 1 | 02.12 | |
26 | Решение задач на построение | 1 | 02.12 | |
27 | Подготовка к контрольной работе | 1 | 09.12 | |
28 | Контрольная работа№2 «Треугольники» | 1 | 09.12 | |
3. Параллельные прямые | 16 | |||
29 | Параллельные прямые | 1 | 16.12 | |
30 | Признаки параллельности двух прямых | 1 | 16.12 | |
31 | Признаки параллельности двух прямых | 1 | 23.12 | |
32 | Решение задач | 1 | 23.12 | |
33 | Об аксиомах геометрии | 1 | 13.01 | |
34 | Аксиома параллельных прямых | 1 | 13.01 | |
35 | Аксиома параллельных прямых | 1 | 20.01 | |
36 | Теоремы об углах, образованных двумя параллельными прямыми и секущей | 1 | 20.01 | |
37 | Теоремы об углах, образованных двумя параллельными прямыми и секущей | 1 | 27.01 | |
38 | Решение задач | 1 | 27.01 | |
39 | Углы с соответственно параллельными сторонами | 1 | 03.02 | |
40 | Углы с соответственно перпендикулярными сторонами | 1 | 03.02 | |
41 | Углы с соответственно параллельными или перпендикулярными сторонами | 1 | 10.02 | |
42 | Решение задач | 1 | 10.02 | |
43 | Подготовка к контрольной работе | 1 | 17.02 | |
44 | Контрольная работа№3 «Параллельные прямые» | 1 | 17.02 | |
4. Соотношения между сторонами и углами треугольника | 20 | |||
45 | Теорема о сумме углов треугольника | 1 | 24.02 | |
46 | Теорема о сумме углов треугольника | 1 | 24.02 | |
47 | Остроугольный, прямоугольный и тупоугольный треугольники | 1 | 02.03 | |
48 | Решение задач | 1 | 02.03 | |
49 | Теорема о соотношениях между сторонами и углами треугольника | 1 | 09.03 | |
50 | Теорема о соотношениях между сторонами и углами треугольника | 1 | 09.03 | |
51 | Неравенство треугольника | 1 | 16.03 | |
52 | Неравенство треугольника | 1 | 16.03 | |
53 | Решение задач | 1 | 23.03 | |
54 | Некоторые свойства прямоугольных треугольников | 1 | 23.03 | |
55 | Признаки равенства прямоугольных треугольников | 1 | 06.04 | |
56 | Признаки равенства прямоугольных треугольников | 1 | 06.04 | |
57 | Применение признаков равенства треугольников | 1 | 13.04 | |
58 | Решение задач | 1 | 13.04 | |
59 | Решение задач на построение. | 1 | 20.04 | |
60 | Построение треугольников | 1 | 20.04 | |
61 | Построение треугольника по трём элементам | 1 | 27.04 | |
62 | Решение задач | 1 | 27.04 | |
63 | Подготовка к контрольной работе | 1 | 04.05 | |
64 | Контрольная работа№4 « Соотношения между сторонами и углами треугольника» | 1 | 04.05 | |
5.Повторение | 4 | |||
65 | Признаки равенства треугольников | 1 | 11.05 | |
66 | Признаки параллельности прямых | 1 | 11.05 | |
67 | Итоговая контрольная работа №5 | 1 | 18.05 | |
68 | Анализ контрольной работы | 1 | 18.05 | |
ИТОГО | 68 |
Календарно – тематическое планирование по математике (геометрии)
в 8Г классе на 2015 – 2016 учебный год
( 2 часа в неделю, 68 в год)
№ урока | Наименование разделов и тем | Количество часов | Плановые сроки проведения | Скорректи- рованные сроки проведения |
Повторение | 2 | |||
1 | Треугольник. Виды треугольников. Признаки равенства треугольников. | 1 | 01.09 | |
2 | Параллельные прямые. | 1 | 01.09 | |
1. Четырёхугольники | 14 | |||
3 | Многоугольники | 1 | 08.09 | |
4 | Сумма углов выпуклого n-угольника | 1 | 08.09 | |
5 | Четырехугольник | 1 | 15.09 | |
6 | Параллелограмм | 1 | 15.09 | |
7 | Признаки параллелограмма | 1 | 22.09 | |
8 | Задачи на построение | 1 | 22.09 | |
9 | Параллелограмм и трапеция | 1 | 29.09 | |
10 | Решение задач « Параллелограмм» | 29.09 | ||
11 | Прямоугольник | 1 | 06.10 | |
12 | Ромб. Квадрат | 1 | 06.10 | |
13 | Осевая и центральная симметрии | 1 | 13.10 | |
14 | Прямоугольник, ромб, квадрат | 1 | 13.10 | |
15 | Решение задач «Четырёхугольники» | 1 | 20.10 | |
16 | Контрольная работа № 1 «Четырёхугольники» | 1 | 20.10 | |
2. Площадь | 13 | |||
17 | Площадь многоугольника | 1 | 27.10 | |
18 | Вычисление площади многоугольника | 1 | 27.10 | |
19 | Площадь параллелограмма | 1 | 10.11 | |
20 | Формулы для вычисления площади треугольника | 1 | 10.11 | |
21 | Теорема об отношении площадей треугольников | 1 | 17.11 | |
22 | Теорема об отношении площадей треугольников | 1 | 17.11 | |
23 | Решение задач на вычисление площадей фигур | 1 | 24.11 | |
24 | Решение задач на нахождение площади | 1 | 24.11 | |
25 | Теорема Пифагора | 1 | 01.12 | |
26 | Теорема, обратная теореме Пифагора | 1 | 01.12 | |
27 | Применение теоремы Пифагора и теоремы, обратной ей | 1 | 08.12 | |
28 | Решение задач «Площадь» | 1 | 08.12 | |
29 | Контрольная работа № 2 «Площадь» | 1 | 15.12 | |
3. Подобные треугольники | 19 | |||
30 | Определение подобных треугольников | 1 | 15.12 | |
31 | Отношение площадей подобных треугольников | 1 | 22.12 | |
32 | Отношение площадей подобных треугольников | 1 | 22.12 | |
33 | Первый признак подобия треугольников | 1 | 12.01 | |
34 | Второй признак подобия треугольников | 1 | 12.01 | |
35 | Третий признак подобия треугольников | 1 | 19.01 | |
36 | Признаки подобия треугольников | 1 | 19.01 | |
37 | Решение задач на применение признаков подобия треугольников | 1 | 26.01 | |
38 | Контрольная работа № 3 «Признаки подобия треугольников» | 1 | 26.01 | |
39 | Средняя линия треугольника | 1 | 02.02 | |
40 | Свойство медиан треугольника | 1 | 02.02 | |
41 | Пропорциональные отрезки | 1 | 09.02 | |
42 | Пропорциональные отрезки в прямоугольном треугольнике | 1 | 09.02 | |
43 | Задачи на построение методом подобия | 1 | 16.02 | |
44 | Решение задач на построение методом подобных треугольников | 1 | 16.02 | |
45 | Синус, косинус и тангенс острого угла прямоугольного треугольника | 1 | 01.03 | |
46 | Значения синуса, косинуса и тангенса для углов 30°, 45° и 60° | 1 | 01.03 | |
47 | Соотношения между сторонами и углами прямоугольного треугольника | 1 | 15.03 | |
48 | Контрольная работа № 4 «Соотношения между сторонами и углами прямоугольного треугольника» | 1 | 15.03 | |
4. Окружность | 18 | |||
49 | Взаимное расположение прямой и окружности | 1 | 22.03 | |
50 | Касательная к окружности | 1 | 22.03 | |
51 | Решение задач «Касательная к окружности» | 1 | 05.04 | |
52 | Градусная мера дуги окружности | 1 | 05.04 | |
53 | Теорема о вписанном угле | 1 | 12.04 | |
54 | Теорема об отрезках пересекающихся хорд | 1 | 12.04 | |
55 | Решение задач «Центральные и вписанные углы» | 1 | 19.04 | |
56 | Свойство биссектрисы угла | 1 | 19.04 | |
57 | Серединный перпендикуляр | 1 | 26.04 | |
58 | Теорема о точке пересечения высот треугольника | 1 | 26.04 | |
59 | Вписанная окружность | 1 | 03.05 | |
60 | Свойство описанного четырёхугольника | 1 | 03.05 | |
61 | Описанная окружность | 1 | 10.05 | |
62 | Свойство вписанного четырёхугольника | 1 | 10.05 | |
63 | Решение задач «Четыре замечательные точки» | 1 | 17.05 | |
64 | Контрольная работа № 5 «Окружность» | 1 | 17.05 | |
65 | Решение задач «Вписанная и описанная окружность» | 1 | 24.05 | |
66 | Решение задач «Окружность» | 1 | 24.05 | |
5.Повторение | 2 | |||
67 | Четырёхугольники. Подобные треугольники | 1 | 25.05 | |
68 | Площадь. Окружность | 1 | 26.05 | |
ИТОГО | 68 |
Календарно – тематическое планирование по математике (геометрии)
в 9В классе на 2015 – 2016 учебный год
( 2 часа в неделю, 68 в год)
№ урока | Наименование разделов и тем | Количество часов | Плановые сроки проведения | Скорректи- рованные сроки проведения |
1.Векторы | 10 | |||
1 | Понятие вектора. Равенство векторов | 1 | 04.09 | |
2 | Откладывание вектора от данной точки | 1 | 04.09 | |
3 | Сумма двух векторов | 1 | 11.09 | |
4 | Законы сложения векторов | 1 | 11.09 | |
5 | Сумма нескольких векторов | 1 | 18.09 | |
6 | Вычитание векторов | 1 | 18.09 | |
7 | Умножение вектора на число | 1 | 25.09 | |
8 | Применение векторов к решению задач | 1 | 25.09 | |
9 | Средняя линия трапеции | 1 | 02.10 | |
10 | Решение задач «Векторы» | 1 | 02.10 | |
2.Метод координат | 10 | |||
11 | Разложение вектора по двум данным векторам | 1 | 09.10 | |
12 | Координаты вектора | 1 | 09.10 | |
13 | Связь между координатами вектора и его концами | 1 | 16.10 | |
14 | Простейшие задачи в координатах | 1 | 16.10 | |
15 | Уравнение линии на плоскости | 1 | 23.10 | |
16 | Уравнение окружности | 1 | 23.10 | |
17 | Уравнение прямой | 1 | 30.10 | |
18 | Метод координат. Решение задач | 1 | 30.10 | |
19 | Метод координат. Решение задач | 1 | 13.11 | |
20 | Контрольная работа №1 «Векторы. Метод координат» | 1 | 13.11 | |
3.Соотношения между сторонами и углами треугольника | 13 | |||
21 | Синус, косинус и тангенс | 1 | 20.11 | |
22 | Основное тригонометрическое тождество. Формулы приведения | 1 | 20.11 | |
23 | Формулы для вычисления координат точки | 1 | 27.11 | |
24 | Теорема о площади треугольника | 1 | 27.11 | |
25 | Теорема синусов | 1 | 04.12 | |
26 | Теорема косинусов | 1 | 04.12 | |
27 | Решение треугольников. Измерительные работы | 1 | 11.12 | |
28 | Угол между векторами. | 1 | 11.12 | |
29 | Скалярное произведение векторов | 1 | 18.12 | |
30 | Контрольная работа №2 «Соотношения между сторонами и углами треугольника» | 1 | 18.12 | |
31 | Свойства скалярного произведения векторов | 1 | 25.12 | |
32 | Скалярное произведение в координатах | 1 | 25.12 | |
33 | Теорема синусов, косинусов. Решение задач | 1 | 15.01 | |
4. Длина окружности и площадь круга | 12 | |||
34 | Правильный многоугольник. Описанная окружность | 1 | 15.01 | |
35 | Вписанная окружность | 1 | 22.01 | |
36 | Формулы для правильного многоугольника | 1 | 22.01 | |
37 | Построение правильных многоугольников | 1 | 29.01 | |
38 | Длина окружности | 1 | 29.01 | |
39 | Площадь круга | 1 | 05.02 | |
40 | Площадь кругового сектора | 1 | 05.02 | |
41 | Применение площади кругового сектора | 1 | 12.02 | |
42 | Окружность и круг. Решение задач | 1 | 12.02 | |
43 | Измерение длины окружности и круга | 1 | 19.02 | |
44 | Подготовка к контрольной работе | 1 | 19.02 | |
45 | Контрольная работа №3 «Длина окружности площадь круга» | 1 | 26.02 | |
5. Движения | 8 | |||
46 | Отображение плоскости на себя | 1 | 26.02 | |
47 | Понятие движения | 1 | 04.03 | |
48 | Движения плоскости | 1 | 04.03 | |
49 | Параллельный перенос | 1 | 11.03 | |
50 | Поворот | 1 | 11.03 | |
51 | Поворот. Решение задач | 1 | 18.03 | |
52 | Движения. Решение задач | 1 | 18.03 | |
53 | Контрольная работа №4 «Движения» | 1 | 25.03 | |
6.Начальные сведения из стереометрии | 8 | |||
54 | Предмет стереометрии. Многогранник | 1 | 25.03 | |
55 | Призма. Параллелепипед | 1 | 08.04 | |
56 | Объём тела. Свойства прямоугольного параллелепипеда | 1 | 08.04 | |
57 | Пирамида | 1 | 15.04 | |
58 | Цилиндр | 1 | 15.04 | |
59 | Конус | 1 | 22.04 | |
60 | Сфера и шар | 1 | 22.04 | |
61 | Сфера и шар. Решение задач | 1 | 29.04 | |
Об аксиомах планиметрии | 2 | |||
62 | Об аксиомах планиметрии | 1 | 29.04 | |
63 | Некоторые сведения о развитии геометрии | 1 | 06.05 | |
7. Повторение. Решение задач | 5 | |||
64 | Итоговая контрольная работа №5 | 1 | 06.05 | |
65 | Четырёхугольники. Решение задач | 1 | 13.05 | |
66 | Площадь. Решение задач | 1 | 13.05 | |
67 | Окружность. Решение задач | 1 | 20.05 | |
68 | Векторы. Решение задач | 1 | 20.05 | |
ИТОГО | 68 |
По теме: методические разработки, презентации и конспекты
Рабочая программа и календарно-тематический план по литературе для 6 специального (коррекционного) класса VII вида.
Рабочая программа по литературе для 6 специального (коррекционного) класса VII вида составлена на основе программы общеобразовательных учреждений по литературе для 5-11 классов под редакйией В.Я.Коров...
Адаптированная рабочая программа и календарно-тематическое планирование по геометрии 7 класс (УМК Атанасяна)
Адаптированная рабочая программа и календарно-тематическое планирование по геометрии 7 класс (УМК Атанасяна)...
Рабочая программа с календарно-тематическим планированием по геометрии к учебнику Л.С.Атанасян для 9 класса. ФГОС.
Рабочая программа с календарно-тематическим планированием по геометрии к учебнику Л.С.Атанасян для 7 класса. ФГОС....
Рабочая программа с календарно-тематическим планированием по геометрии к учебнику Атанасяна для 7 класса. ФГОС.
Рабочая программа с календарно-тематическим планированием по геометрии к учебнику Атанасяна для 7 класса. ФГОС....
Рабочая программа и календарно- тематическое планирование по математике 5-6 класс к учебнику Виленкина, 7-9 класс алгебра к учебнику Макарычева, 7-9 класс геометрия к учебнику Атанасяна.
Рабочая программа по математике 5-9 классы1. Пояснительная запискаМатематика является одним из основных, системообразующих предметов школьного образования. Такое место математики среди школьных предме...