Рабочая программа по математике 8 класс к учебнику Макарычева Ю.Н.
рабочая программа (8 класс) по теме

Непомнящая Расима Мусаевна

Рабочая программа создана по последним требованиям.

Скачать:

ВложениеРазмер
Файл planirovanie_matematika_8_klass.docx46.04 КБ

Предварительный просмотр:

  1. Пояснительная записка

        Настоящая программа по математике для основной общеобразовательной школы 8 класса составлена на основе

  • Федерального Закона от 29.12.2012г. №273-ФЗ «Об образовании в Российской Федерации»
  • Федерального компонента государственного образовательного стандарта, утвержденного Приказом Минобразования РФ от 05 03 2004 года № 1089;
  • примерной программы общеобразовательных учреждений по алгебре 7–9 классы,  к учебному комплексу для 7-9 классов (авторы Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова Ю.Н., составитель Т.А. Бурмистрова – М: «Просвещение», 2008. – с. 22-26), примерной программы общеобразовательных учреждений по геометрии 7–9 классы,  к учебному комплексу для 7-9 классов (авторы Л.С. Атанасян, В.Ф. Бутузов, С.В. Кадомцев и др., составитель Т.А. Бурмистрова – М: «Просвещение», 2008. – с. 19-21)
  • Базисного учебного плана общеобразовательных учреждений Российской Федерации, утвержденный приказом Минобразования РФ № 1312 от 09. 03. 2004.
  • Федеральных перечней учебников, утвержденных приказом от 19 декабря 2012 г. №  1067, рекомендованных (допущенных) к использованию в образовательном процессе в образовательных  учреждениях, реализующих программы общего образования;
  • Требований к оснащению образовательного процесса в соответствии с содержательным наполнением учебных предметов федерального компонента государственного образовательного стандарта.

        Примерная программа конкретизирует содержание предметных тем образовательного стандарта и даёт примерное распределение учебных часов по разделам предмета.

Цель изучения:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;
  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;
  • приобретение конкретных знаний о пространстве и практически значимых умений, формирование языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания обучающихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

Общая характеристика учебного предмета

        Математическое образование в основной школе складывается из следующих содержательных компонентов (точные названия блоков): арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.

        Арифметика призвана способствовать приобретению практических навыков, необходимых для повседневной жизни. Она служит базой для всего дальнейшего изучения математики, способствует логическому развитию и формированию умения пользоваться алгоритмами.

        Алгебра. Изучение алгебры нацелено на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира (одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения  информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у обучающихся представлений о роли математики в развитии цивилизации и культуры.

        Геометрия — один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания обучающихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

        Элементы логики, комбинаторики, статистики и теории вероятностей становятся обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности – умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчёт числа вариантов, в том числе в простейших прикладных задачах.

        При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.

        Таким образом, в ходе освоения предмета учащиеся получают возможность:

        развить представление о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;

        овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;

        изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;

        развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;

        получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;

        развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;

сформировать представления об изучаемых понятиях и методах как важнейших средствах математического        моделирования реальных процессов и явлений.

        

Уровень обучения – базовый.

Срок реализации рабочей учебной программы – один учебный год.

Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение математики в 8 классе отводится 5 часов  в неделю – всего 170 часов: 102часа алгебры и 68 часов геометрии.

В данном классе ведущими методами обучения предмету являются: объяснительно-иллюстративный и репродуктивный, хотя используется и частично-поисковый. На уроках используются элементы следующих технологий: личностно ориентированное обучение, обучение с применением опорных схем, ИКТ,  технология парного обучения.

  1. Содержание

Рациональные дроби (23ч)

Рациональная дробь. Основное свойство дроби, сокращение дробей. Тождественные преобразования рациональных выражений. Функция  у = к/х и ее график.

Понятия дробного выражения, рациональной дроби. Основное свойство дроби. Правило об изменении знака перед дробью. Правила сложения, вычитания дробей с одинаковыми и с разными знаменателями. Правила умножения, деления дробей, возведения дроби в степень. Понятие тождества, тождественно равных выражений, тождественных преобразований выражения. Рациональные выражения и их преобразования. Свойства и график функции

у =   при k > 0; при k < 0.

Четырехугольники (14 ч). Параллелограмм, его свойства и признаки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапеции; равнобедренная трапеция

Квадратные корни (19ч)

Понятие об иррациональных числах. Общие сведения о действительных числах. Квадратный корень. Понятие о нахождении приближенного значения квадратного корня. Свойства квадратных корней. Преобразования выражений, содержащих квадратные корни. Функция  ее свойства и график.

Понятие рационального, иррационального, действительно числа, определение арифметического корня, теоремы о квадратном корне из произведения, из дроби, тождество = |x|.

Площадь (14 ч). 

Площадь прямоугольника. Площадь параллелограмма, треугольника и трапеции (основные формулы

 Теорема Пифагора. Признаки равенства прямоугольных треугольников. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0° до 180°; приведение к острому углу. Решение прямоугольных треугольников.

Квадратные уравнения (21 ч)

Квадратное уравнение. Формула корней квадратного уравнения. Решение рациональных уравнений. Решение задач, приводящих к квадратным уравнениям и простейшим рациональным уравнениям.

Подобные треугольники (19 ч). 

Признаки подобия треугольников.

Соотношения между сторонами и углами прямоугольного треугольника (5 ч). Основное тригонометрическое тождество. Формулы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Теорема косинусов и теорема синусов; примеры их применения для вычисления элементов треугольника.

Неравенства (20 ч)

Числовые неравенства и их свойства. Почленное сложение и умножение числовых неравенств. Погрешность и точность приближения. Линейные неравенства с одной переменной и их системы.

      Окружность (17 ч). 

Центр, радиус, диаметр. Дуга, хорда. Центральный, вписанный угол; величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности; равенство касательных, проведенных из одной точки. Метрические соотношения в окружности: свойства секущих, касательных, хорд.

Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Вписанные и описанные четырехугольники. Вписанные и описанные окружности правильного многоугольника.

Степень с целым показателем. Элементы статистики (11 ч).

Степень с целым показателем и ее свойства. Стандартный вид числа. Приближенный вычисления.

Повторение (12 ч)

          

  1. Учебно – тематическое планирование

Раздел

Количество часов

Контрольные работы

1

 Рациональные дроби и их свойства

23

2

2

Четырехугольники

14

2

3

Квадратные корни

19

2

4

 Площадь

14

1

5

Квадратные  уравнения

21

2

6

Подобные треугольники

19

2

7

Неравенства

20

2

8

Окружность

17

1

9

Степень с целым показателем. Элементы статистики.

11

1

10

Повторение

8

4

1

Всего

170

16

  1. Требования к математической подготовке учащихся 8 класса

В результате изучения алгебры учащийся должен

знать/понимать

  • существо понятия математического доказательства; примеры доказательств;
  • существо понятия алгоритма; примеры алгоритмов;
  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
  • как потребности практики привели математическую науку к необходимости расширения понятия числа;
  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации.
  • уметь
  • выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
  • применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
  • решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним;
  • решать линейные неравенства с одной переменной и их системы;
  • находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;
  • определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;
  • описывать свойства изученных функций, строить их графики; использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
  • выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами;
  • нахождения нужной формулы в справочных материалах;
  • моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;
  • описания зависимостей между физическими величинами соответствующими

В результате изучения геометрии учащийся должен

  Уметь объяснить, какая фигура называется многоугольником, назвать его элементы; знать, что такое периметр многоугольника, какой многоугольник называется выпуклым; уметь вывести формулу формулами при исследовании несложных практических ситуаций; суммы углов выпуклого многоугольника и решать задачи типа 364 – 370.

  Уметь находить углы многоугольников, их периметры.

Знать определения параллелограмма и трапеции, виды трапеций, формулировки свойств и признаки параллелограмма и равнобедренной трапеции,  уметь их применять при решении задач

   Уметь выполнять деление отрезка на n равных частей с помощью циркуля и линейки; используя свойства параллелограмма и равнобедренной трапеции уметь доказывать некоторые утверждения.

   Уметь выполнять задачи на построение четырехугольников.

  Знать определения частных видов параллелограмма: прямоугольника, ромба и квадрата, формулировки их свойств и признаков.

  Знать определения симметричных точек и фигур относительно прямой и точки.

  Уметь строить симметричные точки и распознавать фигуры, обладающие осевой симметрией и центральной симметрией.

  Знать основные свойства площадей и формулу для вычисления площади прямоугольника. Уметь вывести формулу для вычисления площади прямоугольника

Знать формулы для вычисления площадей параллелограмма, треугольника и трапеции; а также знать теорему об отношении площадей треугольников, имеющих по равному углу, и уметь применять все изученные формулы при решении задач

  Знать теорему Пифагора и обратную ей теорему, область применения, пифагоровы тройки.    Уметь применять теоремы  при решении задач

  Знать определения пропорциональных отрезков и подобных треугольников, теорему об отношении подобных треугольников и свойство биссектрисы треугольника.

  Уметь определять подобные треугольники, находить неизвестные величины из пропорциональных отношений, применять теорию при решении задач

  Знать признаки подобия треугольников, определение пропорциональных отрезков. Уметь применять их при решении задач

  Знать теоремы о средней линии треугольника, точке пересечения медиан треугольника и пропорциональных отрезках в прямоугольном треугольнике.

  Уметь доказывать эти теоремы и применять при решении задач, а также уметь с помощью циркуля и линейки делить отрезок в данном отношении и решать задачи на построение

  Знать определения синуса, косинуса и тангенса острого угла прямоугольного треугольника, значения синуса, косинуса и тангенса для углов 30°, 45° и 60°, метрические соотношения.     Уметь применять все изученные формулы, значения синуса, косинуса, тангенса, метрические отношения при решении задач

  Знать возможные случаи взаимного расположения прямой и окружности, определение касательной, свойство и признак касательной.

  Уметь их доказывать и применять при решении задач, выполнять задачи на построение окружностей и касательных, определять отрезки хорд окружностей.

  Знать определение центрального и вписанного углов, как определяется градусная мера дуги окружности, теорему о вписанном угле, следствия из нее и теорему о произведении отрезков пересекающихся хорд.

       Знать теоремы о биссектрисе угла и о серединном перпендикуляре к отрезку, их следствия, а также теорему о пересечении высот треугольника.

    Уметь выполнять построение замечательных точек треугольника.

    Знать, какая окружность называется вписанной в многоугольник и какая описанной около многоугольника, теоремы об окружности, вписанной в треугольник, и об окружности, описанной около треугольника, свойства вписанного и описанного четырехугольников.

   Уметь применять теоремы  при решении задач, выполнять задачи на построение окружностей и касательных, определять отрезки хорд окружностей.

   Знать, какой угол называется центральным и какой вписанным, как определяется градусная мера дуги окружности, теорему о вписанном угле, следствия из нее и теорему о произведении отрезков пересекающихся хорд.

  Уметь применять теоремы  при решении задач

   Знать теоремы о биссектрисе угла и о серединном перпендикуляре к отрезку, их следствия, а также теорему о пересечении высот треугольника.

 Уметь применять теоремы  при решении задач

 Уметь выполнять построение замечательных точек треугольника.

 

  1. Учебно-методический комплект:

  1. Геометрия. 7-9 класс.  Учебник для общеобразовательных учреждений /Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев-18-е изд.,- М.«Просвещение», 2012.
  2. Алгебра, учебник для 8 класса для общеобразовательных учреждений / Ю.Н. Макарычев, Н.Г. Миндюк, К.И.Нешков, С.Б. Суворова : Просвещение, 2011.
  3. Дидактические материалы по алгебре для 8 класса / В.И. Жохов, Ю.Н. Макарычев, Н.Г. Миндюк: Просвещение 2008.
  4. Разноуровненвые дидактические материалы по алгебре. 8 класс / М.Б. Миндюк, Н.Г. Миндюк: Издательский Дом «Генжер», 1996.
  5. Самостоятельные и контрольные работы по алгебре и геометрии для 8 класса / А.П. Ершова, В.В. Голобородько, А.С. Ершов: Илекса, 2004.

  1. Литература:
  1. Геометрия. 7-9 класс.  Учебник для общеобразовательных учреждений /Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев-18-е изд.,- М.«Просвещение», 2008.
  2. Алгебра, учебник для 8 класса для общеобразовательных учреждений / Ю.Н. Макарычев, Н.Г. Миндюк, К.И.Нешков, С.Б. Суворова : Просвещение, 2007.
  3. Алгебра: элементы статистики и теории вероятностей. Учебное пособие для учащихся 7 – 9 классов общеобразовательных учреждений / / Ю.Н. Макарычев, Н.Г. Миндюк: Просвещение, 2004.
  4. Изучение алгебры в 7 – 9 классах. Книга для учителя. / Ю.Н. Макарычев, Н.Г. Миндюк: Просвещение, 2008.
  5. Изучение геометрии в 7 – 9 классах. Методические рекомендации к учебнику. Книга для учителя / Л.С. Атанасян, В.Ф. Бутузов, Ю.А. Глазков: Просвещение, 2004.
  6. Дидактические материалы по алгебре для 8 класса / В.И. Жохов, Ю.Н. Макарычев, Н.Г. Миндюк: Просвещение 2008.
  7. Разноуровненвые дидактические материалы по алгебре. 8 класс / М.Б. Миндюк, Н.Г. Миндюк: Издательский Дом «Генжер», 1996.
  8. Дидактические материалы по геометрии для 8 класса / Б.Г. Зив, В.М. Мейлер: Просвещение, 2004.
  9. Самостоятельные и контрольные работы по алгебре и геометрии для 8 класса / А.П. Ершова, В.В. Голобородько, А.С. Ершов: Илекса, 2004.
  10. Задачи и упражнения на готовых чертежах. 7 – 9 классы. Геометрия / Е.М. Рабинович: Илекса, 2001.

  1. Календарно- тематическое планирование

Рациональные дроби и их свойства

23ч

1

Рациональные выражения

2

2

Основное свойство дроби. Сокращение дробей

3

3

Сложение и вычитание дробей с одинаковыми знаменателями

3

4

Сложение и вычитание дробей с разными знаменателями

3

5

к/р

1

6

Умножение дробей. Возведение дроби в степень

3

7

Деление дробей

2

8

Преобразование рациональных выражений

3

9

Функция у=к/х и ее график

2

10

к/р

1

Четырехугольники

14ч

11

Многоугольники

2

12

Параллелограмм

1

13

Признаки параллелограмма

2

14

Трапеция

1

15

Задачи на построение

2

16

к/р

1

17

Прямоугольник

1

18

Ромб и квадрат

1

19

Осевая и центральная симметрии

2

20

к/р

1

Квадратные корни

19ч

21

Рациональные числа и иррациональные числа

2

22

Квадратные корни. Арифметический квадратный корень.

2

23

Уравнение х=а2

1

24

Нахождение приближенных значений квадратного корня

1

25

Функция у= х и ее график

2

26

Квадратный корень из произведения и дроби, из степени.

3

27

к/р

1

28

Вынесение множителя за знак корня. Внесение множителя под знак корня.

3

29

Преобразование выражений, содержащих квадратные корни.

3

30

к/р

1

Площади

14ч

31

Площадь многоугольника

2

32

Площадь прямоугольника, параллелограмма, треугольника и трапеции

5

33

Теорема Пифагора

4

34

Зачет

2

35

к/р

1

Квадратные уравнения

21ч

36

Неполные квадратные уравнения

2

37

Формула корней квадратного уравнения

3

38

Решение задач с помощью квадратных уравнений

3

39

Теорема Виета

2

40

к/р

1

41

Решение дробных рациональных уравнений

5

42

Решение задач с помощью рациональных уравнений

4

43

к/р

1

Подобные треугольники

19ч

44

Определение подобных треугольников

2

45

Первый признак подобия треугольников

2

46

Второй признак подобия треугольников

2

47

Третий признак подобия треугольников

2

48

к/р

1

49

Средняя линия треугольника

1

50

Пропорциональные отрезки в прямоугольном треугольнике

1

51

Практические приложения подобия треугольников

1

52

О подобии произвольных фигур

1

53

 Соотношения между сторонами и углами прямоугольного треугольника

5

54

к/р

1

Неравенства

20ч

55

Числовые неравенства. Свойства числовых неравенств

3

56

Сложение и вычитание числовых неравенств

4

57

Погрешность и точность приближения

1

58

к/р

1

59

Пересечение и объединение множеств

2

60

Числовые промежутки

2

61

Решение неравеств с одной переменной

3

62

Решение систем неравенств с одной переменной

3

63

к/р

1

Окружность

17ч

64

Касательная к окружности

3

65

Центральные и вписанные углы

5

66

Четыре замечательные точки треугольника

3

67

Вписанные и описанные окружности

5

68

к/р

1

Степень с целым показателем. Элементы статистики.

11ч

69

Определение степени с целым натуральным показателем

2

70

Свойства степени с целым показателем

2

71

Стандартный вид числа

2

72

Сбор и группировка статистических данных

2

73

Наглядное представление статистической информации

2

74

к/р

1

Итоговое повторение

12ч

75

Рациональные дроби

2

76

Квадратные корни

2

77

Квадратные уравнения и неравенства

3

78

Четырехугольники

1

79

Четырехугольники

1

80

Подобные треугольники

1

81

Окружность

1

82

Итоговая к/р

1


По теме: методические разработки, презентации и конспекты

Рабочая программа для 7 класса по учебнику Биболетова М.З. "Enjoy English"

Эта рабочая программа для 7 класса по учебнику Биболетова М.З. "Enjoy English". Программа состоит из пояснительной записки и календарно-тематического планирования....

Рабочая программа для 11 класса по учебнику Биболетова

Данная рабочая программа является хорошим помошником при составлении конспекта урока....

Рабочая программа литература 7 класс по учебнику Коровина В.Я. Программа расчитана на 68 часов

Рабочая программа литература 7 класс по учебнику Коровина В.Я. Программа расчитана на 68 часов...

Рабочая программа по алгебре 7-9 (учебник Макарычева)

Рабочая программа содержит пояснительную записку, содержание тем, календарно-тематическое планирование, список литературы...

Рабочая программа для 8 класса к учебнику Макарычева

Рабочая программа по алгебре для обучающихся 8 класса разработана на основе Федерального компонента государственного стандарта общего образования (приказ МО и Н РФ от 05.03.2004 года № 1089), Примерно...

Рабочая программа для 9 класса по учебнику "Английский в фокусе" Spotlight 9 Авторы: Ю.Е. Ваулина, Дж.Дули, О.Е.Подоляко, В.Эванс и календарно-тематическое планирование к программе 2019-2020

Рабочая программа для 9 класса по учебнику "Английский в фокусе" Spotlight 9 Авторы: Ю.Е. Ваулина, Дж. Дули, О.Е. Подоляко, В.Эванс.Программа составлена на основе Фундаментального ядра содер...

Рабочая программа для 6 класса по учебнику "Немецкий язык 6 класс" Авторы: И.Л.Бим, Л.В.Садомова, Л.М.Санникова

Рабочая программа и календарно-тематическое планирование. Немецкий язык 6 класс. Авторы: И.Л. Бим, Л.В.Садомова, Л.М.Санникова. Москва.Просвещение.2012 г...