Арифметическая и геометрическая прогрессии.
презентация к уроку по алгебре (9 класс) по теме

Материал для подготовки к государственной итоговой аттестации по математике учащихся 9 класса.

Скачать:

Предварительный просмотр:


Подписи к слайдам:

Слайд 1

Арифметическая и геометрическая прогрессии. Выполнила учитель математики МОУ «СОШ №17 г.Вольска Саратовской области» Сметанина Татьяна Евгеньевна г.Вольск

Слайд 2

Арифметическая прогрессия a 1 , a 2 , a 3 , ... Геометрическая прогрессия b 1 , b 2 , b 3 , ... Определения Геометрической прогрессией называется числовая последовательность , первый член которой отличен от нуля и каждый член, начиная со второго, равен предыдущему, умноженному на одно и то же не равное нулю число. b n+ 1 = qb n , n = 1, 2, ..., q ≠ 0, b1 ≠ 0; q – знаменатель прогрессии Арифметической прогрессией называется числовая последовательность , каждый член которой, начиная со второго, равен предыдущему , сложенному с одним и тем же числом. a n + 1 = a n + d , n = 1, 2, ..., d – разность прогрессии Формулы общего члена a n = a 1 + d · ( n – 1), n = 1, 2, ... b n = b 1 · q n – 1 , n = 1, 2, ... Характеристическое свойство a n –1 , a n , a n+1 – последовательные члены арифметической прогрессии тогда и только тогда, когда ( среднее арифметическое) b n –1 , b n , b n+1 ( b n > 0) – последовательные члены геометрической прогрессии тогда и только тогда, когда (среднее геометрическое)

Слайд 3

Формулы суммы n первых членов Арифметической Геометрической прогрессии прогрессии

Слайд 4

Задача №1 Четвёртый член арифметической прогрессии равен 4,5, а её двенадцатый член равен -12. Найдите двадцатый член этой прогрессии.

Слайд 5

Решение I способ Воспользуемся формулой п -го члена арифметической прогрессии а п = а 1 + d(n – 1) и выразим данные члены прогрессии a 4 = а 1 + 3d , a 12 = =а 1 + 11d . Составим и решим систему уравнений: а 1 + 11d = 4,5, а 1 + 3d = - 12; -8 d = 16,5, 8d = - 16,5 Заметим, что а 20 = a 12 + 8 d , а 20 = - 12 – 16,5 , а 20 = - 28,5 II способ Заметим , что a 12 = а 4 + 8d , a 20 = а 12 + 8d . Найдём 8d. 8d = a 12 – a 4 = – 12 – 4,5 = – 16,5 а 20 = a 12 + 8 d = – 12 – 16,5 = – 28,5 Ответ. – 28,5

Слайд 6

ЗАДАЧА №2 В геометрической прогрессии b 12 = 3 15 и b 14 = 3 17 . Найдите b 1 .

Слайд 7

Решение По определению геометрической прогрессии b 14 = b 12 · q 2 По формуле п-го члена геометрической прогрессии b n = b 1 · q n – 1 Если q = - 3, то Если q = 3, то Ответ. – 81 или 81

Слайд 8

Задача № 3 В арифметической прогрессии a 5 = - 150, a 6 = - 147 . Найдите номер первого положительного члена этой прогрессии

Слайд 9

Решение По определению арифметической прогрессии a 6 = a 5 + d, d = a 6 – a 5, d = – 147 – (–150), d = 3 По формуле п-го члена арифметической прогрессии а п = а 1 + d(n – 1) , a 5 = a 1 + 4d, a 1 = a 5 – 4d, a 1 = – 150 – 12, a 1 = – 162 . Так как a n > 0 , то а 1 + d(n – 1) > 0, значит, – 162 + 3( n – 1) > 0, – 162 + 3 n – 3 > 0, 3 n > 165, n > 55, n = 56. Ответ. Первый положительный член этой прогрессии стоит на 56 месте.

Слайд 10

Задача №4 Существует ли геометрическая прогрессия, в которой b 2 = - 6, b 5 = 48 и b 7 = 192

Слайд 11

Решение По определению геометрической прогрессии b 5 = b 2 · q 3 b 7 = b 5 · q 2 , b 7 = 48 · 4 = 192. Ответ. Существует.

Слайд 12

Задача № 5 Найдите сумму всех натуральных чисел, не превосходящих 160, которые не делятся на 4.

Слайд 13

Решение 1. Найдём сумму всех натуральных чисел, не превосходящих 160. 1, 2, 3, … - арифметическая прогрессия, в которой a 1 = 1, d =1, a 160 = 160 . Воспользуемся формулой . 2. Найдём сумму всех натуральных чисел, кратных 4 и не превосходящих 160. последовательность ( с n ) чисел, кратных 4, задаётся формулой c n = 4n . ( c n ) - арифметическая прогрессия, в которой c 1 = 4 , d = 4 , c n = 160 , n = 160 : 4. n = 40. 3. Найдём сумму всех натуральных чисел, не превосходящих 160, которые не делятся на 4. Эта сумма равна сумме всех натуральных чисел, не превосходящих 160, без суммы натуральных чисел, кратных 4, т.е. 12 880 – 3280 = 9600. Ответ. Сумма всех натуральных чисел, не превосходящих 160, которые не делятся на 4, равна 9600.

Слайд 14

Задача № 6 В геометрической прогрессии сумма первого и второго членов равна 132, а сумма второго и третьего членов равна 110. Найдите первые три члена этой прогрессии.

Слайд 15

Решение По характеристическому свойству геометрической прогрессии По условию задачи b 1 + b 2 = 132, b 1 = 132 – b 2 , b 2 + b 3 = 110 , b 3 = 110 – b 2 . Перемножив уравнения, получим b 1 · b 3 = (132 – b 2 )( 110 – b 2 ) . Полученное уравнение перепишем в виде: 132 b 2 + 110 b 2 = 14520 , 242 b 2 = 14520 , b 2 = 60 . Тогда b 1 = 132 – 60 = 72, b 3 = 110 – 60 = 50. Ответ. 72, 60, 50

Слайд 16

Предостережение. 74% всех участников экзамена не приступали или не смогли решить это задание (наивысший балл получили 23% участников экзамена). Записав в ответ только два члена прогрессии, можно потерять один балл. Обратите внимание на критерии проверки: одна арифметическая ошибка – потеря одного балла, а две и более арифметических ошибок – потеря всех баллов за это задание

Слайд 17

Задача № 7 Последовательность ( a n ) – арифметическая прогрессия. Известно, что а 5 + а 9 = 40 . Найдите а 3 + а 7 + а 11 .

Слайд 18

Задача № 8 Сумма третьего и тринадцатого членов арифметической прогрессии равна 11. Найдите сумму первых пятнадцати её членов

Слайд 19

Задача № 9 Сумма первых пяти членов арифметической прогрессии на 200 больше суммы следующих её членов. На сколько сумма первых десяти членов этой прогрессии больше суммы следующих десяти её членов?

Слайд 20

Задача № 10 Числа являются четвёртым и седьмым членами геометрической прогрессии Найдите сумму четвёртого и десятого членов этой прогрессии .

Слайд 21

Совет Формулы арифметической и геометрической прогрессий, используемые для решения, обязательно записывайте и в бланке, и на черновике. Закончив решение, запишите ответ, перечитав вопрос задания. Если останется время, проверьте ещё раз, что полученные числа образуют арифметическую или геометрическую прогрессии, удовлетворяющие условию задачи.

Слайд 22

Спасибо за внимание!


По теме: методические разработки, презентации и конспекты

Обобщающий урок по теме "Арифметическая и геометрическая прогрессии" в 9 классе

В презентации содержатся материалы к обобщающему уроку по алгебре в 9 классе по теме "Арифметическая и геометрическая прогрессии" ....

Комбинированные задачи для арифметической и геометрической прогрессий.

План урока по комбинированным задачам, содержит: теоретический опрос, опрос анологичный международным тестам PIZA, задачи, домашнее задание....

Комбинированные задачи для арифметической и геометрической прогрессий.

План урока по комбинированным задачам, содержит: теоретический опрос, опрос анологичный международным тестам PIZA, задачи, домашнее задание....

Методическая разработка урока математики в 9 классе по теме «Арифметическая и геометрическая прогрессии».

Цель урока: формирование учебно-познавательных, информационных, коммуникативных  компетенцийЗадачи урока:дидактические: систематизировать знания по теме арифметическая и геометрическая прог...

Презентация и конспект урока на тему" Определение арифметической и геометрической прогрессий. Формулы n-го члена арифметической и геометрической прогрессий"

В технологии УДЕ (укрупненная дидактическая единица) при обучении математике одним из основных элементов является совместное и одновременное изучение родственных разделов. Арифметическая и геометричес...

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА на высшую категорию Тема: развитие способности учащихся самостоятельно достигать поставленной цели в контексте модульного обучения на примере темы « арифметическая и геометрическая прогрессии»

Цель данной работы: теоретически обосновать и продемонстрировать  как происходит формирование и развитие способности учащихся самостоятельно достигать поставленной цели в рамках модульного ...

Урок повторения, обобщения и систематизации знаний по математике в 9 кл. " Арифметическая и геометрическая прогрессии"

Урок повторения, обобщения и систематизации знаний по математике в 9 классе по теме " Арифметическая и геометрическая прогрессии"  направлен на  обобщение и систематизацию знаний ...