Самообразовательная деятельность
материал по теме

"Развитие способности к самообразованию как условие повышения нового качества образования" 

Скачать:

ВложениеРазмер
Microsoft Office document icon metodicheskiy_sovet.doc61 КБ
Office presentation icon tema_samoobrazovaniya_-_kopiya_2.ppt973.5 КБ

Предварительный просмотр:

Методический совет

по теме

«Развитие способности к самообразованию как условие повышения нового качества образования»

                                                                              учитель математики                                                                       Ι квалификационной категории

                                               муниципального общеобразовательного учреждения «Гимназия №3»

Горшкова   Гузель Мингалеевна

                                                   

 «Если учитель соединяет в себе любовь

                                                                        к делу и ученикам, то он совершенный учитель»

                                                                                                                                     Лев Толстой.

Я – учитель. Значит, я должна отлично владеть предметом, культурой общения, обладать профессиональной требовательностью к себе, обладать методическим мастерством и современными технологиями.

От качества моей работы, от профессиональных знаний зависит  успешность ученика в учебе, самореализация, стремление к познанию, желание учиться на протяжении  всей жизни.

Формула моей педагогической деятельности: «Я хочу учить, дети – учиться». Я радуюсь, когда мои ученики задают себе и мне вопрос «Почему?». Для меня это значит, что ученик достиг высшего интереса -  интереса познания.

Учиться -  трудно. Я не могу сделать этот труд легким, но могу сделать его интересным. Чем интереснее для ребенка учебный материал, тем легче он усваивается им и тем лучше запоминается. Если успешность зависит от интереса, то чем же определяется сам интерес? Нередко интересы связываются эмоциями. То, что интересует моих учеников, не так уж трудно понять. Это можно выяснить  прямо – спросив его, но лучше всего – создать такую атмосферу доверия и творчества, в которой интересы проявятся естественным образом. Нужно, чтобы ребенок понимал, почему, зачем надо учиться. Нужно воспитывать у него требуемое отношение к учению: учиться надо для того, чтобы стать полноценным членом общества, учиться – долг ребенка. «Науку, - писал Герцен, - надобно прожить, чтобы неформально усвоить ее». А знания должны  соответствовать  требованиям государства, общества и самой личности обучаемого.

Ушинский писал, что «недостаточно понять слова, недостаточно понять даже мысли и чувства, в них заключенные; нужно, чтобы эти мысли и эти чувства стали внутренне определяющими личность».

Ведущей идеей моего педагогического опыта является создание условий для повышения качества знаний по математике: в процессе обучения, в организации внеурочной деятельности, в развитии творческих, исследовательских способностей учащихся. «Настоящее образование, - писал Добролюбов, это такое образование, которое заставляет определить свое отношение ко всему окружающему».

Я работаю над темой самообразования  «Формирование аналитического мышления у учащихся при решении задач повышенной сложности  как средство успешной социализации личности».

Одним из главных направлений моей системы работы является развитие логического мышления, вычислительной культуры и творческих способностей учащихся.  Организую, деятельность учащихся в различных режимах, требующие нестандартного подхода, организую, индивидуальные занятия с учащимися, применяю новые формы обучения, которые дают «новое качество» образования.

Для повышения заинтересованности к изучению математике с учащимися 5-11 классов с большой любовью и желанием я веду внеурочные занятия, а с одаренными детьми веду кружок «Вариант».

 Цель кружка – решение задач, вооружение учащихся методами решения задач по математике. Поэтому занятие кружка посещают учащиеся, располагающие некоторым запасом прочности знаний, а также учащиеся, заинтересованные в получении хороших результатов в обучении и на  государственных итоговых аттестациях.

Решение задач – практическое искусство, подобное фехтованию, прыжкам в высоту, игре на фортепиано. Научиться ему можно, только подражая хорошим образцам и постоянно практикуясь…

Своих учащихся учу не только получать готовые знания, но и учу учиться, развивая их способности во время уроков и во внеурочное время. Теоретические основы большинства тем кружка относятся к школьной программе. Однако, глубина их проработки, идейная насыщенность задач требует более высокий уровень математического развития учеников, т.е. мы решаем задачи из ЕГЭ, различных конкурсов и интеллектуальных игр.

Олимпиадные задачи проверяют сообразительность, а эти – выучку, поэтому самое лучшее – не рассчитывая на свои способности, все свои «экспромты» подготовить и отработать заранее.

Для качественного осознанного усвоения учащимися знаний, развития самостоятельности, активности и решения проблем подготовки, учащихся к различным формам итоговой аттестации разработала методические принципы решения задач повышенной трудности (конкурсные задачи, задачи ЕГЭ), которые привожу ниже:

1. Принцип регулярности.

Полноценная подготовка – достаточно большое количество часов, посвященных работе над задачей (дома, индивидуально)

2. Принцип параллельности.

Постоянно держать в поле зрения несколько тем, постепенно продвигаясь по ним вперед и вглубь.

3.Принцип опережающей сложности.

Слишком легко и слишком трудно – равно плохо. Желательно прорешивать несколько задач, доступных практически для всех, несколько задач – по силам лишь некоторым, а одну - две, пусть не на много, но превышают возможности даже более подготовленных учеников. Процесс усвоения новых идей будет более эффективным, если ученик потрудился над ее решением, хотя она у него и не получилась. Это развивает такие полезные качества, как сознательность, внутренняя честность, научное честолюбие.

4.Принцип смены приоритетов.

Главная правильная идея решения, которая может быть доведена до числа за разумное время.

5. Принцип вариативности.

Очень полезно на примере одной задачи рассмотреть различные приемы и методы решения, а затем сравнить получившиеся решения с различных точек зрения: стандартность и оригинальность, объем вычислительной и объяснительной работы, эстетическая и практическая ценность.

6.Принцип самоконтроля.

Прощать себе небольшие ошибки, подстраиваться под ответ – большие последствия на экзамене. Регулярный и систематический анализ своих ошибок и неудач должен быть непременным элементом самостоятельной работы.

7. Принцип быстрого повторения.

Время от времени раскладывать решенные задачи по полочкам: эта задача простая – решил без труда, эта задача потруднее – нашел идею, но запутался в вычислениях, помог учитель (товарищ), эту задачу я не решил, объяснил учитель, но не могу восстановить в своей памяти. Надо разобраться в своих записях или спросить учителя (товарища).

8. Принцип работы с текстом.

Учебники не читать, а изучать с карандашом, бумагой и напряжением мысли. Краткие указания в учебнике, логические пробелы, промежуточные вычисления рассмотреть самостоятельно.

9. Принцип моделирования.

Научить моделировать критические ситуации, которые могут возникнуть на экзамене и отрабатывать стереотипы поведения.

     В настоящее время ГИА по математике в 9-х классах, ЕГЭ - в11-ых классах, вступительные экзамены в вузы содержат разнообразные текстовые задачи. Часто уровень сложности этих задач выходит за пределы школьного учебника. В связи с этим возникла необходимость в разработке и проведении кружка, элективных курсов для  всех учащихся выпускных классов.

  1.            «Выражения, уравнения, неравенства, функции, содержащие

                  модуль и параметры» - элективный курс предпрофильной

                  подготовки для  учащихся 9 классов

  1.             «Мир, математика и математики» - элективный курс  профильного обучения для учащихся 10-11 классов».
  2. С целью подготовки  к ГИА и  ЕГЭ вооружаю учащихся методами решения задач с модулями  и параметрами на уроках и на занятиях ДО начиная с 6 класса по авторским программам:  «Модуль и графики», «Модуль и параметр», «Элементарная алгебра в ЕГЭ».

Систематическое  решение задач на уроках, дополнительных занятиях, с учетом нарастания уровня сложности, позволяет обеспечить возможность базовой  подготовки к ЕГЭ учащихся с разным уровнем способностей и продемонстрировать свои достижения. (Успеваемость и качество знаний ЕГЭ и ГИА).

Такая кропотливая работа над решением логических задач дает свои результаты на проверочных работах, тестированиях, олимпиадах, при решении конкурсных задач.

Мои учащиеся с желанием участвуют в математических олимпиадах различных уровней.

Результатом систематической работы является успешное участие учащихся на предметных олимпиадах.

 Мои ученики осознанно познают предмет, многие с большим желанием его изучают и потому в нашей гимназии хорошие показатели успеваемости и качества знаний по математике. (Успеваемость за 3 года)

 Анализирую, обобщаю и распространяю передовой педагогический опыт; систематически повышаю свою профессиональную квалификацию; применяю рациональные приемы поиска, отбора и использования информации; осуществляю научно-исследовательскую и методическую деятельность.  

Многие мои ученики уже испытали радость от осознания причастности к самостоятельным  исследованиям и творчеству. (Темы творческих работ и результаты). Публикация в материалах Фестиваля исследовательских и творческих работ учащихся «Портфолио» (на сайте Фестиваля, на компакт – диске и в сборнике тезисов).

      Не все из моих активистов выберут профессию, связанную с математикой, но я могу гордиться теми, кто изучал математику не только в рамках школьной программы, но и участвовал на олимпиадах, конкурсах, выступал на конференциях, занимал призовые места, и теперь изучает математику в высших учебных заведениях.

Я верю, что настоящих и будущих моих учеников тоже заинтересую математикой.

 Для обобщения и распространения опыта работы, повышения самообразования регулярно участвую в семинарах различного уровня и практических занятиях по подготовке учащихся к ЕГЭ и новым формам аттестации. (Один раз в месяц).

Работаю в составе жюри по проверке олимпиадных работ учащихся 6,7-11 классов.

Выступала на заседаниях секции учителей математики и информатики и ИКТ единого методического дня по теме «Проблемы модернизации математического образования» с докладом «Федеральные государственные стандарты и их выполнение в рабочих программах учителей» (2010г.) и «Исследовательская деятельность учащихся на уроках и внеурочное время» (2011г.)

Я в своей педагогической работе использую новинки методической и учебной литературы и принимаю участие в апробации новых учебников.

 В течение 2006-2007, 2007-2008 учебных годов мы вместе с учащимися 10 и 11 классов участвовали в апробации УМК для профильной школы «Математика-10-11» автора М.И.Башмакова.

Принимала участие в работе Республиканских научно-практических семинаров (3 октября 2007 года, 4 марта 2008 года) по теме: «Научно-методическое сопровождение профильного обучения» (Программы)

Для распространения опыта работы по названному учебнику проводила занятия с учителями математики на курсах тьюторов профильного обучения (2-10 марта 2008 г.)  при ИРО в г. Казань по проблеме «Информационно-методические основы преподавания предметов профильной школе». За участие в работе по апробации УМК по математике получила справку – отзыв ИРО РТ под подписью к.п.н. Галеевой Р.М. зав. лабораторией профильного обучения.

Благодарность от Образовательно - издательского центра «Академия» за активное участие в создании нового поколения УМК для профильных школ.

Выступала на заседаниях муниципального Ресурсного центра по предпрофильной подготовке и профильного обучения.

 Знаниями и опытом необходимо не только делиться, но и оценивать его с позиции стороннего наблюдателя, т.е. участвовать в конкурсах.

Участвовала в республиканском конкурсе «Использование новых информационных технологий в учебном процессе» с тематическим планированием курса «Информационные технологии для 9-10 классов».

Диплом II степени Лауреата II Республиканского конкурса в номинации «За лучшую методику использования ППС»

Российский конкурс научно-исследовательских и творческих работ учащихся «Портфолио», 2007-2008 уч. г.

Диплом за руководство учениками, представившими работу «Модуль и графики»

 2008-2009 уч. г. Участие в фестивале педагогических идей «Открытый урок» издательского дома «Первое сентября» с материалом «Модуль и параметры» (разработка урока-конференции для 8-10 классов)

Диплом участника

Благодарственное письмо. За успешную подготовку учащихся к сдаче ЕГЭ. Премия им. А.Н. Таркаева

2009 г. Почетная грамота Министерства образования и науки РТ

2009-2010 уч. г. Участие в VIII Республиканском конкурсе авторских программ и учебно-методических пособий «50 инновационных идей в образовании» с программой элективного курса предпрофильной подготовки для учащихся 9 классов базового уровня «Выражения, уравнения, неравенства, функции, содержащие модуль».

Участие в Российском конкурсе профессионального мастерства педагогов

«Мой лучший урок» с разработкой урока-конференции для учащихся 8-11 классов

«Функционально-графический подход к решению задач с параметром и модулем»

2010-2011 уч. г. Победитель Республиканского конкурса на соискание гранта

« Наш лучший учитель».

2011-2012 уч. г. Лауреат Всероссийского информационного интернет-портала «Доска почета учителей России».

Участие в Республиканском конкурсе Цифровых образовательных ресурсов (итоги 6 апреля)

                                    Повышение квалификации и обучение

«Учитель – это человек, который учится всю жизнь, только в этом случае он приобретает право учиться» - писал В.М. Лизинский.

Поэтому успехом работы учителя становится его самообразование, целью которого является овладение учителем теоретических сведений о различных методах и формах преподавания. Образование педагога и повышение квалификации – это одно из важнейших условий для повышения и сохранения качества преподавания.

Для роста педагогического мастерства учителя необходимо знакомиться с передовым педагогическим опытом, современными педагогическими технологиями – всё это можно получить на курсах повышения квалификации.

В 2006 году при институте развития образования РТ проходила курсы по теме «Современные педагогические технологии преподавания математики», организованные ИРО РТ. Удостоверение

В 2007 году для совершенствования опыта владения ИКТ проходила курсы «Информационно-коммуникационные технологии, как ресурс педагогической деятельности». Удостоверение

         В 2009-2010 уч. году прохожу дистанционные  курсы по повышению квалификации работника образовательного учреждения по учебному курсу «Текстовые  задачи в школьном курсе математики (5-9-е классы) при Образовательном учреждении Фонд Педагогический университет «Первое сентября». Договор №106559146-11002 на оказание платных образовательных услуг.

В 2011-2012 уч. г. повышала свою квалификацию в Негосударственном образовательном учреждении дополнительного профессионального образования «Институт информационных технологий «АйТи» по программе «Использование ЭОР в процессе обучения в основной школе по математике».

     В 2011 году:

- принимала участие в Республиканском семинаре «Методика подготовки к ЕГЭ по математике в 11 классе и ГИА в 9 классе»;

- участвовала в вебинаре «Особенности реализации требований ФГОС в УМК по математики Издательства «Просвещение»;

- прошла обучение по направлению «Дистанционные образовательные технологии: методики и способы их использования в условиях организации учебного процесса в образовательных учреждениях» (Телешкола).

    В 2012 году принимала участие в онлайн-семинаре «Обучение по направлению «Мультимедия» с использованием интерактивного электронного учебника».

                              Результативность повышения квалификации

С 2002 года присвоена первая квалификационная категория по должности «учитель», приказ от 23 января 2002 года.

В 2011 году прошла тренинг-тестирование в формате ЕГЭ по математике и показала следующие результаты: 87 (восемьдесят семь) баллов. (Сертификат).

30 декабря 2011г. подтвердила соответствие требованиям, предъявляемым к первой квалификационной категории по должности «Учитель».

        Мое предназначение состоялось. Я люблю свою профессию, я люблю детей. За моими плечами 30 лет педагогической деятельности. Все было за эти годы: открытия и неудачи, радость и слезы. Но не было разочарования в выборе своей профессии.


Предварительный просмотр:


Подписи к слайдам:


По теме: методические разработки, презентации и конспекты

Отчет по самообразовательной деятельности по теме "Деятельностный подход к преподаванию физики, как средство повышения качества образования"

В данном материале содержатся методические рекомендации по реализации деятельностного подхода для повышения качества образования по физике. Прилагается презентация....

"СОВЕРШЕНСТВОВАНИЕ ПЕДАГОГИЧЕСКОГО МАСТЕРСТВА УЧИТЕЛЕЙ ЧЕРЕЗ САМООБРАЗОВАТЕЛЬНУЮ ДЕЯТЕЛЬНОСТЬ"

"Учитель живёт до тех пор, пока учится, как только он перестаетучиться, в нём умирает учитель" (К.Д.Ушинский)"Учитель учится всю жизнь" - это известная истина. Но уже через несколько лет работы учител...

Самообразовательная деятельность учителя

Работа учителя по самообразованию - материалы семинара...

План самообразовательной деятельности

Программа  самообразования....

СОВЕРШЕНСТВОВАНИЕ ПЕДАГОГИЧЕСКОГО МАСТЕРСТВА ТРЕНЕРОВ-ПРЕПОДАВАТЕЛЕЙ ЧЕРЕЗ САМООБРАЗОВАТЕЛЬНУЮ ДЕЯТЕЛЬНОСТЬ"

     Самообразование - это приобретение знаний путем самостоятельных занятий без помощи преподавателя.         Самообразование начинается ...