Рабочая программа по математике 10 класс (УМК А.Г.Мордкович и А.В.Погорелов)
рабочая программа по алгебре (10 класс) по теме

Даниленкова Людмила Анатольевна

Рабочая программа по математике 10 класс (УМК А.Г.Мордкович и А.В.Погорелов)

Скачать:

ВложениеРазмер
Microsoft Office document icon 10_kl_matem_rab_prbez_kal-tem_plan.doc98.5 КБ

Предварительный просмотр:

Муниципальное бюджетное образовательное учреждение

«Холмовская средняя общеобразовательная школа»

Холм- Жирковского района Смоленской области

«Рассмотрено»

Руководитель ШМО

_________/___________

Протокол №_______

«____»__________2013г.

«Согласовано»

Зам.директора по УВР

__________/И .Л. Брынчик

«______»__________2013г.

«Утверждено»

Директор МБОУ

_________/Т. В. Муравьёва

Приказ № _______

«______»_________2013г.

Рабочая программа

по математике

в    10   классе

на  2013- 2014  учебный год

Даниленкова Людмила Анатольевна

учитель математики,

высшая  квалификационная  категория

2013год

Пояснительная записка
                          к рабочей программе по курсу «Математика» 10 класс

(базовый уровень)

Настоящее календарно – тематическое планирование разработано в соответствии с Примерной программой среднего (полного) образования по математике (базовый уровень), с учетом требований федерального компонента государственного стандарта общего образования и на основе авторских программ Мордковича А. Г., Погорелова А. В.

Программа рассчитана на 5 часов в неделю (алгебра – 3часа, геометрия – 2часа), всего – 170 часов.

       Главной целью школьного образования является развитие ребенка как компетентной личности путем включения его в различные виды ценностной человеческой деятельности: учеба, познания, коммуникация, профессионально-трудовой выбор, личностное саморазвитие, ценностные ориентации, поиск смыслов жизнедеятельности. С этих позиций обучение рассматривается как процесс овладения не только определенной суммой знаний и системой соответствующих умений и навыков, но и как процесс овладения компетенциями. Это определило цели обучения алгебре и началам анализа:

  • формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;
  • развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для будущей профессиональной деятельности, а также последующего обучения в высшей школе;
  • овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;
  • воспитание средствами математики культуры личности, понимания значимости математики для научно-технического прогресса, отношения к математике как к части общечеловеческой культуры через знакомство с историей развития математики, эволюцией математических идей.

На основании требований Государственного образовательного стандарта 2010 г. в содержании календарно-тематического планирования предполагается реализовать актуальные в настоящее время компетентностный, личностно ориентированный, деятельностный подходы, которые определяют задачи обучения:

  • приобретение математических знаний и умений;
  • овладение обобщенными способами мыслительной, творческой деятельностей;
  • освоение компетенций (учебно-познавательной, коммуникативной, рефлексивной, личностного саморазвития, ценностно-ориентационной) и профессионально-трудового выбора.

Согласно действующему в школе учебному плану и с учетом направленности классов календарно-тематический план предусматривает следующие варианты организации процесса обучения:

Изучение математики на базовом уровне среднего (полного) общего образования направлено на достижение следующих целей:

  • формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;
  • развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для будущей профессиональной деятельности, а также последующего обучения в высшей школе;
  • овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;
  • воспитание средствами математики культуры личности, понимания значимости математики для научно-технического прогресса, отношения к математике как к части общечеловеческой культуры через знакомство с историей развития математики, эволюцией математических идей.

С учетом уровневой специфики класса выстроена система учебных занятий (уроков), спроектированы цели, задачи, ожидаемые результаты обучения (планируемые результаты).  Планируется использование новых педагогических технологий в преподавании предмета. В течение года возможны коррективы календарно-тематического планирования, связанные с объективными причинами.

Основой целью является обновление требований к уровню подготовки выпускников в системе естественно-математического образования, отражающее важнейшую особенность педагогической концепции государственного стандарта – переход от суммы «предметных результатов» (то есть образовательных результатов, достигаемых в рамках отдельных учебных предметов) к межпредметным и интегративным результатам. Такие результаты представляют собой обобщенные способы деятельности, которые отражают специфику не отдельных предметов, а ступеней общего образования. В государственном стандарте они зафиксированы как общие учебные умения, навыки и способы человеческой деятельности, что предполагает повышенное внимание к развитию межпредметных связей курса алгебры и начал анализа.

При изучении алгебры и начал анализа и геометрии в старшей школе осуществляется переход от методики поурочного планирования к модульной системе организации учебного процесса. Модульный принцип позволяет не только укрупнить смысловые блоки содержания, но и преодолеть традиционную логику изучения математического материала: от единичного к общему и всеобщему и от фактов к процессам и закономерностям. В условиях модульного подхода возможна совершенно иная схема изучения математических процессов «все общее – общее – единичное».

Специфика целей и содержания изучения алгебры и начал анализа на базовом уровне существенно повышает требования к рефлексивной деятельности учащихся: к объективному оцениванию своих учебных достижений, поведения, черт своей личности, способности и готовности учитывать мнения других людей при определении собственной позиции и самооценке, понимать ценность образования как средства развития культуры личности.

Стандарт ориентирован на воспитание школьника – гражданина и патриота России, развитие духовно-нравственного мира учащегося, его национального самосознания. Эти положения нашли отражение в содержании уроков. В процессе обучения должно быть сформировано умение формулировать свои мировоззренческие взгляды и на этой основе – воспитание гражданственности и патриотизма.

УМК для обучающихся:

1.  Математика. 10 класс: учеб. для учащихся общеобразоват. учреждений (базовый уровень)/ [А.Г. Мордкович, И.М. Смирнова, Л.О. Денищева и др.]; под ред. А.Г. Мордковича, И.М. Смирновой.– 6-е изд., стер.–М.: Мнемозина, 2010.

2. Математика. Подготовка к ЕГЭ – 2012. Вступительные испытания. Под ред. Ф.Ф. Лысенко. – Ростов –на-Дону: Легион, 2011.        

3. Для обеспечения плодотворного учебного процесса предполагается использование информации и материалов следующих Интернет-ресурсов:

Министерство образования РФ: http://www.informika.ru/;

http://www.ed.gov.ru/; http://www.edu.ru/

Тестирование online: 5–11 классы: http://www.kokch.kts.ru/cdo/

Педагогическая мастерская, уроки в Интернет и многое другое: http://teacher.fio.ru

Новые технологии в образовании: http://edu.secna.ru/main/

Путеводитель «В мире науки» для школьников:

http://www.uic.ssu.samara.ru/~nauka/.

Мегаэнциклопедия Кирилла и Мефодия: http://mega.km.ru.

Сайты «Мир энциклопедий», например: http://www.rubricon.ru/;

http://www.encyclopedia.ru/

УМК для учителя:

1.  Математика. 10 класс: учеб. для учащихся общеобразоват. учреждений (базовый уровень)/ [А.Г. Мордкович, И.М. Смирнова, Л.О. Денищева и др.]; под ред. А.Г. Мордковича, И.М. Смирновой.– 6-е изд., стер.–М.: Мнемозина, 2010.

2. Математика. Подготовка к ЕГЭ – 2012. Вступительные испытания. Под ред. Ф.Ф. Лысенко. – Ростов –на-Дону: Легион, 2011.

3. Задачи по геометрии: Пособие для учащихся 7 – 11 кл. общеобразоват. Учреждений/ Б.Г. Зив, В.М. Мейлер, А.Г. Баханский. – 5-е изд. – М.: Просвещение, 2009.

  1. Буланова Л. М., Дудницын Ю. П. Проверочные задания по математике для учащихся 5-8 и 10 классов. – М.: Просвещение, 2009.
  2. Александрова Л.А. Алгебра и начала анализа. 10 класс: самостоятельные работы / Л.А. Александрова – М.: Мнемозина, 2008
  3. В.И. Глизбург. Алгебра и начала анализа. 10 класс: контрольные работы / А.Г. Мордкович – М.: Мнемозина, 2009
  4. Математика. 10-й класс. Тесты для промежуточной аттестации и текущего контроля: учебно-методическое пособие / под ред. Ф.Ф. Лысенко. Ростов н/Д.: Легион, 2010
  5. Дидактические материалы по геометрии для 10 кл/ Б.Г. Зив и др. – М.: Просвещение, 2008.

Требования к уровню подготовки учащихся 10 классов

В результате изучения математики на базовом уровне ученик должен

знать/понимать:

– значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

– значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;

– универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;

– вероятностный характер различных процессов окружающего мира;

Алгебра

уметь:

– выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств, пользоваться оценкой и прикидкой при практических расчетах;

– проводить по известным формулам и правилам преобразования буквенных выражений, включающих тригонометрические функции;

– вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

– для практических расчетов по формулам, включая формулы, содержащие тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства;

Функции и графики

уметь:

– определять значение функции по значению аргумента при различных способах задания функции;

– строить графики изученных функций;

– описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;

– решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

– для описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков;

Начала математического анализа

уметь:

– вычислять производные элементарных функций, используя справочные материалы;

– исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

– для решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения

Уравнения и неравенства

уметь:

– решать рациональные и тригонометрические уравнения и неравенства, их системы;

– составлять уравнения и неравенства по условию задачи;

– использовать для приближенного решения уравнений и неравенств графический метод;

– изображать на координатной плоскости множества решений простейших уравнений и их систем;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

– для построения и исследования простейших математических моделей;

владеть компетенциями:

– учебно-познавательной;

– ценностно-ориентационной;

– рефлексивной;

– коммуникативной;

– информационной;

– социально-трудовой.

Геометрия

Учащиеся должны знать:
Параллельность прямых и плоскостей. Параллельные прямые в пространстве. Параллельность трех прямых. Параллельность прямой и плоскости. Скрещивающиеся прямые. Углы с сонаправленными сторонами. Угол между прямыми. Параллельные плоскости. Свойства параллельных плоскостей. Тетраэдр.
Перпендикулярность прямых и плоскостей. Перпендикулярные прямые в пространстве. Параллельные прямые, перпендикулярные к плоскости. Признак перпендикулярности прямой и плоскости. Теорема о прямой, перпендикулярной к плоскости. Расстояние от точки до плоскости. Теорема о трех перпендикулярах. Угол между прямой и плоскостью.. Признак перпендикулярности двух плоскостей.

Учащиеся должны уметь:

·  распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;

- описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;

·    анализировать в простейших случаях взаимное расположение объектов в пространстве;

·   решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей);

· использовать при решении стереометрических задач планиметрические факты и методы;

·  проводить доказательные рассуждения в ходе решения задач;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

·  исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;

·  вычисления площадей, используя при необходимости справочники и вычислительные устройства.

Для оценки учебных достижений обучающихся используется:

текущий контроль в виде проверочных работ и тестов;

тематический контроль в виде  контрольных работ;

итоговый контроль в виде контрольной работы и теста.

Контрольные и проверочные работы берутся из следующих источников:

  • Александрова Л.А. Алгебра и начала анализа. 10 класс: самостоятельные работы / Л.А. Александрова – М.: Мнемозина, 2008
  • В.И. Глизбург. Алгебра и начала анализа. 10 класс: контрольные работы / А.Г. Мордкович – М.: Мнемозина, 2009
  • Математика. 10-й класс. Тесты для промежуточной аттестации и текущего контроля: учебно-методическое пособие / под ред. Ф.Ф. Лысенко. Ростов н/Д.: Легион, 2010
  • Дидактические материалы по геометрии для 10 кл/ Б.Г. Зив и др. – М.: Просвещение, 2008

Содержание образовательных программ

Алгебра (102часа).

1. Числовые функции (9часов)

Определение числовой функции и способы ее задания. Свойства функций. Обратная функция.

2. Тригонометрические функции (26часов)

Числовая окружность. Числовая окружность на координатной плоскости. Синус и косинус. Тангенс и котангенс. Тригонометрические функции числового аргумента. Тригонометрические функции углового аргумента. Формулы приведения. Функции синуса, косинуса, тангенса и котангенса и их свойства.

3. Тригонометрические уравнения (10часов)

Арккосинус и арксинус, арктангенс и арккотангенс. Решение тригонометрических уравнений.

4. Преобразования тригонометрических уравнений (15часов)

Синус и косинус суммы и разности аргументов. Тангенс суммы и разности двух аргументов. Формулы двойного угла. Преобразование сумм тригонометрических функций в произведения. Преобразование произведений тригонометрических функций в суммы.

5. Производная (31час)

Числовые последовательности и их пределы. Производная. Вычисление производных. Уравнение касательной к графику функции. Исследование функций на монотонность экстремумы. Построение графиков функций. Задачи на отыскание наибольших и наименьших величин.

6.Повторение (11час)

Геометрия (68часов).

1.Аксиомы стереометрии и их простейшие следствия ( 7часов)

Аксиомы стереометрии. Существование плоскости, проходящей через точку и прямую, через 3 точки, Через 2 пересекающиеся прямые.

2. Параллельность прямых и плоскостей (19часов)

Параллельные прямые в пространстве. Признак параллельности прямых. Признак параллельности прямой и плоскости. Признак параллельности плоскостей. Свойства параллельных плоскостей. Изображение пространственных фигур на плоскости.

3. Перпендикулярность прямых и плоскостей (23часа)

Перпендикулярность прямых в пространстве. Признак перпендикулярности прямой и плоскости. Свойства перпендикулярных прямой и плоскости. Построение перпендикулярных прямой и плоскости. Перпендикуляр и наклонная. Теорема о трех перпендикулярах. Признак перпендикулярности плоскостей. Расстояние между скрещивающимися прямыми. Ортогональное проектирование.

4. Декартовы координаты и векторы в пространстве (14часов)

Декартовы координаты в пространстве. Расстояние между точками. Координаты середины отрезка. Симметрия в пространстве. Движение в пространстве. Параллельный перенос. Подобие фигур. Угол между скрещивающимися прямыми. Угол между прямой и плоскостью. Площадь ортогональной проекции многоугольника. Векторы в пространстве. Действия над векторами. Уравнение плоскости.

5. Повторение (5часов).

Учебно – тематическое планирование

Алгебра (102ч)

Геометрия (68ч)

п/п

Темы

Кол-во часов

п/п

Темы

Кол-во

часов

1

 Числовые функции

9

1

Аксиомы стереометрии и их простейшие следствия

7

2

Тригонометрические функции

26

2

Параллельность прямых и плоскостей

19

3

Тригонометрические уравнения

10

3

Перпендикулярность прямых и плоскостей

23

4

 Преобразования тригонометрических уравнений

15

4

Декартовы координаты и векторы в пространстве

14

5

 Производная

31

5

Повторение

5

6

Повторение

11


По теме: методические разработки, презентации и конспекты

рабочая программа по математике 8 класс.(алгебра-А.Г. Мордкович,... и геометрия- А.В. Погорелов)

Программа содержит календарно- тематическое планирование по алгебре и геометрии, пояснительные записки, требования к математической подготовке учащихся, необходимая литература....

Рабочая программа по математике 11 класс (УМК А,Г.Мордкович и А.В.Погорелов)

Рабочач программа по математике 11 класс( УМК А.Г.Мордкович и А.В.Погорелов)...

Рабочая программа по математике по учебникам А.Г. Мордковича «Алгебра и начала анализа», 10-11 класс, (базовый уровень), «Мнемозина», 2009 г. И Л.С.Атанасян «Геометрия» 10-11(базовый уровень» Москва «Просвещение» 2009 год

Рабочая  программа по математике составлена на основе федерального компонента государственного стандарта основного общего образования.Данная рабочая программа ориентирована на учащихс...

Рабочая программа по математике класс (автор Виленкин Н.Я.))

Рабочая проргамма содержит пояснительную записку, календарно-тематическое планирование, требования  к подготовке учащихся...

РАБОЧАЯ ПРОГРАММА Предмет математика Класс 5 Учитель Асессорова Е.М.

РАБОЧАЯ ПРОГРАММА        Предмет    математика      Класс         5 Учитель      Асессорова Е.М...

Рабочая программа Предмет: математика Класс: 10

Рабочая программа   Предмет: математика...