урок математики на тему "Решение задач на растворы, смеси, сплавы" "
методическая разработка по алгебре (8 класс) по теме

урок решения практико-ориентированных задач для обучающихся 9 класса

Скачать:

ВложениеРазмер
Microsoft Office document icon plan_uroka.doc56 КБ

Предварительный просмотр:

Муниципальное бюджетное общеобразовательное учреждение

гимназия №19 им. Н.З. Поповичевой

г.Липецка

Решение задач на растворы, смеси, сплавы

Урок алгебры в 8 классе.

Учитель: Алябьева Е.А. (высшая категория).

Тема урока: «Решение задач на растворы, смеси, сплавы»

«В задачах, которые ставит перед нами жизнь, экзаменатором является сама природа»

У. Сойер

Тип урока. Комбинированный.

Формы организации учебной деятельности: фронтальная, индивидуальная, групповая (парная).

Методы организации учебной деятельности: словесный, наглядный, проблемный.

Цели урока.

Образовательные.

 Проверить и закрепить умения и навыки в решении задач на растворы, смеси, сплавы.

 Познакомить с нестандартным способом решения задач на смешивание двух растворов разной концентрации.

Развивающие.

 Развитие интереса к предмету.

 Активизация мыслительной деятельности.

 Развитие научного мировоззрения, творческого мышления посредством создания проблемной ситуации.

Воспитательные.

Формирование навыков решения практических задач, используя математические знания.

Выработка внимания.

 

Оборудование: таблица 1 основных формул , таблица 2 к решению задачи на определение отношения смешиваемых растворов, проектор,

раздаточный материал – анкеты рефлексии.

Ход урока.

1.  Организационно-мотивационный момент.

   

Учитель объявляет тему и цели урока.

Тема сегодняшнего урока «Задачи на растворы, смеси, сплавы». Вы уже знакомы с этими задачами, умеете решать многие из них, но сегодняшний урок необычный, потому что сегодня мы будем решать задачи на растворы, смеси, сплавы, которые ставит перед нами жизнь – практические задачи (прочесть эпиграф к уроку). Для решения этих задач вам необходимо будет сначала правильно сформулировать жизненную проблему как математическую задачу, а уже затем решить ее. Но так ли уж часто мы сталкиваемся с задачами на заданную тему в повседневной жизни? Чтобы ответить на этот вопрос, давайте представим один день обычной домохозяйки, назовем ее условно Хозяйка, и поможем ей решить все возникающие у нее проблемы.

2. Актуализация опорных знаний .

Контрольные вопросы фронтального опроса:

1. Какие типы задач на растворы, смеси, сплавы вы знаете?

2. Перечислите основные этапы решения задач на растворы, смеси, сплавы.                                    

3. Какие величины обозначены: M, m, k ?

4. Назовите формулы для вычисления M, m, k –таблица 1(см. Приложение 1).

3. Решение задач.

3.1 Задача на соединение растворов, разбавление раствора.

(учащиеся знакомы с этими типами задач и умеют решать их по известному алгоритму)

Учитель: Итак, вернемся к нашей Хозяйке. День, о котором идет речь, случился в августе. С раннего утра Хозяйка решила заняться консервированием овощей.

Проблема 1 :

По рецепту Хозяйке  было необходимо 300 г 12% раствора уксусной кислоты. Но у нее было лишь 200г 96% уксусной эссенции и 100г 6% раствора столового уксуса. Помогите Хозяйке решить  эту проблему.

1.1.Математическая постановка задачи(задача на соединение растворов).

Сколько граммов 96% и 6% растворов уксусной кислоты необходимо соединить, чтобы получить 300г 12% раствора уксусной кислоты, если известно, что 96% раствора было 200г, а 6% – 100г?

1.2.Самостоятельное решение задачи.

1.3.Самопроверка результатов с обсуждением и анализом полученного ответа.

Учитель: Такой способ решения проблемы не дал нужного результата, так как соединив растворы уксусной кислоты указанных концентраций невозможно получить раствор 12% . Есть ли другой способ решения этой задачи? Какой? Измените математическую  постановку задачи.

1.1.1Математическая постановка задачи (задача на разбавление раствора).

Сколько граммов воды нужно добавить к 200 г 96% раствора уксусной кислоты, чтобы получить 300г 12% раствора уксусной кислоты?

1.1.2.Самостоятельное решение задачи.

1.1.3.Взаимопроверка результатов с использованием готового решения на экране.

Учитель: Можно ли получить 12% раствор уксусной кислоты, смешав 6% раствор этой кислоты и воду?

3.2 Задача на нахождение пропорций смешиваемых растворов, сплавов.

(Новый для учащихся тип задач)

Учитель: После того, как консервирование было закончено, Хозяйка отправилась в салон красоты, где ей пришлось оказать помощь в решении новой проблемы.

Проблема 2:

Стилист попросил Хозяйку помочь ему решить следующую задачу: у нас в салоне имеется два раствора перекиси водорода  30% и 3% . Нужно их смешать так, чтобы получился 12% раствор. Не поможете ли нам подыскать правильную пропорцию?

 2.1.Математическая постановка задачи

В каком отношении нужно смешать 30% и 3% растворы перекиси водорода, чтобы получить 12% раствор?

2.2.Обсуждение способа решения.

2.3.Запись решения на доске(один из учеников).

Учитель: Хозяйка решила эту проблему гораздо быстрее вас – всего за 1 минуту (демонстрация решения на доске):

I  раствор:    30                    9

                                  12                                

II раствор:      3                   18

Учитель: Можно ли данный способ использовать для решения задач на нахождение пропорций смешиваемых растворов? Обоснуйте данный способ решения. Используйте для обоснования  Таблицу 2 (см. Приложение 2).

3.3  Закрепление решения нового типа задач.

(учащиеся познакомились  с новым  типом задач и умеют решать их по известной схеме)

Проблема 3 :

Из салона красоты Хозяйка отправилась к ювелиру, взяв с собой украшения из золота 375 и  750 пробы, и попросила ювелира изготовить ей кольцо 500 пробы. Помогите ювелиру определить пропорцию, в которой нужно соединить сплавы.

Повторить понятие «проба» (процентное содержание золота в 1000г сплава).

3.1.Математическая постановка задачи

Имеется два сплава золота с медью. Содержание золота в первом сплаве 37,5%, а во втором 75%. В каком отношении необходимо взять эти сплавы, чтобы содержание золота в новом сплаве было равно 50%?

3.2.Обсуждение способа решения.

3.3.Самостоятельное решение задачи.

4. Самостоятельная работа(задача от Хозяйки).

Имеется 90 г 80% уксусной кислоты. Какое наибольшее количество 9% столового уксуса из нее можно получить?

5. Подведение итогов урока.

         

Учитель: Решение каких типов задач на растворы, смеси, сплавы повторили на уроке?

Что нового узнали на уроке?

Ответьте на вопросы анкеты (см. Приложение 3).

6. Домашнее задание.

Составить и решить двумя способами задачу на определение пропорций смешиваемых растворов (сплавов).

Приложение 1.

Таблица 1.


M – масса всего раствора (сплава)      



m – масса растворенного вещества    



 k – концентрация раствора                    






           

    Приложение 2.

Таблица 2.


I  раствор(х):    a                    b –c



                                     



                                      c                                                                        



                       



II раствор(у):     b                   с– а






Приложение 3.

Анкета.

1. Испытывали ли вы затруднения при решении задач на растворы, смеси, сплавы?

а) да, решение задач на эту тему вызвало очень большие затруднения;

б) да, при решении некоторых задач;

в) нет.

2. Какой из уроков по теме понравился больше остальных и почему?

____________________________________________________________________________________________________________________________________________________________________________________________________________________________________

3. По пятибалльной системе оцените уровень ваших знаний по этой теме.

_________________________________________________________

4. Считаете ли вы, что умение решать задачи по этой теме пригодится вам в жизни:

а) да;

б) нет,

в) затрудняюсь ответить.


По теме: методические разработки, презентации и конспекты

Табличный метод решения задач на концентрацию, смеси, сплавы

При решении большинства задач  на концентрацию, смеси и сплавы, с моей точки зрения, удобнее использовать таблицу, которая нагляднее и короче обычной записи с пояснениями. Зрительное восприятие о...

Решение задач по теме растворы, смеси. сплавы.

Человеку часто приходится смешивать различные жидкости, порошки, вещества или разбавлять что-либо водой.    Самый известный и главный сплав в истории цивилизации – это всем известная ст...

Задачи на растворы, смеси, сплавы

Продукт знакомит с системой подготовки учащихся к итоговой аттестации: решение задач «химического» характера математическими методами, что значительно повышает качество подготовки к ГИА по математике ...

Раздаточный материал по теме "Задачи на растворы, смеси и сплавы"

Обобщение и распространение педагогического опыта....

Математический тренажёр по теме: «Задачи на растворы и сплавы»

Метапредметные связи между математикой и химией...

Интегрированный урок по химии и математике "Решение задач на растворы и сплавы при подготовке к ОГЭ"

Интегрированный урок по химии и математике по решению расчетных задач для 9 класса.Цель урока: Рассмотрение   алгоритма  решения  задач  на  смес...

Бинарный урок математики и химии по решению прикладных задач ЕГЭ по теме: «Растворы, смеси, сплавы»

Бинарный урокматематики и химиипо решению прикладных задач ЕГЭ по теме:«Растворы, смеси, сплавы»...