презентация Инновационные технологии обучения математике как средство формирования УУД в школе
презентация к уроку по алгебре
Презентация к статье Инновационные технологии обучения математике как средство формирования УУД в школе
Скачать:
Предварительный просмотр:
Подписи к слайдам:
"…учитель, который ценит критическое мышление, мало говорит, а труд его заключается в том, чтобы слушать, наблюдать и направлять учащихся".
Критическое мышление – это умение занять свою позицию по обсуждаемому вопросу и умение обосновать её способность выслушать собеседника, тщательно обдумать аргументы и проанализировать их логику .
Цель данной технологии - развитие мыслительных навыков учащихся, необходимых не только в учебе, но и в обычной жизни (умение принимать взвешенные решения, работать с информацией, анализировать различные стороны явлений и т.п.).
Вызов (учащиеся должны использовать свои предыдущие знания по теме, делать прогнозы по содержанию предстоящей информации) Осмысление новой информации (учащиеся интегрируют идеи, изложенные в тексте, со своими собственными идеями) Рефлексия (интерпретация обретённых идей и информации собственными словами). Базовая модель технологии КМ предлагает 3 стадии:
Приемы технологии критического мышления
Приём «ЗХУ » Знаем Хотим узнать Узнали 1. 2. 3. 1. 2. 3. 1. 2. 3. Осталось узнать 1. 2. 3.
«Сложение, вычитание обыкновенных дробей» Знаю Хочу узнать Узнал новое а / m+b /m=( a+b )/m а /m-b/m=(a-b)/m Как складывать дроби с разными знаменателями? Как вычитать дроби с разными знаменателями? Решение уравнений, задач, содержащих дроби с разными знаменателями Понятия: наименьший общий знаменатель, дополнительные множители. Чтобы сложить, вычесть дроби с разными знаменателями, нужно привести их к общему знаменателю. Алгоритм +,- дробей с разными знаменателями.
«Площадь параллелограмма » З Х У Единицы измерения площади: мм², см², дм², м², км². S квадрата = а· а=а ² S прямоуг .= а·в Формулы для вычисления площади треугольника, параллелограмма, трапеции, ромба. Определение площади Свойства площади Док-во формулы: S= a∙b S параллелограмма S= a∙h Осталось узнать: S трапеции S ромба Потренироваться в применении формул в различных ситуациях
Прием «Кластер» по теме «Треугольник» Т реугольник Углы Точки Вершины Отрезки Стороны острый прямой Тупой три равные разные Имя
Прием «Верные и неверные утверждения" или "верите ли вы" « Понятие вектора в пространстве»
Прием «Ромашка Блума »
Особенности работы с различными видами текста Приём Инсерт ( insert ) I – interactive: самоактивизирующая N – noting: разметка S – system: системная E – effective : для эффективного R – reading чтения и T – thinking размышления
Прием « Инсерт » 1. Читая, ученик делает пометки в тексте: V – уже знал, + - новое, - - думал иначе, ? – не понял, есть вопросы. 2. Читая, второй раз, заполняет таблицу, систематизируя материал . V (уже знал) + (узнал новое - (думал иначе) ? (есть вопросы)
« Многоугольники». V уже знал + узнал новое - думал иначе ? есть вопросы Многоугольник Вершина многоугольника Р многоугольника Диагональ многоугольника Угол многоугольника Противополож-ные стороны, вершины четырехугольника Внутренняя, внешняя область многоуголь-ника Выпуклый многоуголь-ник (n-2)*180° определение многоуголь-ника не понял как получили формулу
Приём «Толстые и тонкие вопросы» Тонкие вопросы Толстые вопросы кто... дайте объяснение, почему... что... почему вы думаете... когда... почему вы считаете... может... в чем разница... будет... предположите, что будет, если... мог ли... что, если... как звали... было ли... согласны ли вы... верно...
Приём "Кубик" 1 . Опиши это... (Опиши цвет, форму, размеры или другие характеристики) 2 . Сравни это... (На что это похоже? Чем отличается?) 3. Проассоциируй это... (Что это напоминает?) 4 . Проанализируй это... (Как это сделано? Из чего состоит?) 5 . Примени это... (Что с этим можно делать? Как это применяется?) 6 . Приведи "за" и "против" (Поддержи или опровергни это)
«Кубик»: «круглые тела». На что это похоже? Чем отличается? Опиши форму, размеры или др. характери - стики Как это сделано? Как и где применяется? Опиши форму, размеры или др. характери - стики На что это похоже? Чем отличается? Как это сделано? Как и где применяется?
Прием «Составление « Синквейна »» Для его написания существуют правила: Название существительное -1 Описание Прилагательное - 2 Действия Глагол - 3 Чувство Фраза из 4 слов Повторение сути (синоним) 1 слово
Масштаб Арифметический географический Делить находить вычислять Дробь, которую нужно понять Отношение
Уравнение Линейное квадратное Решить найти доказать Равенство, содержащее переменную Корень
Призма Правильная, выпуклая, n -угольная Рисовать, находить площадь, строить Мир, как через призму Радуга
Что даёт ТРКМ ученику -повышение эффективности восприятия информации -повышение интереса как к изучаемому материалу, так и к самому процессу обучения -умение ответственно относиться к собственному образованию -умение работать в сотрудничестве с другими -повышение качества образования -желание и умение стать человеком, который учится в течение всей жизни
Что даёт ТРКМ учителю -умение создать в классе атмосферу открытости и сотрудничества -возможность использовать модель обучения и систему эффективных методик, которые способствуют развитию критического мышления и самостоятельности в процессе обучения -стать практиками, которые умеют грамотно анализировать свою деятельность -стать источником ценной профессиональной информации для других учителей
Меняется мир непрерывно, неспешно, Меняется все – от концепций до слов. И тот лишь сумеет остаться успешным, Кто сам вместе с миром меняться готов! П.Калита
По теме: методические разработки, презентации и конспекты
ИННОВАЦИОННЫЕ ТЕХНОЛОГИИ ОБУЧЕНИЯ МАТЕМАТИКИ В ТЕМЕ «ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ»
ИННОВАЦИОННЫЕ ТЕХНОЛОГИИ ОБУЧЕНИЯ МАТЕМАТИКИ В ТЕМЕ «ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ»В данной работе представлены нетрадиционные технологии обучения математики, которые помогают решать две актуальные пробл...
РЕАЛИЗАЦИЯ ИННОВАЦИОННЫХ ТЕХНОЛОГИЙ ОБУЧЕНИЯ МАТЕМАТИКЕ В ТЕМЕ «ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ»
РЕАЛИЗАЦИЯ ИННОВАЦИОННЫХ ТЕХНОЛОГИЙ ОБУЧЕНИЯ МАТЕМАТИКЕ В ТЕМЕ «ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ»В работе проводится структурирование содержания по элементам знаний, составляется граф-схема, проводится анал...
ИННОВАЦИОННЫЕ ТЕХНОЛОГИИ ОБУЧЕНИЯ МАТЕМАТИКИ В ТЕМЕ «ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ» Ст.1
ИННОВАЦИОННЫЕ ТЕХНОЛОГИИ ОБУЧЕНИЯ МАТЕМАТИКИ В ТЕМЕ «ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ»...
Презентация «Инновационные технологии, методы и приёмы в формировании стрессоустойчивости школьников на уроках технологии»
Традиционная организация образовательного процесса создает у школьников постоянные стрессовые перегрузки, которые приводят к поломке механизмов саморегуляции физиологических функций и способствуют раз...
Инновационные технологии обучения математике в процессе реализации Федерального государственного образовательного стандарта второго поколения
Межпредметные связи как средство развития универсальных учебных действий...
«Здоровьесберегающие технологии на уроках математики как средство формирования инновационной педагогической модели обучения в условиях внедрения ФГОС.»
Актуальность темы За последние два десятилетия в нашей стране появилось большое количество общеобразовательных школ с углубленным изучением отдельных предметов, а также гимназий и лицеев. Э...
Инновационные технологии обучения математике как средство формирования УУД в школе
Современный урок должен стать «театром» действий ученика, который становится активным участником образовательного процесса, который самостоятельно планирует свою учебную деятельность и кот...