Тематическое планирование по теме "Квадратное неравенство" + тесты
учебно-методический материал по алгебре на тему

Тематическое планирование по теме "Квадратное неравенство" + тесты

Скачать:

ВложениеРазмер
Файл srno3srno4_temat_planirovanie.docx301.4 КБ

Предварительный просмотр:

Тематическое планирование по теме «Квадратные неравенства»

№1.

Тема урока: «Квадратное неравенство».

Цели урока:

ОЦ: Обеспечить усвоение понятия «квадратное неравенство».

ВЦ: Формирование у учащихся навыков самостоятельной работы.

РЦ: Развитие умений анализировать, сравнивать, конкретизировать и делать выводы.

Методы обучения: объяснительно-иллюстративный, частично-поисковый, репродуктивный.

Приемы обучения: использование заранее сделанных записей на доске; выполнение заданий на чтение заданных выражений; придумывание учащимися примеров.

Средства обучения: специально подобранные вопросы и задания учащимся.

Формы контроля: устный контроль; самостоятельная работа учащихся у доски.

Приемы мотивации: предложить решить учащимся задание на новый материал.

Ожидаемы результаты: Дети пытаются решить проблему, но понимают, что не хватает знаний. Дети стараются отвечать на вопросы учителя, стараются решать примеры на узнавание квадратных неравенств, придумывают свои примеры.

№2.

Тема урока: «Квадратное неравенство и его решение».

Цели урока:

ОЦ: обеспечить усвоение способа решения квадратного неравенства.

ВЦ: формирование у учащихся навыков самостоятельной работы.

РЦ: развивать умение анализировать, сопоставлять и делать выводы.

Методы обучения: объяснительно-иллюстративный, частично-поисковый, репродуктивный.

Приемы обучения: подводящий или побуждающий диалоги, использование заранее сделанных записей на доске, придумывание учащимися примеров.

Средства обучения: специально подобранные вопросы и задания учащимся.

Формы контроля: устный контроль, самостоятельная работа учащихся у доски и в тетрадях.

Приемы мотивации: предложить решить учащимся задание на новый материал.

Ожидаемы результаты: Дети вспоминают, что мы понимаем под квадратным неравенством, говорят о том, что мы называем решением неравенств, пытаются сформулировать способ решения квадратного неравенства.

№3.

Тема урока: «Решение квадратного неравенства с помощью графика квадратичной функции».

Цели урока:

ОЦ: Обеспечить усвоение алгоритма решения квадратного неравенства с помощью графика квадратичной функции.

ВЦ: Формирование у учащихся навыков самостоятельной работы, воспитание сообразительности, воспитание аккуратности.

РЦ: развитие умений анализировать, конкретизировать и делать выводы; развитие памяти через неоднократное повторение.

Методы обучения: объяснительно-иллюстративный, частично-поисковый, репродуктивный.

Приемы обучения: подводящий или побуждающий диалоги, предложение учащимся сформулировать алгоритм, предложение учащимся сравнить новую задачу с решенной.

Средства обучения: интерактивная доска, специально подобранные вопросы и задания учащимся.

Формы контроля: устный контроль, отслеживание грамотности формулирования алгоритма, практическая работа учащихся в тетради.

Приемы мотивации: предложить решить учащимся задание на новый материал.

Ожидаемые результаты: Дети стараются формулировать алгоритм решения квадратного неравенства с помощью графика квадратичной функции, отвечают на вопросы учителя.

№4.

Тема урока: «Метод интервалов».

Цели урока:

ОЦ: Обеспечить усвоение решения квадратных неравенств методом интервалов.

ВЦ: Формирование у учащихся навыков самостоятельной работы, воспитание сообразительности, воспитание аккуратности.

РЦ: Развитие умений анализировать, выделять главное, обобщать, конкретизировать и делать выводы.

Методы обучения: объяснительно-иллюстративный, частично-поисковый, репродуктивный.

Приемы обучения: подводящий диалог, предложение учащимся самостоятельно сформулировать алгоритм решения квадратного неравенства методом интервалов.

Средства обучения: специально подобранные вопросы и задания учащимся.

Формы контроля: устный контроль, письменный контроль.

Приемы мотивации: предложить решить учащимся решить задание на новый материал.

Ожидаемые результаты: Дети стараются формулировать алгоритм решения квадратного неравенства методом интервалов, отвечают на вопросы учителя.

№5.

Тема урока: «Исследование квадратичной функции».

Цели урока:

ОЦ: Обеспечить усвоение теорем, выражающих зависимость знака квадратичной функции от знака коэффициента а и знака D.

ВЦ: Формирование у учащихся навыков самостоятельной работы, воспитание самостоятельности, целеустремленности.

РЦ: Развитие умений анализировать, делать выводы, развивать умение работать с книгой.

Методы обучения: объяснительно-иллюстративный, частично-поисковый, репродуктивный.

Приемы обучения: подводящий диалог, самостоятельная работа учеников у доски.

Средства обучения: специально подобранные вопросы и задания учащимся.

Формы контроля: устный контроль, письменный контроль.

Приемы мотивации: предложить решить учащимся решить задание на новый материал.

Ожидаемые результаты: Дети отвечают на вопросы учителя, работают с учебником.

№6.

Тема урока: «Контрольный урок по теме Квадратные неравенства».

Цели урока:

ОЦ: Проверка знаний учащихся.

ВЦ: Формирование у учащихся навыков самостоятельной работы, воспитание сообразительности, воспитание аккуратности.

РЦ: Развитие умений анализировать, выделять главное, обобщать, конкретизировать и делать выводы.

Приемы обучения: самостоятельная работа учеников в тетради.

Средства обучения: специально подобранные вопросы и задания учащимся.

Формы контроля: письменный контроль.

Приемы мотивации: предложить решить учащимся решить задание на пройденный материал.

Ожидаемые результаты: Дети решают контрольную работу.

Урок 5: «Исследование квадратичной функции»

Предмет, класс, количество часов: Алгебра, 8 класс, 1 час.

Тип урока: урок изучения нового.

Цели:

ОЦ: Обеспечить усвоение теорем, выражающих зависимость знака квадратичной функции от знака коэффициента а и знака D.

ВЦ: Формирование у учащихся навыков самостоятельной работы, воспитание сообразительности, воспитание аккуратности.

РЦ: Развитие умений анализировать, выделять главное, обобщать, конкретизировать и делать выводы.

Методы обучения: объяснительно-иллюстративный, частично-поисковый, репродуктивный.

Ход урока

.Оргмомент.

.Актуализация знаний.

.Введение теоремы 1 и ее доказательства.

.Отработка теоремы 1 на примерах.

.Введение теоремы 2 и теоремы 3.

.Отработка теоремы 2 и теоремы 3 на примерах.

.Подведение итогов.

.Постановка домашнего задания.

ХОД УРОКА

1.Оргмомент.

На сегодняшнем уроке мы завершим с вами изучение главы «Квадратные неравенства». Рассмотрим три теоремы, которые выражают зависимость знака квадратичной функции от знаков коэффициента а и дискриминанта D.

2.Актуализация знаний.

Ребята, давайте вспомним, какой формулой задается квадратичная функция. (квадратичная функция - это функция, заданная формулой

,

где a, b, c - заданные действительные числа, причем a?0, x - действительная переменная).

Что является графиком квадратичной функции?

(Графиком квадратичной функции является парабола).

По каким формулам мы находим вершину параболы, являющейся графиком квадратичной функции? (Вершина параболы  находится по формулам:

, ).

Хорошо. А что мы называем дискриминантом? (Дискриминантом называется выражение

).

Тогда, с учетом вышесказанного, как можно переписать квадратичную функцию ? (Мы можем задать эту функцию следующей формулой:

).

3.Введение теоремы 1 и ее доказательства.

Теорема 1: Если D<0, то при всех действительных значениях х знак квадратичной функции  совпадает со знаком числа а.

Доказательство: Воспользуемся следующей формулой:

.

Выражение в квадратных скобках является положительным при всех действительных значениях х, так как , , . Поэтому при D<0 знак квадратичной функции  совпадает со знаком числа а при всех значениях x.

4.Отработка теоремы 1 на примерах.

1) Пусть у квадратного уравнения  дискриминант D<0. Как будет расположен график этого трехчлена в зависимости от знака коэффициента а?

(При a>0 вершина параболы лежит выше оси Ох, так как ее ордината , ветви параболы направлены вверх и вся парабола лежит выше оси Ох.

При a<0 вершина параболы лежит ниже оси Ох, ветви параболы направлены вниз и вся парабола лежит ниже оси Ох).

) При каких значениях p вся парабола  лежит выше оси Ох?

(Данная парабола лежит выше оси Ох, если p>0 и . Дискриминант  только при p<4, так как p>0.

Ответ: 0

5.Введение теоремы 2 и теоремы 3.

Также существуют еще две теоремы, описывающие зависимость знака квадратичной функции от знаков коэффициента а и дискриминанта D. Мы рассмотри их без доказательства. А доказательство вы разберете дома самостоятельно в учебнике.

Теорема 2: Если D=0, то при всех действительных значениях х, кроме , знак квадратичной функции  совпадает со знаком числа а; при  значение квадратичной функции равно нулю.

Теорема 3: Если D>0, то знак квадратичной функции  совпадает со знаком числа а для всех х, лежащих вне отрезка [x1,x2], т.е. при xx2, где x1

6.Отработка теоремы 2 и теоремы 3 на примерах.

1) Показать, что при  парабола  лежит выше оси Ох, кроме ее вершины, лежащей на оси Ох.

(Так как -2<0, то по теореме 2 дискриминант  должен быть равен нулю. В самом деле, при  дискриминант ).

) При каких значениях p функция  принимает как положительные, так и отрицательные значения?

(По теореме 3 условия задачи означают, что , откуда ).

7.Подведение итогов.

На сегодняшнем уроке мы рассмотрели три теоремы, показывающие зависимость знака квадратичной функции от знаков коэффициента а и дискриминанта D. Одну теорему мы рассмотрели с доказательством, другие просто рассмотрели на примерах.

8.Постановка домашнего задания.

§43, стр.186-190. Доказательства теоремы 2 и теоремы 3 посмотреть в учебнике. №683.

Урок 6: «Контрольный урок по теме Квадратные неравенства»

Предмет, класс, количество часов: Алгебра, 8 класс, 1 час.

Тип урока: контрольный урок.

Цели:

ОЦ: Проверка знаний учащихся.

ВЦ: Формирование у учащихся навыков самостоятельной работы, воспитание сообразительности, воспитание аккуратности.

РЦ: Развитие умений анализировать, выделять главное, обобщать, конкретизировать и делать выводы.

План урока

.Оргмомент.

.Постановка задания.

.Завершение урока.

Презентация «Квадратичная функция»http://d7.nsportal.ru/shkola/algebra/library/prezentatsiya-kvadratichnaya-funktsiyaЦОР- это учебные (образовательные) материалы, представленные в цифровой форме...

 фотографии,

 видеофрагменты,

 текстовые документы,

 звукозаписи,

 картографические материалы,

 статические и динамические модели,

объекты виртуальной реальности и интерактивного моделирования,

 символьные объекты и деловая графика,

или иные учебные материалы, необходимые для организации учебного процесса.

 

Каковы задачи ЦОР?

Помощь учителю при подготовке к уроку.

Помощь учителю при проведении урока.

Помощь учащимся при подготовке домашнего задания.

 

 Различаем ЦОР по типу работы ученика с ними!

 Демонстрационные ЦОР - ученик является наблюдателем

 Интерактивные (информационно0деятельностные) - ученик имеет возможность не только "смотреть демонстрации", но менять сценарий

 отвечать на вопросы ресурса и, возможно, получить оценку ресурса;

 выполнять лабораторные и практические задания с помощью ресурса;

 поиск в Интернете или в других электронных, например, справочниках;

 групповая работа (мини-проект на уроке);

 интерактивная обучающая игра;

и тIV. Личностные, метапредметные и предметные результаты освоения учебного

предмета «Математика»

5–9 классы

Личностными результатами изучения предмета «Математика» (в виде следующих учебных курсов: 5–6 класс – «Математика», 7–9 класс –  «Математика» («Алгебра» и «Геометрия») являются следующие качества:

– независимость и критичность мышления;

– воля и настойчивость в достижении цели.

Средством достижения этих результатов является:

– система заданий учебников;

– представленная в учебниках в явном виде организация материала по принципу минимакса;

– использование совокупности технологий, ориентированных на развитие самостоятельности и критичности мышления: технология системно- деятельностного подхода в обучении, технология оценивания.

Метапредметными результатами изучения курса «Математика» является формирование универсальных учебных действий (УУД).

Регулятивные УУД:

5–6-й классы

– самостоятельно обнаруживать и формулировать учебную проблему, определять цель учебной деятельности, выбирать тему проекта;

– выдвигать версии решения проблемы, осознавать  (и интерпретировать в случае необходимости) конечный результат, выбирать средства достижения цели из предложенных, а также искать их самостоятельно;

– составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);

– работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно (в том числе и корректировать план);

– в диалоге с учителем совершенствовать самостоятельно выработанные критерии оценки.

7–9-й классы

– самостоятельно обнаруживать и формулировать проблему в классной и индивидуальной учебной деятельности;

– выдвигать версии решения проблемы, осознавать конечный результат, выбирать средства достижения цели из предложенных или их искать самостоятельно;

– составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);

– подбирать к каждой проблеме (задаче) адекватную ей теоретическую модель;

– работая по предложенному или самостоятельно составленному плану, использовать наряду с основными и дополнительные средства (справочная литература, сложные приборы, компьютер);

– планировать свою индивидуальную образовательную траекторию;

– работать по самостоятельно составленному плану, сверяясь с ним и с целью деятельности, исправляя ошибки, используя самостоятельно подобранные средства (в том числе и Интернет);

– свободно пользоваться выработанными критериями оценки и самооценки, исходя из цели и имеющихся критериев, различая результат и способы действий;

– в ходе представления проекта давать оценку его результатам;

– самостоятельно осознавать причины своего успеха или неуспеха и находить способы выхода из ситуации неуспеха;

– уметь оценить степень успешности своей индивидуальной образовательной деятельности;

– давать оценку своим личностным качествам и чертам характера («каков я»), определять направления своего развития («каким я хочу стать», «что мне для этого надо сделать»).

Средством формирования регулятивных УУД служат технология системно- деятельностного подхода на этапе изучения нового материала и технология оценивания образовательных достижений (учебных успехов).

Познавательные УУД:

5–9-й классы

– анализировать, сравнивать, классифицировать и обобщать факты и явления;

– осуществлять сравнение, сериацию и классификацию, самостоятельно выбирая основания и критерии для указанных логических операций; строить классификацию путём дихотомического деления (на основе отрицания);

– строить логически обоснованное рассуждение, включающее установление причинно-следственных связей;

– создавать математические модели;

– составлять тезисы, различные виды планов (простых, сложных и т.п.). Преобразовывать информацию из одного вида в другой (таблицу в текст, диаграмму и пр.);

– вычитывать все уровни текстовой информации.

– уметь определять возможные источники необходимых сведений, производить поиск информации, анализировать и оценивать её достоверность.

– понимая позицию другого человека, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории. Для этого самостоятельно использовать различные виды чтения (изучающее, просмотровое, ознакомительное, поисковое), приёмы слушания.

– самому создавать источники информации разного типа и для разных аудиторий, соблюдать информационную гигиену и правила информационной безопасности;

– уметь использовать компьютерные и коммуникационные технологии как инструмент для достижения своих целей. Уметь выбирать адекватные задаче инструментальные программно-аппаратные средства и сервисы.

Средством формирования познавательных УУД служат учебный материал и прежде всего продуктивные задания учебника.

  – Использование математических знаний для решения различных математических задач и оценки полученных результатов.

  – Совокупность умений по использованию доказательной математической речи.

 – Совокупность умений по работе с информацией, в том числе и с различными математическими текстами.

 – Умения использовать математические средства для изучения и описания реальных процессов и явлений.

  – Независимость и критичность мышления.

 – Воля и настойчивость в достижении цели.

Коммуникативные УУД:

5–9-й классы

– самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.);

– отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами;

– в дискуссии уметь выдвинуть контраргументы;

– учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;

– понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;

– уметь взглянуть на ситуацию с иной позиции и договариваться с людьми иных позиций.

Средством  формирования коммуникативных УУД служат технология проблемного обучения, организация работы в малых группах, также использование на уроках технологии личностно- ориентированного и  системно- деятельностного обучения..п.

9-й класс.

Алгебра

Использовать при решении математических задач, их обосновании и проверке найденного решения  знание о:

свойствах числовых неравенств;

методах решения линейных неравенств;

свойствах квадратичной функции;

методах решения квадратных неравенств;

методе интервалов для решения рациональных неравенств;

методах решения систем неравенств;

свойствах и графике функции при натуральном n;

определении и свойствах корней степени n;

степенях с рациональными показателями и их свойствах;

определении и основных свойствах арифметической прогрессии; формуле для нахождения суммы её нескольких первых членов;

определении и основных свойствах геометрической прогрессии; формуле для нахождения суммы её нескольких первых членов;

формуле для суммы бесконечной геометрической прогрессии со знаменателем, меньшим по модулю единицы.

Использовать свойства числовых неравенств для преобразования неравенств;

доказывать простейшие неравенства;

решать линейные неравенства;

строить график квадратичной функции и использовать его при решении задач;

решать квадратные неравенства;

решать рациональные неравенства методом интервалов;

решать системы неравенств;

строить график функции при натуральном n и использовать его при решении задач;

находить корни степени n;

использовать свойства корней степени n при тождественных преобразованиях;

находить значения степеней с рациональными показателями;

решать основные задачи на арифметическую и геометрическую прогрессии;

находить сумму бесконечной геометрической прогрессии со знаменателем, меньшим по модулю единицы;

находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.  

9-й класс.

Рабочая программа

I. Пояснительная записка

        Программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта второго поколения основного общего образования.

В основу настоящей программы положены педагогические и дидактические принципы вариативного развивающего образования, изложенные в концепции образовательной программы «Перспективная школа», и современные дидактико-психологические тенденции, связанные с вариативным развивающим образованием и требованиями ФГОС.

А. Личностно ориентированные принципы: принцип адаптивности; принцип развития; принцип комфортности процесса обучения.

Б. Культурно ориентированные принципы: принцип целостной картины мира; принцип целостности содержания образования; принцип систематичности; принцип смыслового отношения к миру; принцип ориентировочной функции знаний; принцип опоры на культуру как мировоззрение и как культурный стереотип.

В. Деятельностно ориентированные принципы: принцип обучения деятельности; принцип управляемого перехода от деятельности в учебной ситуации к деятельности в жизненной ситуации; принцип перехода от совместной учебно-познавательной деятельности к самостоятельной деятельности учащегося (зона ближайшего развития); принцип опоры на процессы спонтанного развития; принцип формирования потребности в творчестве и умений творчества.

Обучение математике в основной школе направлено на достижение следующих целей:

1) в направлении личностного развития:

Формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;

Развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;

Формирование интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;

Воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;

Формирование качеств мышления, необходимых для адаптации в современном информационном обществе;

Развитие интереса к математическому творчеству и математических способностей;

2) в метапредметном направлении:

Развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;

Формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;

 3) в предметном направлении:

Овладение математическими знаниями и умениями, необходимыми для продолжения образования, изучения смежных дисциплин, применения в повседневной жизни;

Создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.

Предлагаемый курс позволяет обеспечить формирование как предметных умений, так и универсальных учебных действий школьников, а также способствует достижению определённых во ФГОС личностных результатов, которые в дальнейшем позволят учащимся применять полученные знания и умения для решения различных жизненных задач.

II. Общая характеристика учебного предмета «Математика»

Настоящая программа по математике для основной школы является логическим продолжением программы «Перспективная школа» для начальной школы и вместе с ней составляет описание непрерывного курса математики с 1-го по 9-й класс общеобразовательной школы.

В основе содержания обучения математике лежит овладение учащимися следующими видами компетенций: предметной, коммуникативной, организационной и общекультурной. В соответствии с этими видами компетенций выделены главные содержательно-целевые направления  развития учащихся средствами предмета «Математика».

Предметная компетенция. Под предметной компетенцией понимается осведомлённость школьников о системе основных математических представлений и овладение ими необходимыми предметными умениями. Формируются следующие образующие эту компетенцию представления: о математическом языке как средстве выражения математических законов, закономерностей и т.д.; о математическом моделировании как одном из важных методов познания мира. Формируются следующие образующие эту компетенцию умения: создавать простейшие математические модели, работать с ними и интерпретировать полученные результаты; приобретать и систематизировать знания о способах решения математических задач, а также применять эти знания и умения для решения многих жизненных задач.

Коммуникативная компетенция. Под коммуникативной компетенцией понимается сформированность умения ясно и чётко излагать свои мысли, строить аргументированные рассуждения, вести диалог, воспринимая точку зрения собеседника и в то же время подвергая её критическому анализу, отстаивать (при необходимости) свою точку зрения, выстраивая систему аргументации. Формируются образующие эту компетенцию умения, а также умения извлекать информацию из разного рода источников, преобразовывая её при необходимости в другие формы (тексты, таблицы, схемы и т.д.).

Организационная компетенция. Под организационной компетенцией понимается сформированность умения самостоятельно находить и присваивать необходимые учащимся новые знания. Формируются следующие образующие эту компетенцию умения: самостоятельно ставить учебную задачу (цель), разбивать её на составные части, на которых будет основываться процесс её решения, анализировать результат действия, выявлять допущенные ошибки и неточности, исправлять их и представлять полученный результат в форме, легко доступной для восприятия других людей.

Общекультурная компетенция. Под общекультурной компетенцией понимается осведомленность школьников о математике как элементе общечеловеческой культуры, её месте в системе других наук, а также её роли в развитии представлений человечества о целостной картине мира. Формируются следующие образующие эту компетенцию представления: об уровне развития математики на разных исторических этапах; о высокой практической значимости математики с точки зрения создания и развития материальной культуры человечества, а также о важной роли математики с точки зрения формировании таких важнейших черт личности, как независимость и критичность мышления, воля и настойчивость в достижении цели и др.

Содержание раздела «Функции» нацелено на получение школьниками конкретных знаний о функции как важнейшей математической модели для описания и исследования разнообразных процессов. Изучение этого материала способствует развитию у учащихся умения использовать различные языки математики (словесный, символический, графический), вносит вклад в формирование представлений о роли математики в развитии цивилизации и культуры.

 Личностные, метапредметные и предметные результаты освоения учебного

предмета «Математика»

Личностными результатами изучения предмета «Математика»  являются следующие качества:

– независимость и критичность мышления;

– воля и настойчивость в достижении цели.

Средством достижения этих результатов является:

– система заданий учебников;

– представленная в учебниках в явном виде организация материала по принципу минимакса;

– использование совокупности технологий, ориентированных на развитие самостоятельности и критичности мышления: технология системно- деятельностного подхода в обучении, технология оценивания.

Метапредметными результатами изучения курса «Математика» является формирование универсальных учебных действий (УУД).

Регулятивные УУД:

самостоятельно обнаруживать и формулировать проблему в классной и индивидуальной учебной деятельности;

– выдвигать версии решения проблемы, осознавать конечный результат, выбирать средства достижения цели из предложенных или их искать самостоятельно;

– составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);

– подбирать к каждой проблеме (задаче) адекватную ей теоретическую модель;

– работая по предложенному или самостоятельно составленному плану, использовать наряду с основными и дополнительные средства (справочная литература, сложные приборы, компьютер);

– планировать свою индивидуальную образовательную траекторию;

– работать по самостоятельно составленному плану, сверяясь с ним и с целью деятельности, исправляя ошибки, используя самостоятельно подобранные средства (в том числе и Интернет);

– свободно пользоваться выработанными критериями оценки и самооценки, исходя из цели и имеющихся критериев, различая результат и способы действий;

– в ходе представления проекта давать оценку его результатам;

– самостоятельно осознавать причины своего успеха или неуспеха и находить способы выхода из ситуации неуспеха;

– уметь оценить степень успешности своей индивидуальной образовательной деятельности;

– давать оценку своим личностным качествам и чертам характера («каков я»), определять направления своего развития («каким я хочу стать», «что мне для этого надо сделать»).

Средством формирования регулятивных УУД служат технология системно- деятельностного подхода на этапе изучения нового материала и технология оценивания образовательных достижений (учебных успехов).

Познавательные УУД:

– анализировать, сравнивать, классифицировать и обобщать факты и явления;

– осуществлять сравнение, сериацию и классификацию, самостоятельно выбирая основания и критерии для указанных логических операций; строить классификацию путём дихотомического деления (на основе отрицания);

– строить логически обоснованное рассуждение, включающее установление причинно-следственных связей;

– создавать математические модели;

– составлять тезисы, различные виды планов (простых, сложных и т.п.). Преобразовывать информацию из одного вида в другой (таблицу в текст, диаграмму и пр.);

– вычитывать все уровни текстовой информации.

– уметь определять возможные источники необходимых сведений, производить поиск информации, анализировать и оценивать её достоверность.

– понимая позицию другого человека, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории. Для этого самостоятельно использовать различные виды чтения (изучающее, просмотровое, ознакомительное, поисковое), приёмы слушания.

– самому создавать источники информации разного типа и для разных аудиторий, соблюдать информационную гигиену и правила информационной безопасности;

– уметь использовать компьютерные и коммуникационные технологии как инструмент для достижения своих целей. Уметь выбирать адекватные задаче инструментальные программно-аппаратные средства и сервисы.

Средством формирования познавательных УУД служат учебный материал и прежде всего продуктивные задания учебника.

– Использование математических знаний для решения различных математических задач и оценки полученных результатов.

 – Совокупность умений по использованию доказательной математической речи.

– Совокупность умений по работе с информацией, в том числе и с различными математическими текстами.

– Умения использовать математические средства для изучения и описания реальных процессов и явлений.

– Независимость и критичность мышления.

– Воля и настойчивость в достижении цели.

Коммуникативные УУД:

– самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.);

– отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами;

– в дискуссии уметь выдвинуть контраргументы;

– учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;

– понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;

– уметь взглянуть на ситуацию с иной позиции и договариваться с людьми иных позиций.

Средством  формирования коммуникативных УУД служат технология проблемного обучения, организация работы в малых группах, также использование на уроках технологии личностно- ориентированного и  системно- деятельностного обучения.

Предметными результатами изучения предмета «Математика» являются следующие умения

9-й класс.

Алгебра

Использовать при решении математических задач, их обосновании и проверке найденного решения  знание о :

свойствах квадратичной функции;

строить график квадратичной функции и использовать его при решении задач;

находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.  

Квадратичная функция.  65ч.

Функция и ее свойства.

Функция. Область определения и множество значений функции. Свойства функции.

Квадратный трехчлен.

Квадратный трехчлен и его корни. Разложение квадратного трехчлена на множители.

 Квадратичная функция и ее график. (22 часа)

Функция у=. Ее график и свойства. Графики функции у=+п, у=а(.Построение графика квадратичной функции. Выделение полного квадрата из квадратного трехчлена.

Степенная функция. Корень n-й степени.

Основная  цель — расширить сведения о свойствах функций, ознакомить учащихся со свойствами и графиком квадратичной функции.        I

В начале темы систематизируются сведения о функциях. Повторяются основные понятия: функция, аргумент, область определения функции, график.  Даются понятия о возрастании и убывании   функции,   промежутках   знакопостоянства.   Тем   самым создается база для усвоения свойств квадратичной , а также для дальнейшего углубления функциональных представлений при изучении курса алгебры и начал анализа.

Подготовительным шагом к изучению свойств  квадратичной функции  является   также  рассмотрение  вопроса   о  квадратном трехчлене и его корнях, выделении квадрата двучлена из квадратного трехчлена, разложении квадратного трехчлена на множители.

Изучение квадратичной функции начинается с рассмотрения функции у = , ее свойств и особенностей графика, а также других частных видов квадратичной функции — функций у =  + b, у = а . Эти сведения используются при изучении свойств квадратичной функции общего вида. Важно, чтобы учащиеся поняли, что график функции у = +Ьх + с может быть получен из графика функции у = с помощью двух параллельных переносов. Приемы построения графика функции y =  + Ьх + с отрабатываются на конкретных примерах. При этом особое внимание следует уделить формированию у учащихся умения указывать координаты вершины параболы, ее ось симметрии, направление ветвей параболы.

При изучении этой темы дальнейшее развитие получает умение находить по графику промежутки возрастания и убывания функции, а также промежутки, в которых функция сохраняет знак. Учащиеся знакомятся со свойствами степенной функции у = при четном и нечетном натуральном показателе п. Вводится понятие корня п-ой степени. Они получают представление о нахождении значений корня с помощью калькулятора, причем выработка соответствующих умений не требуется.

Контрольных работ: 2

№         

Тема         

Кол-во

Контрольные работы

        Характеристика основных видов деятельности ученика

(на основе учебных действий)

Гл.1.Квадратичная функция и ее график.

П.1.Функции и их свойства.

Функция. Область определения и область значений функции.

Свойства функции.

П.2.Квадратный трёхчлен.

Квадратный трёхчлен и его корни.

Разложение квадратного трёхчлена на множители.

П.3.Квадратичная функция и её график. Функция у=, её свойства и график.

Графики функций у=+п, у=а(   .

Построение графика квадратичной функции.

П.4 .Степенная функция. Корень n-й степени

22

2

Вычислять значения функций, заданных формулами (при необходимости использовать калькулятор); составлять таблицы значений функций.

Строить по точкам графики функций. Описывать свойства функции на основе ее графического представления.

Моделировать реальные зависимости формулами и графиками. Читать графики реальных зависимостей.

Использовать функциональную символику для записи разнообразных фактов, связанных с рассматриваемыми функциями, обогащая опыт выполнения знаково-символических действий. Строить речевые конструкции с использованием функциональной терминологии.

Использовать компьютерные программы для построения графиков функций, для исследования положения на координатной плоскости графиков функций в зависимости от значений коэффициентов, входящих в формулу.

Распознавать виды изучаемых функций. Показывать схематически положение на координатной плоскости графиков функций

 в зависимости от значений коэффициентов, входящих в формулы.

Строить графики изучаемых функций; описывать их свойства

Требования к уровню подготовки учащихся

         В результате изучения курса алгебры 9 класса учащиеся должны:

знать свойства квадратичной функции, уметь строить и читать ее график;

         Планируемые результаты.

Изучение математики в основной школе дает возможность обучающимся достичь следующих результатов развития:

1) в личностном направлении:

умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;

креативность мышления, инициатива, находчивость, активность при решении математических задач;

умение контролировать процесс и результат учебной математической деятельности;

способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

2) в метапредметном направлении:

первоначальные представления об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов;

умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

умение находить в различных источниках информацию, необходимую для решения математических проблем, представлять ее в понятной форме, принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;

умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки;

умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

3) в предметном направлении:

овладение базовым понятийным аппаратом по основным разделам содержания, представление об основных изучаемых понятиях (число, геометрическая фигура, уравнение, функция, вероятность) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;

умение работать с математическим текстом (анализировать, извлекать необходимую информацию), грамотно применять математическую терминологию и символику, использовать различные языки математики;

умение проводить классификации, логические обоснования, доказательства математических утверждений;

умение распознавать виды математических утверждений (аксиомы, определения, теоремы и др.), прямые и обратные теоремы;

развитие представлений о числе и числовых системах от натуральных до действительных чисел, овладение навыками устных, письменных, инструментальных вычислений;

овладение символьным языком алгебры, приемами выполнения тождественных преобразований рациональных выражений, решения уравнений, систем уравнений, неравенств и систем неравенств, умение использовать идею координат на плоскости для интерпретации уравнений, неравенств, систем, умение применять алгебраические преобразования, аппарат уравнений и неравенств для решения задач из различных разделов курса;

овладение системой функциональных понятий, функциональным языком и символикой, умение на основе функционально-графических представлений описывать и анализировать реальные зависимости;

овладение основными способами представления и анализа статистических данных; наличие представлений о статистических закономерностях в реальном мире и о различных способах их изучения, о вероятностных моделях;

овладение геометрическим языком, умение использовать его для описания предметов окружающего мира, развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;

усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне — о простейших пространственных телах, умение применять систематические знания о них для решения геометрических и практических задач;

умения измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объемов геометрических фигур;

умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера.

        ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ВЫПУСКНИКОВ.

В результате изучения темы «Квадратичная функция» ученик должен«знать/понимать», :

Основные понятия. Числовые функции.

Выпускник научится:

понимать и использовать функциональные понятия и язык (термины, символические обозначения);

строить графики элементарных функций; исследовать свойства числовых функций на основе изучения поведения их графиков;

понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами.

Выпускник получит возможность научиться:

проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; на основе графиков изученных функций строить более сложные графики (кусочно-заданные, с «выколотыми» точками и т. п.);

использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса.


По теме: методические разработки, презентации и конспекты

Календарно-тематическое планирование по истории 5-10 класс, тесты

в папке содержатся тематические планирования по истории 5-10 классов, История России, Древняя история, История нового сремении, Средневековья....

Элементы комбинаторики.Разработка занятия.Тест. Тематическое планирование.

Курс: "Элементы комбинаторики" рассчитан на 18 часов.Цель курса:1) Подготовка учащихся к продолжению образования, повышение уровня математической культуры, развитие алгоритмического     ...

Клендарно-тематическое планирование профильного учебного материала по физике в 10кл.Календарно-тематическое планирование профильного учебного материала по физике в 11кл.

Календарно-тематическое планирование профильного учебного материала по физике в 10клКалендарно-тематическое планирование профильного учебного материала по физике в 11кл...

Примерное тематическое планирование. Примерное тематическое планирование. Направление "Изобразительное искусство" ФГОС 6 класс (34 ч) Программа "Изобразительное искусство" С. П. Ломов, С. Е. Игнатьева, М. В. Карамзина.

Программа по предмету Изобразительное искусство разработана в соответствии с требованиями к результатам освоения основной образовательной программы основного общего образования, предусмотренным федера...

Рабочая программа и тематическое планирование: МДК 02.01. Основы приготовления проб и растворов различной концентрации + тематические планирование УП 02.01

Рабочая программа и  тематическое планирование МДК 02.01 - Основы приготовления проб и растворов различной концентрации  + Учебная практика (УП 02.01.). Предствалены новые материалы на 2-й и...