Программа по математике по ФКГОС
рабочая программа по алгебре (5, 6, 7, 8, 9 класс) на тему
Программа по математике для 5-9 классов составлена в соответствии с Федеральным компонентом государственных общеобразовательных стандартов.
Скачать:
Вложение | Размер |
---|---|
programma_po_matematike_fkgos.rar | 36.09 КБ |
Предварительный просмотр:
Муниципальное образовательное учреждение
Иванковская средняя общеобразовательная школа
Фурмановского района
Согласовано Утверждаю
Руководитель ММО учителей Директор школы:
________________________ __________
______________ (Ф.И.О.) Приказ № ____ от _______
Протокол № ___ от _______
Рабочая программа
по __математике_
(учебный предмет)
______5-9 ________
(классы)
______5 лет_______
(сроки реализации)
Разработал:
Хявгя Ольга Владимировна
(первая квалификационная категория)
Принята на педагогическом совете
МОУ Иванковской СОШ
Протокол № ___ от ________
- Пояснительная записка
Программа составлена в соответствии с Федеральным законом от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации», Федеральным компонентом государственного образовательного стандарта, утв. приказом Минобразования России от 05.03.2004 № 1089, образовательной программой основного общего образования МОУ Иванковской СОШ, примерной программой основного общего образования по математике (Сборник нормативных документов. Математика / Программа подготовлена институтом стратегических исследований в образовании РАО. Научные руководители — член-корреспондент РАО
А. М. Кондаков, академик РАО Л. П. Кезина, Составитель — Е. С. Савинов.).
Математика является одним из основных, системообразующих предметов школьного образования. Такое место математики среди школьных предметов обусловливает и её особую роль с точки зрения всестороннего развития личности учащихся. При этом когнитивная составляющая данного курса позволяет обеспечить как требуемый государственным стандартом необходимый уровень математической подготовки, так и повышенный уровень, являющийся достаточным для углубленного изучения предмета.
Математическое образование является обязательной и неотъемлемой частью общего образования на всех уровняхх школы.
Изучение математики на уровне основного общего образования направлено на достижение следующих целей:
- овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
- интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;
- формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
- воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса.
В организации учебно – воспитательного процесса важную роль играют задачи. Они являются и целью, и средством обучения. Важным условием правильной организации этого процесса является выбор рациональной системы методов и приемов обучения, специфики решаемых образовательных и воспитательных задач.
Целью изучения курса математике в 5-6 классах является систематическое развитие понятия числа, выработка умений выполнять устно и письменно арифметические действия над числами, переводить практические задачи на язык математики, подготовка учащихся к изучению систематических курсов алгебры и геометрии. Курс строится на индуктивной основе с привлечением элементов дедуктивных рассуждений. В ходе изучения курса учащиеся развивают навыки вычислений с натуральными числами, овладевают навыками с обыкновенными и десятичными дробями, положительными и отрицательными числами, получают представление об использовании букв для записи выражений и свойств арифметических действий, составлении уравнений, продолжают знакомство с геометрическими понятиями, приобретают навыки построения геометрических фигур.
Целью изучения курса математике в 7 - 9 классах является развитие вычислительных умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов, усвоение аппарата уравнений и неравенств как основного средства математического моделирования задач, осуществление функциональной подготовки школьников. Курс характеризуется повышением теоретического уровня обучения, постепенным усилием роли теоретических обобщений и дедуктивных заключений. Прикладная направленность раскрывает возможность изучать и решать практические задачи.
Целью изучения курса геометрии в 7-9 классах является систематическое изучение свойств геометрических фигур на плоскости, формирование пространственных представлений, развитие логического мышления и подготовка аппарата, необходимого для изучения смежных дисциплин и курса стереометрии в старших классах.
В основе построения данного курса лежит идея гуманизации обучения, соответствующая современным представлениям о целях школьного образования и уделяющая особое внимание личности ученика, его интересам и способностям.
Предлагаемый курс позволяет обеспечить формирование как предметных умений, так и универсальных учебных действий школьников.
- Общая характеристика учебного предмета
Математическое образование в основной школе складывается из следующих содержательных компонентов (точные названия блоков): арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.
Арифметика призвана способствовать приобретению практических навыков, необходимых для повседневной жизни. Она служит базой для всего дальнейшего изучения математики, способствует логическому развитию и формированию умения пользоваться алгоритмами.
Алгебра нацелена на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира. Одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у учащихся представлений о роли математики в развитии цивилизации и культуры.
Геометрия – один из важнейших компонентов математического образования, необходимая для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.
Элементы логики, комбинаторики, статистики и теории вероятностей становятся обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности – умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах.
При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.
Таким образом, в ходе освоения содержания курса учащиеся получают возможность:
развить представления о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;
овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;
изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;
развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;
получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
развить логическое мышление и речь – умениия логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;
сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.
- Описание места учебного предмета, курса в учебном плане.
В соответствие с федеральным базисным учебным планом на изучение математики в 5-9 классах отводится 5 часов в неделю.
Распределение учебного времени представлено в таблице.
Классы | Предметы математического цикла | Количество часов на ступени основного образования |
5 | Математика | 170 |
6 | Математика | 170 |
7 | Математика (Алгебра) | 102 |
Математика (Геометрия) | 68 | |
8 | Математика (Алгебра) | 102 |
Математика (Геометрия) | 68 | |
9 | Математика (Алгебра) | 102 |
Математика (Геометрия) | 68 | |
Всего | 850 |
- Содержание учебного предмета, курса.
АРИФМЕТИКА.
Натуральные числа. Натуральный ряд. Десятичная система счисления. Римская нумерация. Арифметические действия с натуральными числами. Свойства арифметических действий.
Степень с натуральным показателем.
Числовые выражения, значение числового выражения. Порядок действий в числовых выражениях, использование скобок. Законы арифметических действий: переместительный, сочетательный, распределительный. Текстовые задачи. Решение текстовых задач арифметическими способами.
Делители и кратные. Свойства и признаки делимости. Делимость натуральных чисел. Признаки делимости на 2, 3, 5, 9, 10. Простые и составные числа. Разложение натурального числа на простые множители. Наибольший общий делитель и наименьшее общее кратное. Целые числа: положительные, отрицательные и нуль. Модуль (абсолютная величина) числа. Сравнение рациональных чисел. Арифметические действия с рациональными числами. Степень с целым показателем. Деление с остатком.
Дроби. Обыкновенные дроби. Основное свойство дроби. Сравнение обыкновенных дробей. Арифметические действия с обыкновенными дробями. Нахождение части от целого и целого по его части.
Десятичные дроби. Сравнение десятичных дробей. Арифметические действия с десятичными дробями. Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной.
Проценты; нахождение процентов от величины и величины по ее процентам. Отношение; выражение отношения в процентах. Пропорция; основное свойство пропорции. Пропорциональная и обратно пропорциональная зависимости.
Решение текстовых задач арифметическими способами.
Рациональные числа. Целые числа: положительные, отрицательные и нуль. Модуль (абсолютная величина) числа. Сравнение рациональных чисел. Арифметические действия с рациональными числами. Степень с целым показателем.
Множество целых чисел.
Множество рациональных чисел; рациональное число как отношение , где
m — целое число, n — натуральное число. Сравнение рациональных чисел. Арифметические действия с рациональными числами. Свойства арифметических действий. Степень с целым показателем.
Действительные числа. Квадратный корень из числа. Корень третьей степени. понятие о корне n-й степени из числа. Понятие об иррациональном числе. Иррациональность числа и несоизмеримость стороны и диагонали квадрата. Десятичные приближения иррациональных чисел. Нахождение приближенного значения корня с помощью калькулятора. Запись корней с помощью степени с дробным показателем.
Множество действительных чисел; представление действительных чисел в виде бесконечных десятичных дробей. Действительные числа как бесконечные десятичные дроби. Сравнение действительных чисел, арифметические действия над ними.
Этапы развития представления о числе.
Координатная прямая. Изображение чисел точками координатной прямой. Числовые промежутки.
Измерения, приближения, оценки. Единицы измерения длины, площади, объема, массы, времени, скорости. Размеры объектов окружающего мира (от элементарных частиц до Вселенной), длительность процессов в окружающем мире. Выделение множителя — степени 10 — в записи числа.
Представление зависимости между величинами в виде формул.
Приближенное значение величины, точность приближения. Округление натуральных чисел и десятичных дробей. Прикидка и оценка результатов вычислений.
АЛГЕБРА.
Алгебраические выражения. Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных, входящих в алгебраические выражения. Подстановка выражений вместо переменных. Преобразование буквенных выражений на основе свойств арифметических действий. Равенство буквенных выражений. Тождество, доказательство тождеств. Преобразования выражений.
Свойства степеней с целым показателем. Степень с натуральным показателем и ее свойства. Одночлены и многочлены. Степень многочлена. Сложение, вычитание, умножение многочленов. Формулы сокращенного умножения: квадрат суммы и квадрат разности, куб суммы и куб разности. Формула разности квадратов, формула суммы кубов и разности кубов. Преобразование целого выражения в многочлен. Разложение многочленов на множители. Многочлены с одной переменной. Корень многочлена. Квадратный трехчлен. Выделение полного квадрата в квадратном трехчлене. Теорема Виета. Разложение квадратного трехчлена на линейные множители.
Алгебраическая дробь. Основное свойство алгебраической дроби. Сокращение дробей. Сложение, вычитание, умножение, деление алгебраических дробей. Степень с целым показателем и ее свойства.
Рациональные выражения и их преобразования. Доказательство тождеств.
Квадратные корни. Свойства арифметических квадратных корней и их применение к преобразованию числовых выражений и вычислениям.
Уравнения. Уравнение с одной переменной. Корень уравнения. Свойства числовых равенств. Равносильность уравнений.
Линейное уравнение. Квадратное уравнение: формула корней квадратного уравнения. Решение рациональных уравнений. Теорема Виета. Решение уравнений, сводящихся к линейным и квадратным. Примеры решения уравнений третьей и четвертой степени, методы замены переменной, разложения на множители. Решение дробно-рациональных уравнений.
Уравнение с двумя переменными, решение уравнения с двумя переменными. Линейное уравнение с двумя переменными, примеры решения уравнений в целых числах.
Система уравнений с двумя переменными, решение системы. Равносильность систем. Системы двух линейных уравнений с двумя переменными; решение подстановкой и сложением. Уравнение с несколькими переменными. Примеры решения систем нелинейных уравнений с двумя переменными.
Решение текстовых задач алгебраическим способом.
Координаты. Изображение чисел точками координатной прямой. Геометрический смысл модуля числа. Числовые промежутки: интервал, отрезок, луч. Формула расстояния между точками координатной прямой.
Декартовы координаты на плоскости; координаты точки. Координаты середины отрезка. Формула расстояния между двумя точками плоскости. Уравнение прямой, угловой коэффициент прямой, условие параллельности прямых. Уравнение окружности с центром в начале координат и в любой заданной точке.
Графическая интерпретация уравнения и неравенства с двумя переменными. График линейного уравнения с двумя переменными; угловой коэффициент прямой; условие параллельности прямых. Графики простейших нелинейных уравнений: парабола, гипербола, окружность. Графическая интерпретация систем уравнений с двумя переменными, систем неравенств с двумя переменными.
Неравенства. Числовые неравенства и их свойства. Доказательство числовых и алгебраических неравенств.
Неравенство с одной переменной. Решение неравенства. Равносильность неравенств. Линейные неравенства с одной переменной. Квадратные неравенства. Системы неравенств с одной переменной. Примеры решения дробно-линейных неравенств.
Переход от словесной формулировки соотношений между величинами к алгебраической.
ФУНКЦИИ.
Основные понятия. Зависимости между величинами. Представление зависимостей формулами. Понятие функции.
Область определения и множество значений функции. Способы задания функции. График функции. Свойства функций, возрастание и убывание функции, наибольшее и наименьшее значения функции, нули функции, промежутки знакопостоянства, их отображение на графике. Чтение графиков функций. Примеры графиков зависимостей, отражающих реальные процессы: колебание, показательный рост. Числовые функции, описывающие эти процессы.
Числовые функции. Функции, описывающие прямую и обратную пропорциональные зависимости, их графики и свойства. Линейная функция, ее график и свойства, геометрический смысл коэффициентов. Гипербола. Квадратичная функция, ее график, парабола, и свойства. Координаты вершины параболы, ось симметрии. Степенные функции с натуральными показателями 2 и 3, их графики и свойства.
Использование графиков функций для решения уравнений и систем.
Графики функций , у =, у = |х|.
Параллельный перенос графиков вдоль осей координат и симметрия относительно осей.
Числовые последовательности. Понятие числовой последовательности. Задание последовательности рекуррентной формулой и формулой n-го члена.
Арифметическая и геометрическая прогрессии. Формулы n-го члена арифметической и геометрической прогрессий, суммы первых n членов. Изображение членов арифметической и геометрической прогрессий точками координатной плоскости. Линейный и экспоненциальный рост. Сложные проценты.
ВЕРОЯТНОСТЬ И СТАТИСТИКА.
Описательная статистика. Представление данных в виде таблиц, диаграмм, графиков. Случайная изменчивость. Средние результаты измерений. Понятие о статистическом выводе на основе выборки. Статистические характеристики набора данных: среднее арифметическое, медиана, наибольшее и наименьшее значения, размах. Представление о выборочном исследовании.
Случайные события и вероятность. Понятие о случайном опыте и случайном событии. Примеры случайных событий. Частота случайного события. Статистический подход к понятию вероятности. Вероятности противоположных событий. Достоверные и невозможные события. Равновозможность событий. Классическое определение вероятности. Представление о геометрической вероятности.
Комбинаторика. Решение комбинаторных задач перебором вариантов. Комбинаторное правило умножения. Перестановки и факториал.
ГЕОМЕТРИЯ.
Начальные понятия и теоремы геометрии.
Возникновение геометрии из практики.
Геометрические фигуры и тела. Равенство в геометрии.
Расстояние. Отрезок, луч. Ломаная.
Угол. Прямой угол. Острые и тупые углы. Вертикальные и смежные углы. Биссектриса угла и ее свойства.
Наглядная геометрия. Наглядные представления о фигурах на плоскости: прямая, отрезок, луч, угол, ломаная, многоугольник, окружность, круг. Четырехугольник, прямоугольник, квадрат. Треугольник, виды треугольников. Правильные многоугольники. Изображение геометрических фигур. Взаимное расположение двух прямых, двух окружностей, прямой и окружности.
Длина отрезка, Длина ломаной. Периметр многоугольника. Единицы измерения длины. Измерение длины отрезка, построение отрезка заданной длины.
Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира.
Понятие площади фигуры; единицы измерения площади. Площадь прямоугольника и площадь квадрата. Приближенное измерение площадей фигур на клетчатой бумаге. Равновеликие фигуры.
Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений. Многогранники. Правильные многогранники. Примеры разверток многогранников, цилиндра и конуса.
Понятие объема; единицы объема. Объем прямоугольного параллелепипеда, куба.
Понятие о равенстве фигур. Центральная, осевая и зеркальная симметрии. Изображение симметричных фигур.
Геометрические фигуры. Прямые и углы. Точка, прямая, плоскость. Отрезок, луч. Угол. Виды углов. Вертикальные и смежные углы. Биссектриса угла.
Параллельные и пересекающиеся прямые. Перпендикулярность прямых. Теоремы о параллельности и перпендикулярности прямых. Перпендикуляр и наклонная к прямой. Серединный перпендикуляр к отрезку, его свойство.
Геометрическое место точек. Свойства биссектрисы угла и серединного перпендикуляра к отрезку.
Треугольник. Прямоугольные, остроугольные и тупоугольные треугольники. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренные и равносторонние треугольники; свойства и признаки равнобедренного треугольника. Признаки равенства треугольников. Неравенство треугольника. Соотношения между сторонами и углами треугольника. Сумма углов треугольника. Внешние углы треугольника. Теорема Фалеса. Подобие треугольников, коэффициент подобия. Признаки подобия треугольников. Теорема Пифагора. Признаки равенства прямоугольных треугольников. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0 до 180°; приведение к острому углу. Решение прямоугольных треугольников. Основное тригонометрическое тождество. Формулы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Решение треугольников: теорема косинусов и теорема синусов, примеры их применения для вычисления элементов треугольника.
Замечательные точки треугольника: точки пересечения серединных перпендикуляров, биссектрис, медиан. Окружность Эйлера.
Четырехугольник. Параллелограмм, его свойства и признаки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапеции, равнобедренная трапеция.
Многоугольник. Выпуклые многоугольники. Сумма углов выпуклого многоугольника. Вписанные и описанные многоугольники. Правильные многоугольники.
Окружность и круг. Дуга, хорда. Центр, радиус, диаметр. Сектор, сегмент. Центральный угол, вписанный угол; величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности, равенство касательных, проведенных из одной точки. Метрические соотношения в окружности: свойства секущих, касательных, хорд.
Вписанные и описанные многоугольники. Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Вписанные и описанные четырехугольники. Вписанные и описанные окружности правильного многоугольника.
Геометрические преобразования. Понятие о равенстве фигур. Понятие о движении: осевая и центральная симметрии, параллельный перенос, поворот. Понятие о подобии фигур и гомотетии.
Решение задач на вычисление, доказательство и построение с использованием свойств изученных фигур.
Измерение геометрических величин. Длина отрезка. Расстояние от точки до прямой. Расстояние между параллельными прямыми.
Периметр многоугольника.
Длина окружности, число л; длина дуги окружности.
Величина угла. Градусная мера угла, соответствие между величиной центрального угла и длиной дуги окружности.
Понятие площади плоских фигур. Равносоставленные и равновеликие фигуры. Площадь прямоугольника. Площади параллелограмма, треугольника и трапеции (основные формулы). Формулы, выражающие площадь треугольника: через две стороны и угол между ними, через периметр и радиус вписанной окружности, формула Герона. площадь четырехугольника. Площадь многоугольника. Площадь круга и площадь сектора. Соотношение между площадями подобных фигур.
Объем тела. Формулы объема прямоугольного параллелепипеда, куба, шара, цилиндра и конуса.
Решение задач на вычисление и доказательство с использованием изученных формул.
Координаты. Уравнение прямой. Координаты середины отрезка. Формула расстояния между двумя точками плоскости. Уравнение окружности.
Векторы. Длина (модуль) вектора. Равенство векторов. Коллинеарные векторы. Координаты вектора. Умножение вектора на число, сумма векторов, разложение вектора по двум неколлинеарным векторам. Угол между векторами. Скалярное произведение векторов.
Примеры движений фигур. Симметрия фигур. Осевая симметрия и параллельный перенос. Поворот и центральная симметрия. Понятие о гомотетии. Подобие фигур.
Основные задачи на построение: деление отрезка пополам, построение треугольника по трем сторонам, построение перпендикуляра к прямой, построение биссектрисы, деление отрезка на n равных частей.
Правильные многогранники.
ЛОГИКА И МНОЖЕСТВА.
Теоретико-множественные понятия. Множество, элемент множества. Задание множеств перечислением элементов, характеристическим свойством. Стандартные обозначения числовых множеств. Пустое множество и его обозначение. Подмножество. Объединение и пересечение множеств.
Иллюстрация отношений между множествами с помощью диаграмм Эйлера — Венна.
Элементы логики. Определение. Аксиомы, доказательства и теоремы; следствия. Необходимые и достаточные условия. Доказательство. Доказательство от противного. Теорема, обратная данной. Пример и контрпример.
Понятие об аксиоматике и аксиоматическом построении геометрии. Пятый постулат Евклида и его история.
Понятие о равносильности, следовании, употребление логических связок если ..., то в том и только в том случае, логические связки и, или.
МАТЕМАТИКА В ИСТОРИЧЕСКОМ РАЗВИТИИ.
(Содержание раздела вводится по мере изучения других вопросов.)
История формирования понятия числа: натуральные числа, дроби, недостаточность рациональных чисел для геометрических измерений, иррациональные числа. Старинные системы записи чисел. Дроби в Вавилоне, Египте, Риме. Открытие десятичных дробей. Старинные системы мер. Десятичные дроби и метрическая система мер. Появление отрицательных чисел и нуля. J1. Магницкий. JT. Эйлер.
Зарождение алгебры в недрах арифметики. Ал-Хорезми. Рождение буквенной символики. П. Ферма, Ф. Виет, Р. Декарт. История вопроса о нахождении формул корней алгебраических уравнений, неразрешимость в радикалах уравнений степени, большей четырех. Н. Тарталья, Дж. Кардано, Н. X. Абель, Э. Галуа.
Изобретение метода координат, позволяющего переводить геометрические объекты на язык алгебры. Р. Декарт и П. Ферма. Примеры различных систем координат на плоскости.
Задача Леонардо Пизанского (Фибоначчи) о кроликах, числа Фибоначчи. Задача о шахматной доске.
Истоки теории вероятностей: страховое дело, азартные игры. П. Ферма и Б. Паскаль. Я. Бернулли. А. Н. Колмогоров.
От землемерия к геометрии. Пифагор и его школа. Фалес. Архимед. Построение с помощью циркуля и линейки. Построение правильных многоугольников. Трисекция угла. Квадратура круга. Удвоение куба. История числа я. Золотое сечение. «Начала» Евклида. Л. Эйлер. Н. И. Лобачевский. История пятого постулата.
Софизмы, парадоксы.
- Учебно-методическое обеспечение образовательного процесса
Класс | Учебники (автор, название, год издания, кем рекомендован или допущен, издательство) | Методические материалы | Дидактические материалы | Материалы для контроля |
6 | Учебник « Математика» . 6 класс. Учебник для общеобразовательных учреждений. Авторы: Н.Я. Виленкин, В.И.Жохов, А.С.Чесноков, С.И. Шварцбурд. 28-е изд. – М.: «Мнемозина», 2011г. | Математика. 6кл. Поурочные планы по учебнику Виленкина Н.Я. и др_2011 -542с Математика в стихах. 5-11кл._Панишева О.В._2013 -219с | Чесноков А.С., Нешков К.И. Дидактические материалы по математике для 6 класса. – М.: Просвещение, 2009 Готовимся к ГИА. Математика. 6кл._Донец Л.П., 2011 -64с Математика. 6кл. Дидактические материалы к Виленкину_2013 -160с | Тесты по математике. 6кл. к уч. Виленкина, Рудницкая, 2013 -144с Самостоятельные и контрольные работы по математике, 6кл._Ершова, Голобородько_2010 -192с Математика 6 класс. Тестовые материалы_Гусева И.Л. и др_2012 -96с Контр. и самост. раб. по математ. 6кл. к Виленкину_Попов М.А_2011 -96с Математика. 6кл. Блицопрос_Тульчинская Е.Е_2010 -112с |
7 | Алгебра: учебник для 7 кл. общеобразоват. учреждений /под ред. С.А. Теляковского, М.: Просвещение, 2010г | Алгебра. 7кл. Поурочные планы по учеб. Макарычева Ю.Н. и др_2011 -431с Алгебра. 7кл. Геометрия. 7кл. Поурочн. планы к учебн. Атанасяна Л.С_2010 -302с Изучение алгебры в 7-9кл. Пос. учит._Макарычев, Миндюк и др_2011 -304с Математика в стихах. 5-11кл._Панишева О.В._2013 -219с | Звавич Л.И., Кузнецова Л.В. Суворова С.Б. Дидактические материалы по алгебре для 7 класса. – М.: Просвещение, 2008 Геометрия. 7кл. Дидактические материалы к уч. Атанасяна, 2013 | Контрольные работы по геометрии. 7кл. к уч. Атанасяна,Мельникова Н.Б, 2012 Алгебра. Тематич. тесты. 7кл._Дудницын, Кронгауз_2011 -96с Контр. раб. по алгебре. 7кл._Дудницын, Кронгауз_2013 -64с Тесты по алгебре. 7кл. к уч. Макарычева_Глазков Ю.А. и др_2011 -128с |
8 | Алгебра: учебник для 8 кл. общеобразоват. учреждений /под ред. С.А. Теляковского, - М.: Просвещение, 2010г. | Изучение алгебры в 7-9кл. Пос. учит._Макарычев, Миндюк и др_2011 -304с Математика в стихах. 5-11кл._Панишева О.В._2013 -219с Алгебра. 8кл. Поурочные планы по учеб. Макарычева Ю.Н. и др_2011 -399с Уроки алгебры в 8кл._Жохов В.И._2011 -79с Геометрия. 8кл. Поурочн. планы к учебн. Атанасяна Л.С_2010 -365с | Звавич Л.И., Кузнецова Л.В. Суворова С.Б. Дидактические материалы по алгебре для 8 класса. – М.: Просвещение, 2008 Атанасян (Г08 Карточки-задания) | Контрольные работы по геометрии. 8кл. к уч. Атанасяна, Мельникова Н.Б, 2012 Алгебра. Тематич. тесты. 8кл._Дудницын, Кронгауз_2012 -128с Контрольные работы по алгебре. 8кл._Дудницын, Кронгауз_2010 -64с Тесты по алгебре. 8кл. к уч. Макарычева_Глазков Ю.А. и др_2011 -112с |
9 | Алгебра: учебник для 9 кл. общеобразоват. учреждений /под ред. С.А. Теляковского, - М.: Просвещение, 2010 г. | Алгебра. 9кл. Поурочные планы по учеб. Макарычева Ю.Н. и др_2008 -316с Геометрия. 9кл. Поурочн. планы к учебн. Атанасяна Л.С_2005 -318с Изучение алгебры в 7-9кл. Пос. учит._Макарычев, Миндюк и др_2011 -304с | Алгебра. 9кл. Дидактические материалы. Макарычев Ю.Н. и др., 2012 Атанасян (Г08 Карточки-задания) ГИА. Математика. Темат. тест. задания_2013 -80с Математика. 9кл. Тренаж. по нов. плану ГИА_2013,160с | Контрольные работы по геометрии. 9кл. к уч. Атанасяна, Мельникова Н.Б, 2010 Алгебра. 9кл. Блицопрос_Тульчинская Е.Е_2010 -91с Алгебра. 9кл. Контр. работы в нов. формате_Карташева, Крайнева_2011 -96с |
- Планируемые результаты изучения учебного предмета.
В результате изучения математики ученик должен:
знать/понимать:
- существо понятия математического доказательства; примеры доказательств;
- существо понятия алгоритма; примеры алгоритмов;
- как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
- как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
- как потребности практики привели математическую науку к необходимости расширения понятия числа;
- вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
- каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;
- смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации.
Арифметика
Уметь:
- выполнять устно арифметические действия: сложение и вычитание двузначных чисел и десятичных дробей с двумя знаками, умножение однозначных чисел, арифметические операции с обыкновенными дробями с однозначным знаменателем и числителем;
- переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты - в виде дроби и дробь - в виде процентов; записывать большие и малые числа с использованием целых степеней десятки;
- выполнять арифметические действия с рациональными числами, сравнивать рациональные и действительные числа; находить в несложных случаях значения степеней с целыми показателями и корней; находить значения числовых выражений;
- округлять целые числа и десятичные дроби, находить приближения чисел с недостатком и с избытком, выполнять оценку числовых выражений;
- пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные единицы через более мелкие и наоборот;
- решать текстовые задачи, включая задачи, связанные с отношением и с пропорциональностью величин, дробями и процентами;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- решения несложных практических расчетных задач, в том числе с использованием при необходимости справочных материалов, калькулятора, компьютера;
- устной прикидки и оценки результата вычислений; проверки результата вычисления с использованием различных приемов;
- интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений.
Алгебра
Уметь:
- составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
- выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
- применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
- решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;
- решать линейные и квадратные неравенства с одной переменной и их системы;
- решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений исходя из формулировки задачи;
- изображать числа точками на координатной прямой;
- определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;
- распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;
- находить значения функции, заданной формулой, таблицей, графиком, по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;
- определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;
- описывать свойства изученных функций, строить их графики;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;
- моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;
- описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;
- интерпретации графиков реальных зависимостей между величинами.
Геометрия
Уметь:
- пользоваться языком геометрии для описания предметов окружающего мира;
- распознавать геометрические фигуры, различать их взаимное расположение;
- изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;
- распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;
- в простейших случаях строить сечения и развертки пространственных тел;
- проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;
- вычислять значения геометрических величин (длин, углов, площадей, объемов), в том числе: для углов от 0 до 180° определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;
- решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, идеи симметрии;
- проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
- решать простейшие планиметрические задачи в пространстве;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- описания реальных ситуаций на языке геометрии;
- расчетов, включающих простейшие тригонометрические формулы;
- решения геометрических задач с использованием тригонометрии;
- решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);
- построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).
Элементы логики, комбинаторики, статистики и теории вероятностей
Уметь:
- проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;
- извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и трафики;
- решать комбинаторные задачи путем систематического перебора возможных вариантов, а также с использованием правила умножения;
- вычислять средние значения результатов измерений;
- находить частоту события, используя собственные наблюдения и готовые статистические данные;
- находить вероятности случайных событий в простейших случаях;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- выстраивания аргументации при доказательстве (в форме монолога и диалога);
- распознавания логически некорректных рассуждений;
- записи математических утверждений, доказательств;
- анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;
- решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;
- решения учебных и практических задач, требующих систематического перебора вариантов;
- сравнения шансов наступления случайных событий, оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией;
- понимания статистических утверждений.
По теме: методические разработки, презентации и конспекты
Рабочая программа по математике в соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования на основании примерной программы по математики 5-9 классы. Математика 5 класс: И.И.Зубарева, А.
Рабочая программа разработана на один учебный год: в основу программы положены педагогические и дидактические принципы (личностно ориентированные; культурно ориентированные; деятельно...
Рабочая программа 6-9 класс ФКГОС
рабочая программа...
Рабочая программа по Математике 5 класса (Рабочая программа составлена на основе программы для 5-9 классов специальных (коррекционных) учреждений VIII вида, под ред. В.В.Воронковой и учебника «Математика» М.Н. Перова, Г.М. Капустина)
Рабочая программа составлена на основе программы для 5-9 классов специальных (коррекционных) учреждений VIII вида, под редакцией доктора педагогических наук В.В.Воронковой Сб.1. –М.:...
Рабочая программа по математике 11 класс (ФКГОС)
Рабочая программа по математике 11 класс, 6 часов в неделю, 204 часа в год (34 недели)...
Рабочая программа по русскому языку ФКГОС 9 класс УМК С.И. Львовой
Рабочая программа по русскому языку 9 класс составлена на основе федерального компонента государственного стандарта основного общего образования и программы общеобразовательных учреждений «...
Рабочая программа по литературе. 9 класс. Программа С. А. Зинина. ФКГОС
Рабочая программа учебного предмета «Литература» (далее – рабочая программа) составлена на основании:– Примерной программы основного общего образования по литературе в образова...
Рабочая программа по математике (ФКГОС СОО) 10-11 классы
Рабочая программа по математике (ФКГОС СОО) 10-11 классы (Учебник Колягин и Атанасян)...