Конспект занятия "Простой способ решения непростых неравенств "
план-конспект занятия по алгебре (9 класс) на тему

Нагуманова Зинфира Хафизовна

Метод интервалов - наиболее удобный и универсальный способ решения любых неравенств. Он позволяет решать более сложные неравенства, у которых левая часть - многочлен любой степени, представляемый в виде простых множителей, или дробь, у которой числитель и знаменатель также многочлены, разлагаемые на множители.

В данном курсе рассматривается применение  метода интервалов к решению неравенств высоких степеней.

Скачать:

ВложениеРазмер
Microsoft Office document icon konspekt_zanyatiya_9_klass_matematika.doc218 КБ

Предварительный просмотр:

Муниципальное казенное общеобразовательное учреждение

средняя общеобразовательнаяшкола №16

а. Малый Барханчак Ипатовского района

Конспект занятия

"Простой способ решения непростых неравенств "

Учитель математики

Нагуманова З.Х.

Тема урока: "Простой способ решения непростых неравенств "

Цель: развивать умения и навыки применения метода интервалов для решения неравенств высоких степеней, дробно-рациональных неравенств

Задачи урока:

  • Закрепление изученного материала.
  • Формирование умений применять алгоритм к решению неравенств методом интервалов.
  • Развитие познавательной активности, творческих способностей, навыков самостоятельной работы.
  • Воспитание интереса к предмету.

Оборудование: карточки с алгоритмом решения неравенств второй степени графическим способом и методом интервалов (приложение 1), электронный тест, созданный в Microsoft Excel (приложение 2), проектор, экран.

Ход урока

Организационный момент.

Повторение и закрепление пройденного материала.

- Проверка домашнего задания, разбор задач, вызвавших затруднения.

- Фронтальная работа с классом.

Ответить на следующие вопросы:

Неравенство какого вида называется неравенством второй степени с одной переменной? Приведите примеры.

Назовите способы решения неравенств второй степени?

Какой способ решения неравенств второй степени, по-вашему, является наиболее удобным, простым?

Правило расстановки знаков при решении неравенств методом интервалов?

(Если все линейные множители различны, то знаки функции будут чередоваться, причем если коэффициенты при х положительны, то в крайнем правом промежутке функция положительна).

(В это время два ученика работают у доски по карточкам (приложение 1). Необходимо правильно расположить пункты алгоритмов решения квадратных неравенств графическим способом и методом интервалов).

- Устный счет

1. Разложите на множители.

2. Решите уравнение.

3. Решите неравенства методом интервалов

4. Найти область определения функции 

Изучение нового материала.

Метод интервалов - наиболее удобный и универсальный способ решения любых неравенств. Он позволяет решать более сложные неравенства, у которых левая часть - многочлен любой степени, представляемый в виде простых множителей, или дробь, у которой числитель и знаменатель также многочлены, разлагаемые на множители.

Применим метод интервалов к решению неравенств высоких степеней. Рассмотрим схему решения на следующем примере.

(На каждую парту раздается карточка с алгоритмом решения неравенств методом интервалов).

Пример 1. Решим неравенство 

Решение:

Прежде всего, отметим, что если в разложении многочлена на множители входит сомножитель , то говорят, что  - корень многочлена кратности .

Рассмотрим функцию f(x)= . D(f)=R.

Нули функции:  кратности 6;  кратности 3;  кратности 1;  кратности 2; кратности 5.

1. Отметим нули функции на координатной прямой. Корни четной кратности подчеркнем двумя черточками, нечетной кратности - одной чертой.

2. Определим знак функции на каждом из полученных промежутков.

3. Выберем промежутки, в которых функция  положительна (отрицательна).

4. Из рисунка видно, что решением неравенства являются …………..

Вывод. Внимательно посмотрите на рисунок, что можно заметить?

(При переходе через точки четной кратности смена знаков не произошла, при переходе через точки нечетной кратности - знак меняется).

Давайте проверим, подтвердится ли данное наблюдение при решении следующих неравенств.

Решите неравенство (карточки по вариантам)

I вариант:

II вариант:

(Учащиеся решают неравенства самостоятельно, два ученика - на откидной доске).

Вывод:

Для решения неравенства важно определить кратность нулей функции.

При переходе через точку четной кратности знак функции не меняется.

При переходе через точку нечетной кратности знак функции меняется.

Рассмотрим способы решения рациональных неравенств  методом интервалов.

Заметим, что рациональные неравенства легко сводятся к решению неравенств высоких степеней. Умножим обе части такого неравенства на многочлен , который положителен при всех допустимых значениях х . Тогда знак исходного неравенства не меняется, и получаем неравенство , эквивалентное данному неравенству.

Итак,  эквивалентно системе неравенств,  которая далее решается методом интервалов.

Пример 2. Решим неравенство 

Введем функцию   Найдем ОДЗ.

Разложим в числителе квадратный трехчлен на множители.

Решим это неравенство методом интервалов. Найдем нули функции и определим их кратность: х =1 (четная кратность), остальные корни 3, -1, 0, 5, -2 (нечетной кратности). Отмечаем нули функции на координатной прямой с учетом области определения неравенства и определим знаки на промежутках с учетом кратности корней.

Динамическая пауза.

Расслабимся не отходя от математики:

1. Покажите направление ветвей параболы, если старший коэффициент квадратичной функции а>0 , а<0

2. Покажите направление оси абсцисс левой рукой, а оси ординат правой рукой. Теперь покажите это быстро.

Закрепление материала

Фронтальная работа с классом № 390 (в, г), №331(в,г),

№334(в,г), №336(а,б), №337(в,г).

Электронный тест (приложение 3)(тест выполняется в парах)

I вариант.

Задание

Ответы

а

б

в

1. Решите неравенство 

2.Решите неравенство

3. Найдите область определения функции 

II вариант.

Задание

ответы

а

б

в

1. Решите неравенство 

2. Решите неравенство 

3. Найдите область определения функции 

Проверка теста производится автоматически. 3 правильных ответа - сообщение "Молодец!", в остальных - "Подумай!".

Задание на дом.

№335 (б,в), № 336 (в,г), №337(а,б), №338 (б,в).

Дополнительное задание

В целях подготовки к самостоятельной работе, имеющие доступ к сети интернет можете загрузить модуль Решение неравенств методом интервалов.

Подведение итогов урока, рефлексия.

Первое условие, которое надлежит выполнять в математике, - это быть точным, второе - быть ясным и, насколько можно, простым. (Л. Карно)

Оцените свою работу на уроке (лесенка успеха).

1

Многое не понял(а) и остались вопросы

2

Во время работы было много трудностей

3

Многое понял(а), но были ошибки

4

Трудности преодолены

Литература.

  1. Учебник: Алгебра-9 класс, Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова, М.: Просвещение, 2011.
  2. Рурукин А.Н., Полякова С.А., Поурочные разработки по алгебре: 9 класс. - М.: ВАКО, 2010 - (В помощь школьному учителю).
  3. Модуль Решение неравенств методом интервалов. К1 http://www.eor.edu.ru/card/8604/reshenie-neravenstv-metodom-intervalov-k1.html на сайте http://fcior.edu.ru/
  4. Шаблон презентации с сайта http://www.rusedu.ru/detail_9737.html


Приложение 1.

Алгоритм решения неравенств второй степени графическим способом:

-  Определить направление ветвей параболы.

-  Найти корни квадратного трехчлена.

-  Отметить корни на оси абсцисс.

-  Построить эскиз параболы с учетом направления ветвей.

-  Выбрать промежутки,  соответствующие знаку неравенства.

-  Записать ответ.

Алгоритм решения неравенств второй степени методом интервалов:

-  Ввести функцию.

-  Найти область определения функции.

-  Найти нули функции.

-  Отметить область определения и нули функции на координатной прямой.

-  Найти знаки функции в каждом из промежутков.

-  Выбрать промежутки, соответствующие знаку неравенства.


Приложение 2

Вариант 1.

Ф.И.О

Класс

9

Вариант I

Задание

а

б

в

Варианты ответов

1

Решить неравенство

 

2

Решите неравенство  

 

3

Найти область определения функции

 

Подумай!

Ф.И.О

Класс

9

Вариант II

Задание

а

б

в

Варианты ответов

1

Решить неравенство

 

2

Решите неравенство  

 

3

Найти область определения функции

 

Подумай!


По теме: методические разработки, презентации и конспекты

Элективный курс Самый простой способ решения непростых неравенств

 Цели:   1.Создание условий для самореализации учащихся в процессе учебной деятельности.   2.Развитие математических, интеллектуальных способностей учащихся, обобщенных умственных умений....

Различные способы решения показательных неравенств

Карточка-инструктор по теме: "Различные способы решения показательных неравенств"...

Открытый урок по теме ,,Графический способ решения квадратных неравенств"

Конспект урока, презентация, бланк самоанализа учащегося...

Элективный курс в 9 классе "Самый простой способ решения непростых неравенств" , "Избранные задачи по планиметрии"

Эти курсы знакомят учащихсчя со способом решения нерпвенств методом интервалов и позволяет систематизировать и обобщать ключевые темы курса планиметрии....

Рабочая программа курсов по выбору для 9 класса "Самый простой способ решения непростых неравенств"

                          Муниципальное бюджетное  образовательное  учреждениесредняя    общеобразовате...

Способы решения тригонометрических неравенств

Урок по теме "Способы решения тригонометрических неравенств"...