Рабочая программа по алгебре для 7 класса
рабочая программа по алгебре (7 класс) по теме

Кормачева Елена Владимировна

В данной статье представлена рабочая программа по алгебре для 7 класса

Скачать:

ВложениеРазмер
Microsoft Office document icon rabochaya_programma._algebra_7.doc141 КБ

Предварительный просмотр:

РАБОЧАЯ ПРОГРАММА ПО

АЛГЕБРЕ

для 7 класса

учитель математики

МБОУ-гимназии №11 г.Тулы

Кормачёва Елена Владимировна

2013-2014 учебный год

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая  программа по математике составлена на основе федерального компонента государственного стандарта основного общего образования.

Данная рабочая программа ориентирована на учащихся 7 классов.

В ходе освоения содержания курса учащиеся получают возможность:

  • развить представления о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;
  • овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;
  • изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;
  • развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;
  • получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
  • развить логическое мышление и речь – умениия логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;
  • сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.

   Изучение математики на ступени основного общего образования направлено на достижение следующих целей:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;
  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса.

Основные развивающие и воспитательные цели

 Развитие:

  •       Ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
  •       Математической речи;
  •       Сенсорной сферы; двигательной моторики;
  •       Внимания; памяти;
  •       Навыков само и взаимопроверки.

Формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов.

 Воспитание:

  •       Культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;
  •       Волевых качеств;
  •       Коммуникабельности;
  •       Ответственности.

Место предмета в федеральном базисном учебном плане

Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение математики на ступени основного общего образования отводится не менее 875 ч из расчета 5 ч в неделю с V по IX класс. Алгебра изучается в 7 классе I четверть 5 ч в неделю, II, III, IV четверти – 3 ч в неделю, всего 120 ч; 8 класс 3 ч в неделю, всего 102 ч; 9 класс 3 ч в неделю, всего 102 ч.

Рабочая программа рассчитана на  120 учебных часов.  

В настоящей рабочей программе изменено соотношение часов на изучение тем, добавлены темы элементов статистики (подробнее расписано в  учебно – тематическом плане курса).

Общеучебные умения, навыки и способы деятельности.

В ходе преподавания математики в основной школе, работы над формированием у учащихся перечисленных в программе знаний и умений, следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;

решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;

исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;

ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;

проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;

поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.

Результаты обучения

Результаты обучения представлены в Требованиях к уровню подготовки и задают систему итоговых результатов обучения, которых должны достигать все учащиеся, оканчивающие основную школу, и достижение которых является обязательным условием положительной аттестации ученика за курс основной школы. Эти требования структурированы по трем компонентам: «знать/понимать», «уметь», «использовать приобретенные знания и умения в практической деятельности и повседневной жизни». При этом последние два компонента представлены отдельно по каждому из разделов содержания.


ТРЕБОВАНИЯ К УРОВНЮ
ПОДГОТОВКИ ВЫПУСКНИКОВ

В результате изучения математики ученик должен

знать/понимать

  • существо понятия математического доказательства; примеры доказательств;
  • существо понятия алгоритма; примеры алгоритмов;
  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
  • как потребности практики привели математическую науку к необходимости расширения понятия числа;
  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
  • каким образом геометрия возникла из практических задач землемерия;  примеры геометрических объектов и утверждений о них, важных для практики;
  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

Алгебра

уметь

  • составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
  • выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
  • применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
  • решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;
  • решать линейные и квадратные неравенства с одной переменной и их системы;
  • решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
  • изображать числа точками на координатной прямой;
  • определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;
  • распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;
  • находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;
  • определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;
  • описывать свойства изученных функций, строить их графики;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;
  • моделирования практических ситуаций и исследовании построенных моделей с использованием аппарата алгебры;
  • описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;
  • интерпретации графиков реальных зависимостей между величинами;

СОДЕРЖАНИЕ ТЕМ УЧЕБНОГО КУРСА

 

1. Выражения и их преобразования. Уравнения. Статистические характеристики. (24 ч)

Числовые выражения и выражения с переменными. Простейшие преобразования выражений. Уравнение с одним неизвестным и его корень, линейное уравнение. Решение задач методом уравнений. Среднее арифметическое, размах, мода. Медиана как статистическая характеристика. формулы

 Цель – систематизировать и обобщить сведения о преобразовании выражений и решении уравнений с одним неизвестным, полученные учащимися в курсе математики 5,6 классов.

Знать какие числа являются целыми, дробными, рациональными, положительными, отрицательными и др.; свойства действий над числами; знать и понимать термины «числовое выражение», «выражение с переменными», «значение выражения», тождество, «тождественные преобразования».

Уметь осуществлять в буквенных выражениях числовые подстановки и выполнять соответствующие вычисления; сравнивать значения буквенных выражений при заданных значениях входящих в них переменных; применять свойства действий над числами при нахождении значений числовых выражений.

2. Функции (14 ч)

Функция, область определения функции, Способы задания функции. График функции. Функция  y=kx+b и её график. Функция y=kx и её график.

Цель – познакомить  учащихся с основными функциональными понятиями и с графиками функций y=kx+b,  y=kx.

Знать определения функции, области определения функции, области значений, что такое аргумент, какая переменная называется зависимой, какая независимой; понимать, что функция – это математическая модель, позволяющая описывать и изучать разнообразные зависимости между реальными величинами, что конкретные типы функций (прямая и обратная пропорциональности, линейная) описывают большое разнообразие реальных зависимостей.

Уметь правильно употреблять функциональную терминологию (значение функции, аргумент, график функции, область определение, область значений), понимать ее в тексте, в речи учителя, в формулировке задач; находить значения функций, заданных формулой, таблицей, графиком; решать обратную задачу; строить графики линейной функции, прямой и обратной пропорциональности; интерпретировать в несложных случаях графики реальных зависимостей между величинами, отвечая на поставленные вопросы

3. Степень с натуральным показателем ( 15 ч)

Степень с натуральным показателем и её свойства. Одночлен. Функции y=x2, y=x3, и их графики.

Цель – выработать умение выполнять действия над степенями с натуральными показателями.

Знать определение степени, одночлена, многочлена; свойства степени с натуральным показателем, свойства функций у=х2, у=х3.

Уметь находить значения функций, заданных формулой, таблицей, графиком; решать обратную задачу; строить графики функций у=х2, у=х3; выполнять действия со степенями с натуральным показателем; преобразовывать выражения, содержащие степени с натуральным показателем; приводить одночлен к стандартному виду.

4. Многочлены  (20 ч)

Многочлен. Сложение, вычитание и умножение многочленов. Разложение многочлена на множители.

Цель – выработать умение выполнять сложение, вычитание, умножение многочленов и разложение многочленов на множители.

Знать определение многочлена, понимать формулировку заданий: «упростить выражение», «разложить на множители».

Уметь приводить многочлен к стандартному виду, выполнять действия с одночленом и многочленом; выполнять разложение многочлена вынесением общего множителя за скобки; умножать многочлен на многочлен, раскладывать многочлен на множители способом группировки, доказывать тождества.

5. Формулы сокращённого умножения  (20 ч)

Формулы . Применение формул сокращённого умножения к разложению на множители.

Цель – выработать умение применять в несложных случаях формулы сокращённого умножения для преобразования целых выражений в многочлены и для разложения многочленов на множители.

Знать формулы сокращенного умножения: квадратов суммы и разности двух выражений; различные способы разложения многочленов на множители.

Уметь читать формулы сокращенного умножения, выполнять преобразование выражений применением формул сокращенного умножения: квадрата суммы и разности двух выражение, умножения разности двух выражений на их сумму;  выполнять разложение разности квадратов двух выражений на множители; применять различные способы разложения многочленов на множители; преобразовывать целые выражения; применять преобразование целых выражений при решении задач.

6. Системы линейных уравнений  (19 ч)

Система уравнений с двумя переменными. Решение систем двух линейных уравнений с двумя переменными. Решение задач методом составления систем уравнений..

Цель – познакомить учащихся со способами решения систем линейных уравнений с двумя переменными, выработать умение решать системы уравнений и прменять их при решении текстовых задач.

Знать, что такое линейное уравнение с двумя переменными, система уравнений,  знать различные способы решения систем уравнений с двумя переменными: способ подстановки, способ сложения; понимать, что уравнение – это математический аппарат решения разнообразных задач из математики, смежных областей знаний, практики.

Уметь правильно употреблять термины: «уравнение с двумя переменными», «система»; понимать их в тексте, в речи учителя, понимать формулировку задачи «решить систему  уравнений с двумя переменными»; строить некоторые графики уравнения с двумя переменными;  решать системы уравнений с двумя переменными различными способами.

7. Повторение. Решение задач  ( 8 ч)

Закрепление знаний, умений и навыков, полученных на уроках по данным темам (курс алгебры 7 класса).

В результате изучения курса  алгебры 7 класса учащиеся должны:

Знать

  • какие числа являются целыми, дробными, рациональными, положительными, отрицательными и др.; свойства действий над числами; знать и понимать термины «числовое выражение», «выражение с переменными», «значение выражения», тождество, «тождественные преобразования».
  • что называется линейным уравнением с одной переменной, что значит решить уравнение, что такое корни уравнения.
  • определения функции, области определения функции, области значений, что такое аргумент, какая переменная называется зависимой, какая независимой; понимать, что функция – это математическая модель, позволяющая описывать и изучать разнообразные зависимости между реальными величинами, что конкретные типы функций (прямая и обратная пропорциональности, линейная) описывают большое разнообразие реальных зависимостей.
  • определение степени, одночлена, многочлена; свойства степени с натуральным показателем, свойства функций у=х2, у=х3.
  • определения абсолютной и относительной погрешностей;
  • определение многочлена, понимать формулировку заданий: «упростить выражение», «разложить на множители».
  • формулы сокращенного умножения: квадратов суммы и разности двух выражений.
  • различные способы разложения многочленов на множители.
  • , что такое линейное уравнение с двумя переменными, система уравнений,  
  •  различные способы решения систем уравнений с двумя переменными: способ подстановки, способ сложения;  

Уметь 

  • осуществлять в буквенных выражениях числовые подстановки и выполнять соответствующие вычисления; сравнивать значения буквенных выражений при заданных значениях входящих в них переменных; применять свойства действий над числами при нахождении значений числовых выражений.
  • применять изученную теорию при  тождественных преобразованиях выражений.
  • решать линейные уравнения с одной переменной, а также сводящиеся к ним; правильно употреблять термины «уравнение», «корень уравнения», понимать их в тексте и в речи учителя, понимать формулировку задачи «решить уравнение»»; решать текстовые задачи с помощью составления линейных уравнений с одной переменной.
  • применять изученную теорию при решении уравнений с одной переменной, решать задачи с помощью уравнений.
  • правильно употреблять функциональную терминологию (значение функции, аргумент, график функции, область определение, область значений), понимать ее в тексте, в речи учителя, в формулировке задач; находить значения функций, заданных формулой, таблицей, графиком; решать обратную задачу; строить графики линейной функции, прямой и обратной пропорциональности; интерпретировать в несложных случаях графики реальных зависимостей между
  • применять изученную теорию при выполнении письменных заданий, строить графики.
  • находить значения функций, заданных формулой, таблицей, графиком; решать обратную задачу; строить графики функций у=х2, у=х3;
  • выполнять действия со степенями с натуральным показателем; преобразовывать выражения, содержащие степени с натуральным показателем; приводить одночлен к стандартному виду.
  • применять изученную теорию при построение графиков функций  у=х2, у=х3, упрощать выражения, содержащие степени с натуральным показателем.
  • приводить многочлен к стандартному виду, выполнять действия с одночленом и многочленом; выполнять разложение многочлена вынесением общего множителя за скобки.
  • умножать многочлен на многочлен, раскладывать многочлен на множители способом группировки, доказывать тождества.
  • читать формулы сокращенного умножения, выполнять преобразование выражений применением формул сокращенного умножения: квадрата суммы и разности двух выражение, умножения разности двух выражений на их сумму;  выполнять разложение разности квадратов двух выражений на множители.
  • применять различные способы разложения многочленов на множители; преобразовывать целые выражения; применять преобразование целых выражений при решении задач.
  • применять изученную теорию при выполнении письменных заданий по данной теме.
  • правильно употреблять термины: «уравнение с двумя переменными», «система»; понимать их в тексте, в речи учителя, понимать формулировку задачи «решить систему  уравнений с двумя переменными»; строить некоторые графики уравнения с двумя переменными;  решать системы уравнений с двумя переменными различными способами.
  • применять приобретенные знания, умения и навыки при выполнении письменных заданий.

ПОУРОЧНОЕ ПЛАНИРОВАНИЕ

№ урока

Содержание учебного материала

Примечания

Выражения, тождества, уравнения. (19 часов).

1 – 3

Числовые выражения, п. 1.

4 – 5

Выражения с переменными. Числовые подстановки в выражения с переменными, п. 2.

6 – 7

Сравнение значений выражений, п.3.

8 – 9

Свойства действий над числами, п.4.

10 – 11  

Тождества. Тождественные преобразования выражений, п. 5.,6

12

Контрольная работа № 1.

13

Уравнение с одной переменной и его корни, п.7.

14 – 15

Линейное уравнение с одной переменной, п.8.

16 – 18

Решение текстовых задач методом составления уравнений, п.9.

19

Контрольная работа № 2.

Функции (15 часов).

20 – 22

Что такое функция. Вычисление значений функции, п.10, 11.

23 – 24

График функции, п.12.

25 – 27

Линейная функция, её свойства и график. Функция y = kx + b, п.13.

28 – 29

Прямая пропорциональность. Функция y = kx, её свойства и график, п.14.

30 – 33

Взаимное расположение графиков линейных функций, п.15.

34

Контрольная работа № 3.

Степень с натуральным показателем (18 часов)

35 – 37

Определение степени с натуральным показателем, п. 16.

38 – 39

Свойства степени с натуральным показателем. Умножение и деление степеней, п. 17.

40 – 41

Возведение в степень произведения и степени, п. 18.

42

Одночлен и его стандартный вид, п. 19.

43 – 45

Умножение одночленов. Возведение одночлена в степень, п. 20.

46 – 48

Функции у = х2, у = х3 и их графики, п. 21.

49

Контрольная работа № 4.

50 – 52

Абсолютная и относительная погрешности, п. 22, 23.

Многочлены (20 часов)

53

Многочлен и его стандартный вид, п.24.

54 – 56

Сложение и вычитание многочленов, п 25.

57 – 59

Умножение одночлена на многочлен, п.26.

60 – 62

Вынесение общего множителя за скобки, п. 27.

63

Контрольная работа № 5.

64 – 66

Умножение многочлена на многочлен, п.28.

67 – 69

Разложение многочлена на множители способом группировки, п.29.

70 – 71

Доказательство тождеств, п.30.

72

Контрольная работа № 6.

Формулы сокращенного умножения. (20 часов).

73 – 74

Возведение в квадрат суммы и разности двух выражений, п.31.

75 – 76

Разложение на множители с помощью формул квадрата суммы и квадрата разности, п.32.

77 – 78

Умножение разности двух выражений на их сумму, п.33.

79 – 81

Разложение разности квадратов на множители, п.34.

82

Контрольная работа № 7.

83 – 84

Разложение на множители суммы и разности кубов, п.35.

85 – 86

Преобразование целого выражения в многочлен, п.36.

87 – 89

Применение различных способов для разложения на множители, п.37.

90 – 91

Применение преобразований целых выражений, п.38.

92

Контрольная работа № 8.

Системы линейных уравнений (19 часов).

93 – 94

Линейное уравнение с двумя переменными, п. 39

95 – 96

График линейного уравнения с двумя переменными, п. 40.

97 – 99

Системы линейных уравнений с двумя переменными. Графическая интерпретация решения систем уравнений с двумя переменными, п.41.

100 – 102

Способ подстановки, п.42.

103 – 105

Способ сложения, п.43.

106 – 110

Решение задач с помощью систем уравнений, п.44.

111

Контрольная работа № 9.

112 – 120

Обобщающее итоговое повторение курса. (9 часов)

Контрольная работа № 10 (итоговая).


ЛИТЕРАТУРА ДЛЯ УЧИТЕЛЯ.

  1. Алгебра: Учеб. для 7 кл. общеобразоват. учреждений / Ю. Н, Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; Под ред. С. А. Теляковского. – 15-е изд., дораб – М.: Просвещение, 2009. – 272 с.: ил.
  2. Уроки алгебры в 7 классе. / В.И. Жохов, Л.Б. Крайнева. Пособие для учителей. / М.: Вербум – М, 2000. – 96 с.
  3. Дидактические материалы по алгебре.7 класс. / Ю.Н. Макарычев, Н.Г. Миндюк, Л.М. Короткова. / М: Просвещение, 2009 – 160с.
  4. Разноуровневые дидактические материалы по алгебре. 7 класс. / Н.Г. Миндюк, М.Б. Миндюк. / М.: Генжер, 1999. – 95 с.
  5. Математика в таблицах. 5-11 классы. Справочные материалы.-Москва  «АСТ.
  6. Астрель» 2004
  7. 6. .  Дидактические материалы по алгебре для 7 класса.      Л.И. Звавич, Л.В. Кузнецова, С.Б. Суворова-Москва «Просвещение» 2001
  8. 7.  Контрольные и зачетные работы по алгебре.  7 класс.    П.И. Алтынов-Москва «Экзамен»
  9. 2007
  10. Тесты по алгебре. 7  класс.  П.И. Алтынов-Москва «Экзамен» 2008
  11. Контрольные и проверочные работы по алгебре. 7 класс.  Л.И. Звавич, Л.Я. Шляпочник,
  12. Б.В. Козулин-Москва «Дрофа»  2005
  13. Программы для общеобразовательных школ, гимназий, лицеев: Математика, 5 – 11 кл. / Сост.  Г.М. Кузнецова,  Н.Г. Миндюк. / 4-е изд., стереотип.  М.: Дрофа, 2004. – 320 с
  14. Программы общеобразовательных учреждений Алгебра 7 – 9 классы. М:- Просвещение 2008 г..

ЛИТЕРАТУРА ДЛЯ УЧАЩИХСЯ.

  1. Алгебра: Учеб. для 7 кл. общеобразоват. учреждений / Ю. Н, Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; Под ред. С. А. Теляковского. – 15-е изд., дораб – М.: Просвещение, 2009. – 272 с.: ил.
  2. Алгебра: 7-8 класс Подготовка к итоговой аттестации  - 2009: Учебно – методическое пособие под редакцией Ф. Ф. Лысенко. Ростов – на – дону; «Легион», 2008. 256с («Итоговая аттестация»)
  3. Математика: Справ. Материалы; Кн. Для учащихся/ Гусев В. А.., Мордкович А. Г.- М.: Просвещение, 1988. – 416 с.: ил.
  4. Математика в таблицах. 5-11 классы. Справочные материалы.-Москва  «АСТ.                             Астрель» 2004

ОБРАЗОВАТЕЛЬНЫЕ ДИСКИ.

  1. Математика 5 – 11 классы. Практикум. Под редакцией Дубровского. НФПК 2004 год.
  2. Алгебра 7 – 9 классы. Дидактический и раздаточный материал. Под редакцией Афанасьевой Т. Л. Изд. «Учитель». 2009.
  3. Математика 5 – 11 классы. Практикум. Дрофа. 2004.
  4. Электронный учебник – справочник Алгебра 7 – 11 класс. ЗАО «Кудиц» 2000 г.
  5. «Живая школа» Живая геометрия. Виртуальная лаборатория.  Институт новых технологических образований.
  6. Уроки алгебры Кирилла и Мефодия. 7 – 8 классы. Виртуальная школа Кирилла и Мефодия. ООО «Кирилл и Мефодий» 2004г


По теме: методические разработки, презентации и конспекты

Рабочая программа по алгебре. 7 класс. Макарычев Ю. Н. Алгебра: учебник для 7 класса общеобразовательных учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова; под ред. С. А. Теляковского. - М.: Просвещение, 2010.

Рабочая программа по алгебре. 7 класс. Макарычев Ю. Н. Алгебра: учебник для 7 класса общеобразовательных учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова; под ред. С. А. Т...

Рабочие программы по алгебре 8 класс,автор Ю.Н.Макарычев под редакцией Теляковского и по алгебре и началам математического анализа 11 класс, под редакцией А.Н.Колмогорова

Рабочая программа по алгебре 8 класс, автор Ю.Н.Макарычев под редакцией С.А.Теляковского на 2012-2013 уч.годРабочая программа по алгебре и началам анализа 11 класс под редакцией А.Н.Колмогорова на 201...

Рабочая программа по алгебре 7 класс к учебнику "Алгебра 7", авторы Макарычев и другие, под редакцией Теляковского

Рабочаяпрограмма содержит подробное календарно-тематическое планирование по учебнику "Алгебра 7", авторы Макарычев и другие, под редакцией Теляковского 2011года выпуска...

Рабочая программа по алгебре 7 класс .Учебник "Алгебра 7 класс" под редакцией С.А. Теляковского

Рабочая программа содержит пояснительную записку и календарно-тематическое планирование (з часа в неделю)....

Рабочая программа по алгебре 8 класс к учебнику "Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А.Г. Мордкович. – М.: Мнемозина, 2015год."

1. Титульный лист.2.Личностные, метапредметные и предметные результаты освоения обучающимися учебного предмета «Алгебра 8 » на базовом и повышенном уровнях.3. Содержание учебного...

Рабочая программа по алгебре 7 класс к учебнику "Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А.Г. Мордкович. – М.: Мнемозина, 2015год."

Настоящая рабочая программа по алгебре для 7б класса  разработана на основе Федерального государственного образовательного стандарта основного общего образования (утверждён приказом Министерства ...

Рабочая программа по алгебре 7 класс ФГОС к учебнику «Алгебра. 7 класс» А. Г. Мерзляк, В. Б. Полонский, М. С. Якир.

Рабочая программа по алгебре содержит в себе цели, задачи предмета на данном этапе изучения. Включает в себя календарный график и тематическое планирование. Рассчитана на 3 урока в неделю, то есть 102...