Рабочая программа по математике 5 класс. УМК Мерзляк.
методическая разработка по математике (5 класс)

Елисеева Юлия Александровна

Рабочая программа по математике 5 класс. УМК Мерзляк. 6 часов в неделю

Скачать:

ВложениеРазмер
Файл programma_5b_klass_matematika_2019-20.docx130.02 КБ

Предварительный просмотр:

Государственное бюджетное общеобразовательное учреждение

средняя общеобразовательная школа

РАССМОТРЕНО

Заседание МО

протокол  №              

от «      »            2019 г.

РЕКОМЕНДОВАНА К ИСПОЛЬЗОВАНИЮ

Педагогический совет    протокол №

от «      »            2019 г.

«УТВЕРЖДАЮ»

Директор                                        __________           приказ №

от «      »            2019 г.

Рабочая программа

 поматематике

для  учащихся 5 «Б» класса

 (общеобразовательное обучение)

на 2019/2020 учебный год

        

2019 г.

  1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа учебного предмета «Математика» составлена на основании  следующих нормативно-правовых документов:

  1. Федеральный государственный стандарт основного общего образования, утверждён приказом Министерства образования и науки Российской Федерации от 17 декабря 2010 г.№ 1897. Новые стандарты утверждены 8.06.2012г.
  2. Федеральный компонент государственного стандарта основного  общего образования по математике, утвержденного приказом Минобразования России от 05.03.2004 года № 1089. Стандарт опубликован в издании "Федеральный компонент государственного стандарта общего образования. Часть I. Начальное общее образование. Основное общее образование" (Москва, Министерство образования Российской Федерации, 2004
  3. Обязательный минимум содержания основного общего образования по предмету (Приказ МО Российской федерации № 1276).
  4. Закон Российской Федерации «Об образовании».
  5. Федеральный перечень учебников, рекомендованных (допущенных) к использованию в образовательном процессе в образовательных учреждениях, реализующих образовательные программы общего образования и имеющих государственную аккредитацию на 2018/2019 учебный год.
  6. Распоряжение Комитета по образованиюОб обеспечении введения федерального государственного образовательного стандарта основного общего образования
  7. Учебный план ГБОУ школы № 588 на 2018/2019 учебный год.
  8. Программы основного  общего образования по математике (Программа. Планирование учебного материала. Математика. 5-6 классы / [авт.-сост. В.И. Жохов] – 2-е изд., стер. – М.: Мнемозина, 2010. – 31 с.).

Рабочая программа  курса МАТЕМАТИКИ в 5  классе рассчитана на 170 часов при 5-и часовой нагрузке в неделю в соответствии с учебным планом ГБОУ школы № 588. Уровень программы - базовая, классификация – типовая. Рабочая программа конкретизирует содержание предметных тем образовательного стандарта с учетом возрастных особенностей и уровня подготовки учащихся.

Программа адресована учащимся 5 классов, которые изучают математику на базовом уровне. Она разработана с целью планирования, организации и управления образовательным процессом по математике в рамках выполнения требований стандарта. Программа детализирует и раскрывает содержание стандарта, определяет общую стратегию обучения, воспитания и развития учащихся средствами учебного предмета в соответствии с целями изучения математики, которые определены стандартом.

Задачи рабочей учебной программы - конкретное определение содержания, объема, порядка изучения учебной дисциплины с учетом особенностей учебного процесса и контингента обучаемых.

        Целью изучения курса математики в V классе является систематическое развитие понятия числа, выработка умений выполнять устно и письменно арифметические действия над числами, переводить практические задачи на язык математики, подготовка учащихся к изучению систематических курсов алгебры и геометрии Курсстроится на индуктивной основе с привлечением элементов дедуктивных рассуждений. Теоретический материал курса излагается на наглядно-интуитивном уровне, математические методы и законы формулируются в виде правил.

В ходе изучения курса учащиеся развивают навыки вычислений с натуральными числами, овладевают навыками действий с обыкновенными дробями, получают начальные представления об использовании букв для записи выражений и свойств арифметических действий, составлении уравнений, продолжают знакомство с геометрическими понятиями, приобретают навыки построения геометрических фигур и измерения геометрических величин.

ОБЩАЯ ХАРАКТЕРИСТИКА УЧЕБНОГО ПРЕДМЕТА

Главной целью школьного образования является развитие ребенка как компетентной личности путем включения его в различные виды ценностей человеческой деятельности: учеба, познания, коммуникация, профессионально трудовой выбор, личностное саморазвитие, ценностные ориентации, поиск смысла жизнедеятельности. С этих позиций обучение рассматривается как процесс овладения не только определенной суммой знаний и системой соответствующих умений и навыков, но и как процесс овладения компетенциями. Это определило цели обучения математике.

Целиобучения математике в 5 классе:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к  преодолению трудностей;
  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.

В основу программы положен обязательный минимум содержания образования по математике в соответствии с государственными стандартами.

На основании требований Государственного образовательного стандарта  в содержании предполагается реализовать актуальные в настоящее время компетентностный, личностно-ориентированный, деятельностный подходы, которые определяют задачи обучения:

- приобретение математических знаний и умений;

- овладение обобщенными способами мыслительной, творческой деятельностей;

- освоение компетенций (учебно-познавательной, коммуникативной, рефлексивной, личностного саморазвития, ценностно-ориентационной) и профессионально-трудового выбора.

Математическое образование в основной школе складывается из следующих содержательных компонентов: арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развивались на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.

Общеучебные цели

  • Создание условия для умения логически обосновывать суждения, выдвигать гипотезы и понимать необходимость их проверки.
  • Создание условия для умения ясно, точно и грамотно выражать свои мысли в устной и письменной речи.
  • Формирование умения использовать различные языки математики:  словесный, символический, графический.
  • Формирование умения свободно переходить с языка на язык для иллюстрации, интерпретации, аргументации и доказательства.
  • Создание условия для плодотворного участия в работе в группе; умения самостоятельно  и мотивированно организовывать свою деятельность.
  • Формирование умения использовать приобретенные знания и умения в практическойдеятельности и повседневной жизнидля  исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств тел; вычисления площадей поверхностей пространственных тел при  решении практических задач, используя при  необходимости справочники и вычислительные устройства.
  • Создание условия для интегрирования в личный опыт новую, в том числе самостоятельно полученную информацию.

Общепредметные цели

  • Овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования.
  • Интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиция, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей.
  • Формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов.
  • Воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.

Общеучебные умения, навыки и способы деятельности

Учащиеся приобретают и совершенствуют опыт:

  • Планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов.
  • Решение разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска путей и способов решения.
  • Исследовательской деятельности, развитие идей, проведение экспериментов, обобщения, постановки и формулирования новых задач.
  • Ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического),  свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства.
  • Проведение доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования.
  • Поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.

Роль и место предмета в федеральном базисном учебном плане.

Без базовой математической подготовки невозможна постановка образования современного человека. В школе математика служит опорным предметом для изучения смежных дисциплин. В дальнейшей жизни реальной необходимостью в наши дни становится непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической.

Материалы для рабочей программы составлены на основе:

  • федерального компонента государственного стандарта общего образования,
  • примерной программы по математике основного общего образования,
  • федерального перечня учебников, рекомендованных Министерством образования Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях,
  • с учетом требований к оснащению образовательного процесса в соответствии с содержанием наполнения учебных предметов компонента государственного стандарта общего образования,
  • тематического планирования учебного материала,
  • базисного учебного плана.

Программа рассчитана на 170 учебных часов, в том числе 14часов на проведение контрольных работ.

Основная форма организации образовательного процесса – классно-урочная система в условиях системно-деятельностного подхода.

Предусматривается применение следующих технологий обучения:

- традиционная классно-урочная

- игровые технологии

- элементы проблемного обучения

- технологии уровневой дифференциации

- здоровьесберегающие технологии

- ИКТ

Формы, периодичность и порядок контроля (текущего, промежуточного, итогового)

Формы контроля: устный опрос, фронтальный опрос, самостоятельные работы,тестирование, переводная аттестация, промежуточный, предупредительный контроль, контрольные работы.

ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОБУЧЕНИЯ

Изучение математики дает возможность обучающимся достичь следующих результатов развития:

в личностном направлении:

1).умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

2) представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;

3) креативность мышления, инициатива, находчивость, активность при решении математических задач;

4) умение контролировать процесс и результат учебной математической деятельности;

5) способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

в метапредметном направлении:

1) первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;

2) умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

3) умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

4) умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;

5) умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

6) умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

7) понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

8) умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

9) умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

в предметном направлении:

1) овладение базовым понятийным аппаратом по основным разделам содержания;

2) умение работать с математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики, использовать различные языки математики, проводить классификации, логические обоснования математических утверждений;

3) развитие представлений о числе и числовых системах от натуральных до действительных чисел; овладение навыками  устных, письменных, инструментальных вычислений;

4) овладение геометрическим языком, умение использовать его для описания предметов окружающего мира; развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;

5) умение измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объемов геометрических фигур;

6) умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера.

Сведения, отражающие специфику класса

Программа адресована учащимся 5 классов, которые изучают математику на базовом уровне. Уровень программы - базовая, классификация – типовая. Она разработана с целью планирования, организации и управления образовательным процессом по математике в рамках выполнения требований стандарта.Рабочая программа конкретизирует содержание предметных тем образовательного стандарта с учетом возрастных и индивидуальных особенностей и уровня подготовки учащихся.

 У учащихся наблюдается средний уровень сформированности познавательной активности и учебной мотивации. Школьники относятся к учёбе положительно, но, не осознавая важность учёбы в дальнейшей жизни. Уровень работоспособности, активности, самостоятельности учащихся в учебной и внеурочной деятельности соответствует норме. Большинство учащихся добросовестно выполняет домашние задания, творческие проекты, часто выбирая для этого форму совместной работы. С учётом специфики класса выстроена система учебных занятий, спроектированы цели, задачи. Для данного класса планируется включить занятия и отдельные упражнения на развитие внимания


2. СОДЕРЖАНИЕ КУРСА МАТЕМАТИКИ  5 класса

1. Натуральные числа.

Понятие «натуральное число», разряды и классы чисел, понятия отрезок, концы отрезка, многоугольник, треугольник, вершины и стороны многоугольника и треугольника, единицы измерения длины, понятия плоскости, прямой, луча и их свойства, понятия шкалы и координатного луча, их элементов, координата, единицы массы, понятия больше и меньше, неравенство, двойное неравенство, знаки неравенства.

2. Сложение и вычитание натуральных чисел

Понятия слагаемое, сумма, периметр, свойства сложения,  понятия уменьшаемое, вычитаемое, разность вычитание; свойства вычитания, понятия числового и  буквенного выражения, понятия уравнение, корень уравнения, решить уравнение

3. Умножение и деление натуральных чисел.

Понятие умножения чисел и его компоненты, свойства умножения натуральных чисел, понятие деление и его элементы, свойства деления, понятие деления с остатком и его элементов, правило нахождения делимого по неполному частному, делителю и остатку, распределительное свойство умножения относительно сложения и вычитания,  сочетательное свойство умножения, действия первой и второй ступени, понятия степень числа, квадрат и куб числа, действия третей ступени.

4. Площади и объемы

Понятие формулы, формулы пути, периметра прямоугольника и квадрата, единицы измерения площади, понятие объема, формулы объема прямоугольного параллелепипеда и куба.

5. Обыкновенные дроби

Понятия окружности и ее элементов,  круга, понятие обыкновенной дроби и ее элементов, способы решения задач на дроби, правило сравнение дробей с одинаковыми знаменателями, понятие правильной и неправильной дроби.

  1. Десятичные дроби. Сложение и вычитание десятичных дробей

Понятие десятичной дроби, алгоритм сравнения десятичных дробей, алгоритм сложения и вычитания десятичных дробей, понятие приближенного числа, правило округления десятичных дробей.

  1. Умножение и деление десятичных дробей

Алгоритм умножения и деления десятичных дробей на натуральное число, правило умножения на 10, 100, 1000, алгоритм умножения и деления десятичных дробей, правило умножения на 0,1, 0, 01, 0,001,  понятие среднего арифметического, правила нахождения среднего арифметического нескольких чисел и средней скорости.

  1. Инструменты для вычислений и измерений

Устройство и предназначение микрокалькулятора, понятие процента, правила нахождения процентов от числа, числа по его процентам, процентного соотношения, понятие угла, виды углов, единицы измерения углов, устройство транспортира, понятие диаграммы, виды диаграмм.

  1. Повторение

Тематический план.

Темы разделов

Количество часов

1

Натуральные числа

18

2

Сложение и вычитание натуральных чисел

33

3

Умножение и деление натуральных чисел

37

4

Обыкновенные дроби

18

5

Десятичные дроби

48

6

Итоговое повторение

16

Всего

170


3. Учебно-методический комплект, его содержание и структура.

Для учащихся:

1. Мерзляк А.Г.. Математика. 5 класс. Учебник для общеобразовательных учреждений. М.,  Вентана-Граф,  2014.

2. Рудницкая В.Н. Рабочая тетрадь по математике. 5 класс. В 2 ч. М.: Мнемозина, 2010-2012.

3. Чесноков А. С., Нешков К. И. Дидактические материалы по математике: 5 класс: практикум – 3-е издание – М. : Академкнига. 2011-2012.

4. Кузнецова Л.В., Минаева С.С., Рослова Л.О. и др. Математика 5 кл. Рабочая тетрадь № 1 – М.: Просвещение, 2011.

5.  Кузнецова Л.В., Минаева С.С., Рослова Л.О. и др. Математика 5 кл. Рабочая тетрадь № 1 – М.: Просвещение, 2011.

6. Электронный учебник

Для учителя:

1. Программы основного  общего образования по математике (Программа. Планирование учебного материала. Математика. 5 класс / [авт.-сост. В.И. Жохов] – 2-е изд., стер. – М.: Мнемозина, 2010. – 31 с.).

2. Федеральный компонент государственных образовательных стандартов  основного общего  образования (приказ Минобрнауки от 05.03.2004г. № 1089).

Учебно-методический комплект.

1. Мерзляк А.Г.. Математика. 5 класс. Учебник для общеобразовательных учреждений. М.,  Вентана-Граф,  2014.

2. Дорофеев Г.В., Суворова С.Б., Кузнецова Л.В. и др. Математика 5 кл. Дидактические материалы – М.: Просвещение, 2011.

3. Кузнецова Л.В., Минаева С.С., Рослова Л.О. и др. Математика 5 - 6 кл. Контрольные работы – М.: Просвещение, 2010.

4. Кузнецова Л.В., Минаева С.С., Рослова Л.О. и др. Математика 5 кл. Рабочая тетрадь № 1 – М.: Просвещение, 2011.

5.  Кузнецова Л.В., Минаева С.С., Рослова Л.О. и др. Математика 5 кл. Рабочая тетрадь № 1 – М.: Просвещение, 2011.

6. Дорофеев Г.В., Минаева С.С., Суворова С.Б., Математика 5. Книга для учителя – М.: Просвещение, 2008.

7.  Бокарева С.А., Смирнова Т.В. Математика 5 кл. Поурочные разработки – М.: Просвещение, 2009

Методическое обеспечение:

1. Ершова А.П., Голобородько В.В., Ершова А.С. Математика 5. Самостоятельные и контрольные работы- М.: Илекса, 2009.

2.  Левитас Г.Г. Математика 5 класс. Материалы для уроков – М.: Илекса, 2010.

3. Токарева С.В. Математика 5-7 классы. Таблицы-тренажеры – Волгоград: Учитель, 2011.

4. Дорофеев Г.В., Минаева С.С., Суворова С.Б., Математика Арифметика Геометрия 5. Сферы– М.: Просвещение, 2012.

5.  Баранова И.В., Борчугова З.Г., Стефанова Н.Л., Задачи по математике для 5 – 6 классов – СПб.: Специальная литература, 2007

6. Чесноков А.С., Нешков К.И., Дидактические материалы по математике для 5 класса – М.: Классикс Стиль, 2007

7. Попова Л.П., Контрольно – измерительные материалы – М.: ВАКО, 2012

8. Кордина Н.Е., Занимательные задания и упражнения, 5 класс – Волгоград Учитель, 2011

Интернет-ресурсы.

  1. www.edu.ru (сайт МОиН РФ).
  2. www.school.edu.ru (Российский общеобразовательный портал).
  3. www.pedsovet.org (Всероссийский Интернет-педсовет)
  4. www.fipi.ru (сайт Федерального института педагогических измерений).
  5. www.math.ru (Интернет-поддержка учителей математики).
  6. www.mccme.ru (сайт Московского центра непрерывного математического   образования).
  7. www.it-n.ru (сеть творческих учителей)
  8. www.som.fsio.ru (сетевое объединение методистов)
  9. http:// mat.1september.ru (сайт газеты «Математика»)
  10. http:// festival.1september.ru (фестиваль педагогических идей «Открытый урок» («Первое сентября»)).
  11. www.eidos.ru/gournal/content.htm (Интернет - журнал «Эйдос»).
  12. www.exponenta.ru (образовательный математический сайт).
  13. kvant.mccme.ru (электронная версия журнала «Квант».
  14. www.math.ru/lib  (электронная  математическая библиотека).
  15. http:/school.collection.informika.ru (единая коллекция цифровых образовательных ресурсов).
  16. www.kokch.kts.ru (on-line тестирование 5-11 классы).
  17. http://teacher.fio.ru (педагогическая мастерская, уроки в Интернете и другое).
  18. www.uic.ssu.samara.ru (путеводитель «В мире науки» для школьников).
  19. http://mega.km.ru (Мегаэнциклопедия Кирилла и Мефодия).
  20. http://www.rubricon.ru, http://www.encyclopedia.ru (сайты «Энциклопедий»).

Цифровые образовательные ресурсы:

1. Электронный учебник

2. Математический конструктор 1С

3. Flash-ролики

4. Комплекс инструментальных средств программирования (КИС).


5. КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

№  урока

Содержание учебного материала

Количество часов

Тип /

форма урока

Планируемые результаты обучения

Виды и формы контроля

Дата проведения

(план)

Примечание

Освоение предметных знаний

УУД

Повторение и систематизация учебного материала

1

Описывать свойства натурального ряда.

Читать и записывать натуральные числа, сравнивать и упорядочивать их. Различать и называть геометрические фигуры: точка, прямая, отрезок, луч, треугольник.

Измерять с помощью инструментов, и сравнивать длины отрезков. Строить отрезки заданной длины с помощью линейки и циркуля. Строить на заданном луче точки по заданным координатам; определять координаты этих точек. Читать и записывать единицы измерения длины и массы

Выражать одни единицы измерения длин через другие.

Регулятивные: 

оценивать правильность выполнения действий на уровне адекватной ретроспективной оценки.

Познавательные: 

подбирать слова, соподчиненные ключевому слову, определяющие его признаки и свойства;

выстраивать логическую цепочку, состоящую из ключевого слова и соподчиненных ему слов;

выделять общий признак двух или нескольких предметов или явлений и объяснять их сходство;

Коммуникативные: строить рассуждение на основе сравнения предметов и явлений, выделяя при этом общие признаки;

излагать полученную информацию, интерпретируя ее в контексте решаемой задачи;

СП, ВП, УО

Т, СР, РК

Глава 1. Натуральные числа

17

   

Ряд натуральных чисел

2

ИНМ

ЗИМ

СЗУН

СП, ВП, УО

Т, СР, РК

Цифры. Десятичная запись натуральных чисел

2

ИНМ

ЗИМ

СЗУН

СП, ВП,

Отрезок. Длина отрезка

3

ИНМ

ЗИМ

СЗУН

СП, ВП, УО,

Плоскость. Прямая. Луч

2

ИНМ

ЗИМ

СЗУН

Т, СР, РК

Шкала. Координатный луч

3

ИНМ

ЗИМ

СЗУН

СП, ВП, УО

Т, СР, РК

Сравнение натуральных чисел

3

ИНМ

ЗИМ

СЗУН

СП, ВП, УО

Т, СР, РК

Повторение и систематизация учебного материала

1

УОСЗ

СП, ВП, УО,

Контрольная работа № 1

1

КЗУ

КР

Глава 2. Сложение и вычитание натуральных чисел

33

Выполнять вычисления с натуральными числами;

Формулировать свойства арифметических действий, записывать их с помощью букв, преобразовывать на их основе числовые выражения, находить значение выражения, содержащих действия разных ступеней, со скобками и без скобок.

Выполнять прикидку и оценку результата вычислений. Исследовать простейшие числовые закономерности, используя числовые эксперименты. Употреблять буквы для обозначения чисел, для записи общих утверждений. Читать и записывать буквенные выражения, составлять буквенные выражения по условиям задач.

Преобразовывать буквенные выражения.

Формулировать свойства арифметических действий и записывать их с помощью букв.

 

Решать простейшие уравнения  на основе зависимостей между компонентами действий. Составлять уравнения по условиям задачи. 

Измерять с помощью инструментов величины углов.

Строить углы заданной величины с помощью транспортира. Выражать одни единицы измерения длин через другие.

Выражать одни единицы измерения величины в других единицах (метры в километрах, минуты в часах и т. п.).

Регулятивные: 

идентифицировать собственные проблемы и определять главную проблему;

выдвигать версии решения проблемы, формулировать гипотезы, предвосхищать конечный результат;

Познавательные: 

обозначать символом и знаком предмет и/или явление;

определять логические связи между предметами и/или явлениями, обозначать данные логические связи с помощью знаков в схеме;

создавать абстрактный или реальный образ предмета и/или явления;

строить модель/схему на основе условий задачи и/или способа ее решения;

Коммуникативные: определять свои действия и действия партнера, которые способствовали или препятствовали продуктивной коммуникации;

строить позитивные отношения в процессе учебной и познавательной деятельности

Сложение натуральных чисел. Свойства сложения

4

ИНМ

ЗИМ

СЗУН

СП, ВП, УО, СР, РК

Вычитание натуральных чисел

5

ИНМ

ЗИМ

СЗУН

Т, СР, РК

Числовые и буквенные выражения. Формулы

3

ИНМ

ЗИМ

СЗУН

СП, ВП, УО, СР, РК

Контрольная работа № 2

1

КЗУ

КР

Уравнение

3

ИНМ

ЗИМ

СЗУН

СП, ВП, УО, СР, РК

Угол. Обозначение углов

2

ИНМ

ЗИМ

СЗУН

СП, ВП, УО, СР, РК

Виды углов. Измерение углов

5

ИНМ

ЗИМ

СЗУН

СП, ВП, УО, СР, РК

Многоугольники. Равные фигуры

2

ИНМ

ЗИМ

СЗУН

СП, ВП, УО, СР, РК

Треугольник и его виды

3

ИНМ

ЗИМ

СЗУН

СП, ВП, УО,

Прямоугольник. Ось симметрии фигуры

3

ИНМ

ЗИМ

СЗУН

СП, ВП, УО, СР, РК

Повторение и систематизация учебного материала

1

ИНМ

ЗИМ

СЗУН

СП, ВП, УО, СР, РК

Контрольная работа № 3

1

КЗУ

КР

Глава 3. Умножение и деление натуральных чисел

37

Моделировать несложные зависимости с помощью формул; выполнять вычисления по формулам.

Формулировать определения делителя и кратного, простого числа и составного числа, свойства и признаки делимости.

Доказывать и опровергать с помощью контрпримеров утверждения о делимости чисел.

Классифицировать натуральные числа (четные и нечетные, по остаткам от деления на 3 и т. п.).

Вычислять значение степени. Находить значение числового выражения, содержащего степени чисел.

Различать и называть геометрические фигуры: квадрат, куб

Вычислять площади квадратов и прямоугольников, используя формулы площади квадрата и площади прямоугольника.

Выражать одни единицы измерения площади через другие.

Исследовать простейшие числовые закономерности, проводить числовые эксперименты.

Изготавливать пространственные фигуры из разверток; распознавать развертки куба, параллелепипеда,

Вычислять объемы куба и прямоугольного параллелепипеда, используя формулы объема куба и объема прямоугольного параллелепипеда. Выражать одни единицы измерения объема через другие.

Пользоваться таблицами квадратов, кубов.

Выполнять перебор всех возможных вариантов для пересчета объектов или комбинаций, выделять комбинации, отвечающие заданным условиям

 Регулятивные: 

ставить цель деятельности на основе определенной проблемы и существующих возможностей;

учитывать правило в планировании и контроле способа решения, различать способ и результат действия.

наблюдать и анализировать собственную учебную и познавательную деятельность и деятельность других обучающихся в процессе взаимопроверки;

соотносить реальные и планируемые результаты индивидуальной образовательной деятельности и делать выводы;

Познавательные: 

находить в тексте требуемую информацию (в соответствии с целями своей деятельности);

ориентироваться в содержании текста, понимать целостный смысл текста, структурировать текст;

устанавливать взаимосвязь описанных в тексте событий, явлений, процессов; строить модель/схему на основе условий задачи и/или способа ее решения;

создавать вербальные, вещественные и информационные модели с выделением существенных характеристик объекта для определения способа решения задачи в соответствии с ситуацией;

Коммуникативные: критически относиться к собственному мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;

предлагать альтернативное решение в конфликтной ситуации;

договариваться о правилах и вопросах для обсуждения в соответствии с поставленной перед группой задачей;

организовывать учебное взаимодействие в группе (определять общие цели, распределять роли, договариваться друг с другом и т. д.);

Умножение. Переместительное свойство умножения

4

ИНМ

ЗИМ

СЗУН

СП, ВП, УО

Т, СР, РК

Сочетательное и распределительное свойства умножения

3

ИНМ

ЗИМ

СЗУН

СП, ВП, УО

Т, СР, РК

Деление

7

ИНМ

ЗИМ

СЗУН

СП, ВП, УО

Т, СР, РК

Деление с остатком

3

ИНМ

ЗИМ

СЗУН

УО

Т, СР, РК

Степень числа

2

ИНМ

ЗИМ

СЗУН

СП, ВП, УО

Т, СР, РК

Контрольная работа № 4

1

КЗУ

КР

Площадь. Площадь прямоугольника

4

ИНМ

ЗИМ

СЗУН

УО

Т, СР, РК

Прямоугольный параллелепипед. Пирамида

3

ИНМ

ЗИМ

СЗУН

СП, ВП, УО

Т, СР, РК

Объем прямоугольного параллелепипеда

4

ИНМ

ЗИМ

СЗУН

СП, ВП, УО

Комбинаторные задачи

3

ИНМ

ЗИМ

СЗУН

СП, ВП, УО

Т, СР, РК

Повторение и систематизация учебного материала

2

УОСЗ

СП, ВП, УО

Т, СР, РК

Контрольная работа № 5

1

КЗУ

КР

Глава 4. Обыкновенные дроби

18

Моделировать в графической, предметной форме понятия и свойства, связанные с понятием обыкновенной дроби. Читать и записывать дроби. Соотносить дроби и точки на координатной прямой.

Складывать и вычитать дроби с равными знаменателями. Умножать дроби на  натуральные числа

Проводить несложные исследования, связанные со свойствами дробных чисел, опираясь на числовые эксперименты. Решать текстовые задачи, содержащие дробные данные. Использовать приемы решения задач на нахождение части целого и целого по его части.

Выполнять сложение и вычитание со смешанными числами. Переводить неправильную дробь в смешанное число  и обратно.

Регулятивные: 

обосновывать и осуществлять выбор наиболее эффективных способов решения учебных и познавательных задач;

определять/находить, в том числе из предложенных вариантов, условия для выполнения учебной и познавательной задачи;

Познавательные: 

излагать полученную информацию, интерпретируя ее в контексте решаемой задачи;

самостоятельно указывать на информацию, нуждающуюся в проверке, предлагать и применять способ проверки достоверности информации;

Коммуникативные: определять задачу коммуникации и в соответствии с ней отбирать речевые средства;

отбирать и использовать речевые средства в процессе коммуникации с другими людьми (диалог в паре, в малой группе и т. д.);

представлять в устной или письменной форме развернутый план собственной деятельности;

 

ВП, УО

Т, СР, РК

Понятие обыкновенной дроби

5

ИНМ

ЗИМ

СЗУН 

СП, ВП, УО

Т, СР, РК

Правильные и неправильные дроби. Сравнение дробей

3

ИНМ

ЗИМ

СП, ВП, УО

Т, СР, РК

Сложение и вычитание дробей с одинаковыми знаменателями

2

ИНМ

ЗИМ

СЗУН

СП, ВП, УО

Т, СР, РК

Дроби и деление натуральных чисел

1

ЗИМ

СЗУН

ВП, УО

Т, СР, РК

Смешанные числа

5

ИНМ

ЗИМ

СЗУН

ВП, УО

Т, СР, РК

Повторение и систематизация учебного материала

1

УОСЗ

ВП, УО

Т, СР, РК

Контрольная работа № 6

1

КЗУ

КР

Глава 5. Десятичные дроби.

48

Читать и записывать десятичные дроби. Представлять обыкновенные дроби в виде десятичных и десятичные в виде обыкновенных;

 находить десятичные приближения обыкновенных дробей.

Сравнивать и упорядочивать десятичные дроби. Выполнять вычисления с десятичными дробями.

Исследовать закономерности с десятичными дробями.

Выполнять прикидку и оценку в ходе вычислений.

Выполнять вычисления с десятичными дробями.

Применять действия с десятичными дробями к решению задач.

Находить среднее арифметическое  чисел. Выполнять практические работы по нахождению средней длины шага, среднего роста учеников класса и т.д.

Объяснять, что такое процент. Представлять проценты в виде дробей и дроби в виде процентов.

Осуществлять поиск информации (в СМИ), содержащей данные выраженные в процентах.

Решать задачи на проценты.

Регулятивные: 

оценивать свою деятельность, аргументируя причины достижения или отсутствия планируемого результата; определять совместно с педагогом и сверстниками критерии планируемых результатов и критерии оценки своей учебной деятельности;

отбирать инструменты для оценивания своей деятельности, осуществлять самоконтроль своей деятельности в рамках предложенных условий и требований;

Познавательные: определять необходимые ключевые поисковые слова и запросы;

осуществлять взаимодействие с электронными поисковыми системами, словарями; определять логические связи между предметами и/или явлениями, обозначать данные логические связи с помощью знаков в схеме;

Коммуникативные: целенаправленно искать и использовать информационные ресурсы, необходимые для решения учебных и практических задач с помощью средств ИКТ;

выбирать, строить и использовать адекватную информационную модель для передачи своих мыслей средствами естественных и формальных языков в соответствии с условиями коммуникации; выделять информационный аспект задачи, оперировать данными, использовать модель решения задачи;

излагать полученную информацию, интерпретируя ее в контексте решаемой задачи;

Представление о десятичных дробях

4

ИНМ

ЗИМ

СЗУН

СП, ВП, УО

Т, СР, РК

Сравнение десятичных дробей

3

ИНМ

ЗИМ

СЗУН

СП, ВП, УО

Т, СР, РК

Округление чисел. Прикидки

3

ИНМ

ЗИМ

СЗУН

СР, РК

Сложение и вычитание десятичных дробей

6

ИНМ

ЗИМ

СЗУН 

СП, ВП, УО

Т, СР, РК

Контрольная работа № 7

1

КЗУ

КР

Умножение десятичных дробей

7

ИНМ

ЗИМ

СЗУН

СП, ВП, УО

Т, СР, РК

Деление десятичных дробей

9

ИНМ

ЗИМ

СЗУН

СП, ВП, УО

Т, СР, РК

Контрольная работа № 8

1

КЗУ

КР

Среднее арифметическое. Среднее значение величины

3

ИНМ

ЗИМ

СЗУН

СП, ВП, УО

Т, СР, РК

Проценты. Нахождения процентов от числа

4

ИНМ

ЗИМ

СП, ВП, УО

Т, СР, РК

Нахождение числа по его процентам

4

ИНМ

ЗИМ

СЗУН

СП, ВП, УО

Т, СР, РК

Повторение и систематизация учебного материала

2

УОСЗ

СП, ВП, УО

Т, СР, РК

Контрольная работа № 9

1

КЗУ

КР

Повторение и систематизация учебного материала

15

СЗУН

УОСЗ

СП, ВП, УО

Т, СР, РК

Контрольная работа № 10

1

КЗУ

КР

Итого часов

170

Принятые сокращения:

ИНМ – изучение нового материала

ЗИМ – закрепление изученного материала

СЗУН – совершенствование знаний, умений, навыков

УОСЗ – урок обобщения и систематизации знаний

КЗУ – контроль знаний и умений

Т – тест

СП – самопроверка

ВП – взаимопроверка

СР – самостоятельная работа

РК – работа по карточкам

ФО – фронтальный опрос

УО – устный опрос

ПР – проверочная работа

З – зачет

Контрольные работы по математике 5 класс

Контрольная работа № 1

Натуральные числа

Вариант  1

  1. Запишите цифрами число:
  1. шестьдесят пять миллиардов сто двадцать три миллиона девятьсот сорок одна тысяча восемьсот тридцать семь;
  2. восемьсот два миллиона пятьдесят четыре тысячи одиннадцать:
  3. тридцать три миллиарда девять миллионов один.
  1. Сравните числа:      1) 5 678 и 5 489;               2)   14 092 и 14 605.
  2. Начертите координатный луч и отметьте на нём точки, соответствующие числам 2, 5, 7, 9.
  3. Начертите отрезок FK, длина которого равна 5 см 6 мм, отметьте на нём точку C. Запишите все отрезки, образовавшиеся на рисунке, и измерьте их длины.
  4. Точка К принадлежит отрезку МЕ, МК = 19 см, отрезок КЕ на 17 см больше отрезка МК. Найдите длину отрезка МЕ.
  5. Запишите цифру, которую можно поставить вместо звёздочки, чтобы образовалось верное неравенство (рассмотрите все возможные случаи):
  1. 3 78*  3 784;                          2) 5 8*5  5 872.
  1. На отрезке CD длиной 40 см отметили точки P и Q так, что CP = 28 см, QD =26 см. Чему равна длина отрезка PQ?
  2. Сравните:  1) 3 км  и 2 974 м;        2) 912 кг и 8 ц.

Вариант  2

  1. Запишите цифрами число:
  1. семьдесят шесть миллиардов двести сорок два  миллиона семьсот восемьдесят три тысячи сто девяносто пять;
  2. четыреста три миллиона тридцать восемь тысяч сорок девять;
  3. сорок восемь миллиардов семь миллионов два.
  1. Сравните числа:      1) 6 894 и 6 983;               2)   12 471 и 12 324.
  2. Начертите координатный луч и отметьте на нём точки, соответствующие числам 3, 4, 6, 8.
  3. Начертите отрезок АВ, длина которого равна 4 см 8 мм, отметьте на нём точку D. Запишите все отрезки, образовавшиеся на рисунке, и измерьте их длины.
  4. Точка T принадлежит отрезку МN, МT = 19 см, отрезок TN на 18 см меньше отрезка МT. Найдите длину отрезка МN.
  5. Запишите цифру, которую можно поставить вместо звёздочки, чтобы образовалось верное неравенство (рассмотрите все возможные случаи):
  1. 2 *14  2 316;                          2) 4 78*  4 785.
  1. На отрезке SK длиной 30 см отметили точки A и B так, что SA = 14 см, BK =19 см. Чему равна длина отрезка AB?
  2. Сравните:  1) 3 986 г и 4 кг;        2) 586 см и 6 м.

Вариант  3

  1. Запишите цифрами число:
  1. сорок семь миллиардов двести девяносто три  миллиона восемьсот пятьдесят шесть тысяч сто двадцать четыре;
  2. триста семь миллионовсемьдесят восемь тысяч двадцать три;
  3. восемьдесят пять миллиардов шесть миллионов пять.
  1. Сравните числа:      1) 7 356и 7 421;               2)   17 534и 17 435.
  2. Начертите координатный луч и отметьте на нём точки, соответствующие числам 2, 4, 6, 9.
  3. Начертите отрезок MN, длина которого равна 6 см 4 мм, отметьте на нём точку A. Запишите все отрезки, образовавшиеся на рисунке, и измерьте их длины.
  4. Точка E принадлежит отрезку CK, CE = 15 см, отрезок EK на 24 см больше отрезка CE. Найдите длину отрезка CK.
  5. Запишите цифру, которую можно поставить вместо звёздочки, чтобы образовалось верное неравенство (рассмотрите все возможные случаи):
  1. 3 344 3 34*;                          2) 2 724 * 619.
  1. На отрезке AC длиной 60 см отметили точки E и F так, что AE = 32 см, FC =34 см. Чему равна длина отрезка EF?
  2. Сравните:  1) 6 т и 5 934кг;        2) 4 м и 512 см.

Вариант  4

  1. Запишите цифрами число:
  1. восемьдесятшесть миллиардов пятьсот сорок один миллионтриста семьдесят две тысячи триста сорок два;
  2. шестьсот пять миллионоввосемьдесят три тысячи  десять;
  3. сорок четыре миллиарда девять миллионов три.
  1. Сравните числа:      1) 9 561и 9 516;               2)   18 249и 18 394.
  2. Начертите координатный луч и отметьте на нём точки, соответствующие числам 2, 5, 8, 10.
  3. Начертите отрезок АВ, длина которого равна 7 см 8 мм, отметьте на нём точку D. Запишите все отрезки, образовавшиеся на рисунке, и измерьте их длины.
  4. Точка A принадлежит отрезку BM, BA = 25 см, отрезок AM на 9 см меньше отрезка BA. Найдите длину отрезка BM.
  5. Запишите цифру, которую можно поставить вместо звёздочки, чтобы образовалось верное неравенство (рассмотрите все возможные случаи):
  1. 5 64*  5 646;                          2) 1 4*2  1 431.
  1. На отрезке OP длиной 50 см отметили точки M и N так, что OM = 24 см, NP =38 см. Чему равна длина отрезка MN?
  2. Сравните:  1) 8 км и 7 962 м;        2) 60 см и 602мм.

Контрольная работа № 2

Сложение и вычитание натуральных чисел. Числовые и буквенные выражения. Формулы.

Вариант  1

  1. Вычислите:   1) 15 327+ 496 383;       2) 38 020 405 – 9 497 653.
  2. На одной стоянке было 143 автомобиля, что на 17 автомобилей больше, чем на второй. Сколько автомобилей было на обеих стоянках?
  3. Выполните сложение, выбирая удобный порядок вычислений:
  1. (325 + 791) + 675;                           2) 428 + 856 + 572 + 244.
  1. Проверьте, верно ли неравенство:

1 674 – (736 + 328)  2 000 – (1 835 – 459).

  1. Найдите значение 𝑎 по формуле 𝑎 = 4𝑏 – 16 при 𝑏 = 8.
  2. Упростите выражение 126 + 𝒙 + 474 и найдите его значение при 𝒙 = 278.
  3. Вычислите:
  1. 4 м 73 см + 3 м 47 см;                     2) 12 ч 16 мин – 7 ч 32 мин.
  1. Найдите значение выражения, выбирая удобный порядок вычислений:
  1. (713 + 529) – 413;                           2) 624 – (137 + 224).

Вариант  2

  1. Вычислите:   1) 17 824+ 128 356;       2) 42 060 503 – 7 456 182.
  2. На одной улице 152 дома, что на 18 домов меньше, чем на другой. Сколько всего домов на обеих улицах?
  3. Выполните сложение, выбирая удобный порядок вычислений:
  1. (624 + 571) + 376;                           2) 212 + 497 + 788 + 803.
  1. Проверьте, верно ли неравенство:

1 826 – (923 + 249)  3 000 – (2 542 – 207).

  1. Найдите значение 𝑝 по формуле 𝑝= 40 –7𝑞 при 𝑞 = 4.
  2. Упростите выражение 235 + y + 465 и найдите его значение при y = 153.
  3. Вычислите:
  1. 6 м 23 см + 5 м 87 см;                     2) 14 ч 17 мин –5 ч 23 мин.
  1. Найдите значение выражения, выбирая удобный порядок вычислений:
  1. (837 + 641) –537;                           2)923 – (215 + 623).

Вариант  3

  1. Вычислите:   1) 26 832 + 573 468;       2) 54 073 507 – 6 829 412.
  2. В одном классе 37 учащихся, что на 9 человек больше, чем во втором. Сколько всего учащихся в обоих классах?
  3. Выполните сложение, выбирая удобный порядок вычислений:
  1. (736+ 821) + 264;                           2) 573 + 381 + 919 + 627.
  1. Проверьте, верно ли неравенство:

2 491 – (543 + 1 689)  1 000 – (931 – 186).

  1. Найдите значение 𝑦 по формуле 𝑦 = 3𝑥 + 18 при 𝑥 = 5.
  2. Упростите выражение 433 + 𝑎 + 267 и найдите его значение при 𝑎 = 249.
  3. Вычислите:
  1. 7 м 23 см + 4 м 81 см;                     2) 6 ч 38 мин – 4 ч 43 мин.
  1. Найдите значение выражения, выбирая удобный порядок вычислений:
  1. (674 + 245) – 374;                           2) 586 – (217 + 186).

Вариант  4

  1. Вычислите:   1) 19 829 + 123 471;       2) 61 030 504 – 8 695 371.
  2. На одной книжной полке стоят 23 книги, что на 5 книг меньше, чем на другой. Сколько всего книг стоит на обеих полках?
  3. Выполните сложение, выбирая удобный порядок вычислений:
  1. (349+ 856) + 651;                           2) 166 + 452 + 834 + 748.
  1. Проверьте, верно ли неравенство:

1 583 – (742 + 554) 1 000 – (883 – 72).

  1. Найдите значение 𝑥 по формуле 𝑥 = 16 + 8𝑧 при 𝑧 = 7.
  2. Упростите выражение 561 + 𝑏 + 139 и найдите его значение при 𝑏 = 165.
  3. Вычислите:
  1. 9 м 41 см + 4 м 72 см;                     2) 18 ч 18 мин – 5 ч 24 мин.
  1. Найдите значение выражения, выбирая удобный порядок вычислений:
  1. (563 + 721) – 363;                           2) 982 – (316 + 582).

Контрольная работа № 3

Уравнение. Угол. Многоугольники.

Вариант  1

  1. Постройте угол МКА, величина которого равна 74. Проведите произвольно луч КС между сторонами угла МКА. Запишите образовавшиеся углы и измерьте их величины.
  2. Решите уравнение:      1) 𝑥 +37 = 81             2) 150 – 𝑥 = 98.
  3. Одна из сторон треугольника равна 24 см, вторая – в 4 раза короче первой, а третья – на 16 см длиннее второй. Вычислите периметр треугольника.
  4. Решите уравнение:        1) (34 + 𝑥) – 83 = 42             2) 45 – (𝑥 – 16) = 28.
  5. Из вершины развёрнутого угла АВС (см рис.) проведены два луча ВD и ВЕ так, что ∠АВЕ = 154, ∠DВС = 128. Вычислите градусную меру угла DВЕ.
  6. Какое число надо подставить вместо 𝑎, чтобы корнем уравнения

52 – (𝑎 – 𝑥) = 24 было число 40?

C:\Users\User\Desktop\Безымянный.png

Вариант  2

  1. Постройте угол ABC, величина которого равна 168. Проведите произвольно луч BM между сторонами угла ABC. Запишите образовавшиеся углы и измерьте их величины.
  2. Решите уравнение:      1) 21 + 𝑥 = 58             2) 𝑥 – 135 = 76.
  3. Одна из сторон треугольника равна 32 см, вторая – в 2 раза короче первой, а третья – на 6 см короче первой. Вычислите периметр треугольника.
  4. Решите уравнение:        1) (96 – 𝑥) – 15 = 64             2) 31 – (𝑥 + 11) = 18.
  5. Из вершины прямого угла MNK (см рис.) проведены два луча ND и NE так, что ∠MND = 73, ∠KNF = 48. Вычислите градусную меру угла DNF.
  6. Какое число надо подставить вместо 𝑎, чтобы корнем уравнения

64 – (𝑎 – 𝑥) = 17 было число 16?

C:\Users\User\Desktop\123.png

Вариант  3

  1. Постройте угол FDK, величина которого равна 56. Проведите произвольно луч DT между сторонами угла FDK. Запишите образовавшиеся углы и измерьте их величины.
  2. Решите уравнение:      1) 𝑥 + 42 = 94             2) 284 – 𝑥 = 121.
  3. Одна из сторон треугольника равна 12 см, вторая – в 3 раза длиннее первой, а третья – на 8 см короче второй. Вычислите периметр треугольника.
  4. Решите уравнение:        1) (41 + 𝑥) – 12= 83             2) 62 – (𝑥 – 17) = 31.
  5. Из вершины развёрнутого  угла FAN (см рис.) проведены два луча AK и AP так, что ∠NAP = 110, ∠FAK = 132. Вычислите градусную меру угла PAK.
  6. Какое число надо подставить вместо 𝑎, чтобы корнем уравнения

(69 – 𝑎) – 𝑥 = 23 было число 12?

C:\Users\User\Desktop\Безымянный.png

Вариант  4

  1. Постройте угол NMC, величина которого равна 58. Проведите произвольно луч MB между сторонами угла NMC. Запишите образовавшиеся углы и измерьте их величины.
  2. Решите уравнение:      1) 𝑥 + 53 = 97             2) 142 – 𝑥 = 76.
  3. Одна из сторон треугольника равна 30 см, вторая – в 5 раза короче первой, а третья – на 22 см длиннее второй. Вычислите периметр треугольника.
  4. Решите уравнение:        1) (58 + 𝑥) – 23= 96             2) 54 – (𝑥 – 19) = 35.
  5. Из вершины прямого  угла DMK (см рис.) проведены два луча MB и MC так, что ∠DMB = 51, ∠KMC = 65. Вычислите градусную меру угла BMC.
  6. Какое число надо подставить вместо 𝑎, чтобы корнем уравнения

(𝑎 – 𝑥) – 14 = 56 было число 5?

C:\Users\User\Desktop\45.png

Контрольная работа № 4

Умножение и деление натуральных чисел. Свойства умножения.

Вариант 1

  1. Вычислите:
  1. 36 ∙ 2418; 3) 1456 : 28;
  2. 175 ∙ 204;                                4) 177 000 : 120.
  1. Найдите значение выражения:   (326 ∙ 48 – 9 587) : 29.
  2. Решите уравнение:
  1. 𝑥 ∙ 14 = 364;        2) 324 : 𝑥 = 9;           3) 19𝑥 - 12𝑥 = 126.
  1. Найдите значение выражения наиболее удобным способом:
  1. 25 ∙ 79 ∙ 4;                                2) 43 ∙ 89 + 89 ∙ 57.
  1. Купили 7 кг конфет и 9 кг печенья, заплатив за всю покупку 1 200 р. Сколько стоит 1 кг печенья, если 1 кг конфет стоит 120 р?
  2. С одной станции одновременно в одном направлении отправились два поезда. Один из поездов двигался со скоростью 56 км/ч, а второй – 64 км/ч. Какое расстояние будет между поездами через 6 ч после начала движения?
  3. Сколькими нулями оканчивается произведение всех натуральных чисел от 19 до 35 включительно?

Вариант 2

  1. Вычислите:
  1. 24 ∙ 1 246;                               3) 1 856 : 32;
  2. 235 ∙ 108;                                4) 175 700 : 140.
  1. Найдите значение выражения:   (625 ∙ 25 – 8 114) : 37.
  2. Решите уравнение:
  1. 𝑥 ∙ 28 = 336;        2) 312 : 𝑥 = 8;           3) 16𝑥 - 11𝑥 = 225.
  1. Найдите значение выражения наиболее удобным способом:
  1. 2 ∙ 83 ∙ 50;                                2) 54 ∙ 73 + 73 ∙ 46.
  1. Для проведения ремонта электрической проводки купили 16 одинаковых мотков алюминиевого и 11 одинаковых мотков медного провода. Общая длина купленного провода составляла 650 м. Сколько метров алюминиевого провода было в мотке, если медного провода в одном мотке было 30 м?
  2. Из одного города одновременно в одном направлении выехали два автомобиля. Один из них двигался со скоростью 74 км/ч, а второй – 68 км/ч. Какое расстояние будет между автомобилями через 4 ч после начала движения?
  3. Сколькими нулями оканчивается произведение всех натуральных чисел от 23 до 42 включительно?

Вариант 3

  1. Вычислите:
  1. 32 ∙ 1 368;                               3) 1 664 : 26;
  2. 145 ∙ 306;                                4) 216 800: 160.
  1. Найдите значение выражения:   (546 ∙ 31 – 8 154) : 43.
  2. Решите уравнение:
  1. 𝑥 ∙ 22 = 396;        2) 318 : 𝑥 = 6;           3) 19𝑥 - 7𝑥 = 144.
  1. Найдите значение выражения наиболее удобным способом:
  1. 5 ∙ 97 ∙ 20;                                2) 68 ∙ 78  -  78 ∙ 58.
  1. В автомобиль погрузили 5 одинаковых мешков сахара и 3 одинаковых мешка муки. Оказалось, что общая масса груза равна 370 кг. Какова масса одного мешка муки, если масса одного мешка сахара равна 50 кг?
  2. Из одного села одновременно в одном направлении отправились пешеход и велосипедист. Пешеход двигался со скоростью 3 км/ч, а велосипедист – 12 км/ч. Какое расстояние будет между ними через 3 ч после начала движения?
  3. Сколькими нулями оканчивается произведение всех натуральных чисел от 34 до 53 включительно?

Вариант 4

  1. Вычислите:
  1. 28 ∙ 2 346;                               3) 1 768 : 34;
  2. 185 ∙ 302;                                4) 220 500 : 180.
  1. Найдите значение выражения:   (224 ∙ 46 – 3 232) : 34.
  2. Решите уравнение:
  1. 𝑥 ∙ 16 = 384;        2) 371 : 𝑥 = 7;           3) 22𝑥 - 14𝑥 = 112.
  1. Найдите значение выражения наиболее удобным способом:
  1. 2 ∙ 87 ∙ 50;                                2) 167 ∙ 92  -  92 ∙ 67.
  1. В школьную столовую завезли 8 одинаковых ящиков яблок и 6 одинаковых ящиков апельсинов. Сколько килограммов апельсинов было в одном ящике, если всего было 114 кг яблок и апельсинов, а яблок в каждом ящике было 9 кг?
  2. От одной пристани одновременно в одном направлении отплыли лодка и катер. Лодка плыла со скоростью 14 км/ч, а катер – 21 км/ч. Какое расстояние будет между ними через 5 ч после начала движения?
  3. Сколькими нулями оканчивается произведение всех натуральных чисел от 41 до 64 включительно?

Контрольная работа № 5

Деление с остатком. Площадь прямоугольника. Прямоугольный параллелепипед и его объем. Комбинаторные задачи.

Вариант 1

  1. Выполните деление с остатком:    478 : 15.
  2. Найдите площадь прямоугольника, одна сторона  которого равна 14 см, а вторая сторона в 3 раза больше первой.
  3. Вычислите объем и площадь поверхности куба с ребром 3 см.
  4. Длина прямоугольного параллелепипеда равна 18 см, ширина – в 2 раза меньше длины, а высота – на 11 см больше ширины. Вычислите объем параллелепипеда.
  5. Чему равно делимое, если делитель равен 11, неполное частное – 7, а остаток – 6?
  6. Поле прямоугольной формы имеет площадь 6 га. Ширина поля 150 м. Вычислите периметр поля.
  7. Запишите все трёхзначные числа, для записи которых используются только цифры 5, 6 и 0 (цифры не могут повторяться).
  8. Сумма длин всех рёбер прямоугольного параллелепипеда равна 116 см, а два его  измерения – 12 см и 11 см. Найдите третье измерение параллелепипеда.

Вариант 2

  1. Выполните деление с остатком:    376 : 18.
  2. Найдите площадь прямоугольника, одна сторона  которого равна 21 см, а вторая сторона в 3 раза меньше первой.
  3. Вычислите объем и площадь поверхности куба с ребром 4 дм.
  4. Ширина прямоугольного параллелепипеда равна 6 см, длина – в 5 раз больше ширины, а высота – на 5 см меньше длины. Вычислите объем параллелепипеда.
  5. Чему равно делимое, если делитель равен 17, неполное частное – 5, а остаток – 12?
  6. Поле прямоугольной формы имеет площадь 3 га, его длина – 200 м. Вычислите периметр поля.
  7. Запишите все трёхзначные числа, для записи которых используются только цифры 0, 9 и 4 (цифры не могут повторяться).
  8. Сумма длин всех рёбер прямоугольного параллелепипеда равна 80 см, а два его  измерения – 10 см и 4 см. Найдите третье измерение параллелепипеда.

Вариант 3

  1. Выполните деление с остатком:    516 : 19.
  2. Найдите площадь прямоугольника, одна сторона  которого равна 17 см, а вторая сторона в 2 раза больше первой.
  3. Вычислите объем и площадь поверхности куба с ребром 5 дм.
  4. Высота прямоугольного параллелепипеда равна 20 см, длина – на 4 см больше высоты, а ширина – в 2 раза меньше длины. Вычислите объем параллелепипеда.
  5. Чему равно делимое, если делитель равен 14, неполное частное – 8, а остаток – 9?
  6. Поле прямоугольной формы имеет площадь 7 га, его длина – 350 м. Вычислите периметр поля.
  7. Запишите все трёхзначные числа, для записи которых используются только цифры 1, 2 и 0 (цифры не могут повторяться).
  8. Сумма длин всех рёбер прямоугольного параллелепипеда равна 100 дм, а два его  измерения – 8 дм и 13 дм. Найдите третье измерение параллелепипеда.

Вариант 4

  1. Выполните деление с остатком:    610 : 17.
  2. Найдите площадь прямоугольника, одна сторона  которого равна 45 см, а вторая сторона в 5 раз меньше первой.
  3. Вычислите объем и площадь поверхности куба с ребром 2 см.
  4. Длина прямоугольного параллелепипеда равна 20 см, высота – в 4 раза меньше длины, а ширина – на 7 см больше высоты. Вычислите объем параллелепипеда.
  5. Чему равно делимое, если делитель равен 15, неполное частное – 6, а остаток – 14?
  6. Поле прямоугольной формы имеет площадь 4 га, его ширина – 50 м. Вычислите периметр поля.
  7. Запишите все трёхзначные числа, для записи которых используются только цифры 7, 0 и 8 (цифры не могут повторяться).
  8. Сумма длин всех рёбер прямоугольного параллелепипеда равна 72 см, а два его  измерения – 6 см и 8 см. Найдите третье измерение параллелепипеда.

Контрольная работа № 6

Обыкновенные дроби

Вариант 1

  1. Сравните числа:
  1.  и ;                 2) и 1;                     3) и  1.
  1. Выполните действия:
  1.  + ;                                     3) ;
  2.  + 5 ;                             4)  .
  1. В саду растёт 72 дерева, из них  составляют яблони. Сколько яблонь растёт в саду?
  2. Кирилл прочёл 56 страниц, что составило  книги. Сколько страниц было в книге?
  3. Преобразуйте в смешанное число дробь:
  1. ;              2)  .
  1. Найдите все натуральные значения 𝑥, при которых верно неравенство  .
  2. Каково наибольшее натуральное значение  n, при котором верно неравенство n  ?
  3. Найдите все натуральные значения 𝑎, при которых одновременно выполняются условия: дробь правильная, а дробь    неправильная.

Вариант 2

  1. Сравните числа:

 и ;                 2)     и 1;                     3) и  1.

  1. Выполните действия:

 + ;                                     3) ;

 + 1;                             4)  .

  1. В гараже стоят 63 машины, из них составляют легковые. Сколько легковых машин стоит в гараже?
  2. В классе 12 учеников изучают французский язык, что составляет  всех учеников класса. Сколько учеников в классе?
  3. Преобразуйте в смешанное число дробь:

;              2)  .

  1. Найдите все натуральные значения 𝑥, при которых верно неравенство  .
  2. Каково наименьшее натуральное значение  n, при котором верно неравенство n  ?
  3. Найдите все натуральные значения 𝑎, при которых одновременно выполняются условия: дробь правильная, а дробь    неправильная.

Вариант 3

  1. Сравните числа:

 и ;                 2)     и 1;                     3) и  1.

  1. Выполните действия:

 + ;                                     3) ;

 + 7;                             4)  .

  1. В классе 36 учеников, из них  занимаются спортом. Сколько учеников занимаются спортом?
  2. Ваня собрал 16 вёдер картофеля, что составляет  всего урожая. Сколько вёдер картофеля составляет урожай?
  3. Преобразуйте в смешанное число дробь:

;              2)  .

  1. Найдите все натуральные значения 𝑥, при которых верно неравенство  .
  2. Каково наибольшее натуральное значение  n, при котором верно неравенство n  ?
  3. Найдите все натуральные значения 𝑎, при которых обе дроби    и     одновременно будут неправильными.

Вариант 4

  1. Сравните числа:

 и ;                 2)     и 1;                     3) и  1.

  1. Выполните действия:

 + ;                                     3) ;

 + 2;                             4)  .

  1. В пятых  классах 64 ученика, из них составляют отличники. Сколько отличников в пятых классах?
  2. Мама приготовила вареники с творогом, а Коля съел 9 штук, что составляет  всех вареников. Сколько вареников приготовила мама?
  3. Преобразуйте в смешанное число дробь:

;              2)  .

  1. Найдите все натуральные значения 𝑥, при которых верно неравенство 2 .
  2. Каково наименьшее натуральное значение  n, при котором верно неравенство n  ?
  3. Найдите все натуральные значения 𝑎, при которых одновременно выполняются условия: дробь  будет неправильная, а дробь    правильная.

Контрольная работа № 7

Понятие о десятичной дроби. Сравнение, округление, сложение и вычитание десятичных дробей.

Вариант 1

  1. Сравните:     1) 14,396   и 14,4;                      2) 0,657  и  0, 6565.
  2. Округлите:   1)  16,76 до десятых;               2) 0,4864 до тысячных.
  3. Выполните действия:    1)    3,87 + 32,496;       2) 23,7 – 16,48;          3) 20 – 12,345.
  4. Скорость катера по течению реки равна 24,2 км/ч, а собственная скорость  катера – 22,8 км/ч. Найдите скорость катера против течения реки.
  5. Вычислите, записав данные величины в килограммах:
  1. 3,4 кг + 839 г;                       2) 2 кг 30 г – 1956 г.
  1. Одна сторона треугольника равна 5,6 см, что на 1,4 см больше второй стороны и на 0,7 см меньше третьей. Найдите периметр треугольника.
  2. Напишите три числа, каждое из которых больше 5,74 и меньше 5,76.
  3. Найдите значение выражения, выбирая удобный порядок вычислений:
  1. (8,63 + 3,298) – 5,63;                         2) 0,927 – (0,327 + 0,429).

Вариант 2

  1. Сравните:     1) 17,497   и 17,5;                      2) 0,346  и  0, 3458.
  2. Округлите:   1)  12,88 до десятых;               2) 0,3823 до сотых.
  3. Выполните действия:    1)    5,62 + 43,299;       2) 25,6 – 14,52;          3) 30 – 14,265.
  4. Скорость катера против течения реки равна 18,6 км/ч, а собственная скорость

 катера – 19,8 км/ч. Найдите скорость катера по течению реки.

  1. Вычислите, записав данные величины в метрах:
  1. 8,3 м + 784 см;                       2) 5 м 4 см – 385 см.
  1. Одна сторона треугольника равна 4,5 см, что на 3,3 см меньше второй стороны и на 0,6 см больше третьей. Найдите периметр треугольника.
  2. Напишите три числа, каждое из которых больше 3,82 и меньше 3,84.
  3. Найдите значение выражения, выбирая удобный порядок вычислений:
  1. (5,94 + 2,383) – 3,94;                         2) 0,852 – (0,452 + 0,214).

Вариант 3

  1. Сравните:     1) 12,598   и 12,6;                      2) 0,257  и  0, 2569.
  2. Округлите:   1)  17,56 до десятых;               2) 0,5864 до тысячных.
  3. Выполните действия:    1)    4,36 + 27,647;       2) 32,4 – 17,23;          3) 50 – 22,475.
  4. Скорость катера по течению реки равна 19,6 км/ч, а собственная скорость  катера – 18,3 км/ч. Найдите скорость катера против течения реки.
  5. Вычислите, записав данные величины в центнерах:
  1. 6,7 ц + 584 кг;                       2) 6 ц 2 кг – 487 кг.
  1. Одна сторона треугольника равна 3,7 см, что на 0,9 см больше второй стороны и на 1,2 см меньше третьей. Найдите периметр треугольника.
  2. Напишите три числа, каждое из которых больше 7,87 и меньше 7,89.
  3. Найдите значение выражения, выбирая удобный порядок вычислений:
  1. (6,73 + 4,594) – 2,73;                         2) 0,791 – (0,291 + 0,196).

Вариант 4

  1. Сравните:     1) 16,692   и 16,7;                      2) 0,745  и  0, 7438.
  2. Округлите:   1)  24,87 до десятых;               2) 0,8653 до тысячных.
  3. Выполните действия:    1)    6,72 + 54,436;       2) 27,6 – 15,72;          3) 40 – 11,825.
  4. Скорость катера против течения реки равна 17,8 км/ч, а собственная скорость

 катера – 19,4 км/ч. Найдите скорость катера по течению реки.

  1. Вычислите, записав данные величины в метрах:
  1. 2,8 м + 524 см;                       2) 4 м 6 см – 257 см.
  1. Одна сторона треугольника равна 5,1 см, что на 2,1 см меньше второй стороны и на 0,7 см больше третьей. Найдите периметр треугольника.
  2. Напишите три числа, каждое из которых больше 1,34 и меньше 1,36.
  3. Найдите значение выражения, выбирая удобный порядок вычислений:
  1. (7,86 + 4,183) – 2,86;                         2) 0,614 – (0,314 + 0,207).

Контрольная работа № 8

Умножение и деление десятичных дробей

Вариант 1

  1. Вычислите:
  1. 0,024 ∙ 4,5;                           3)  2,86 :  100;                             5)  0,48 : 0,8;
  2. 29,41 ∙ 1 000;                       4)   4 : 16;                                    6)   9,1 : 0,07.
  1. Найдите значение выражения:     (4 – 2,6) ∙ 4,3 + 1,08 : 1,2.
  2. Решите уравнение:    2,4 (𝑥 + 0,98) = 4,08.
  3. Моторная лодка плыла 1,4 ч по течению реки и 2,2 ч против течения. Какой путь преодолела лодка за всё время движения, если скорость течения равна 1,7 км/ч, а собственная скорость лодки – 19,8 км/ч?
  4. Если в некоторой десятичной дроби перенести запятую вправо через одну цифру, то она увеличится на 14,31. Найдите эту дробь.

Вариант 2

  1. Вычислите:
  1. 0,036 ∙ 3,5;                           3)  3,68 :  100;                             5)  0,56 : 0,7;
  2. 37,53 ∙ 1 000;                       4)   5 : 25;                                    6)   5,2 : 0,04.
  1. Найдите значение выражения:     (5 – 2,8) ∙ 2,4 + 1,12 : 1,6.
  2. Решите уравнение:    0,084 :  (6,2 – 𝑥) = 1,2.
  3. Катер плыл 1,6 ч против течения реки и 2,4 ч по течению. На сколько больше проплыл катер, двигаясь по течению реки, чем против течения, если скорость течения реки равна 2,1 км/ч, а собственная скорость катера – 28,2 км/ч?
  4. Если в некоторой десятичной дроби перенести запятую влево через одну цифру, то она уменьшится на 23,76. Найдите эту дробь.

Вариант 3

  1. Вычислите:
  1. 0,064 ∙ 6,5;                           3)  4,37 :  100;                             5)  0,63 : 0,9;
  2. 46,52 ∙ 1 000;                       4)   6 : 15;                                    6)   7,2 : 0,03.
  1. Найдите значение выражения:     (6 – 3,4) ∙ 1,7 + 1,44 : 1,6.
  2. Решите уравнение:    1,6 (𝑥 + 0,78) = 4,64.
  3. Теплоход  плыл 1,8 ч против течения реки и 2,6 ч по течению. Какой путь преодолел теплоход за всё время движения, если скорость течения равна 2,5 км/ч, а собственная скорость теплохода – 35,5 км/ч?
  4. Если в некоторой десятичной дроби перенести запятую вправо через одну цифру, то она увеличится на 15,93. Найдите эту дробь.

Вариант 4

  1. Вычислите:
  1. 0,096 ∙ 5,5;                           3)  7,89 :  100;                             5)  0,76 : 0,4;
  2. 78,53 ∙ 100;                          4)   6 : 24;                                    6)   8,4 : 0,06.
  1. Найдите значение выражения:     (7 – 3,6) ∙ 2,8 + 1,32 : 2,2.
  2. Решите уравнение:    0,144 :  (3,4 – 𝑥) = 2,4.
  3. Моторная лодка плыла 3,6 ч против течения реки и 1,8 ч по течению. На сколько километров больше проплыла лодка, двигаясь против течения , чем по течению, если скорость течения реки равна 1,2 км/ч, а собственная скорость лодки – 22,4 км/ч?
  4. Если в некоторой десятичной дроби перенести запятую влево через одну цифру, то она уменьшится на 29,52. Найдите эту дробь.

Контрольная работа № 9

Среднее арифметическое. Проценты.

Вариант 1

  1. Найдите среднее арифметическое чисел:  32,6; 38,5; 34; 35,3.
  2. Площадь поля равна 300 га. Рожью засеяли 18 % поля. Сколько гектаров поля засеяли рожью?
  3. Петя купил книгу за 90 р., что составляет 30 % всех денег, которые у него были. Сколько денег было у Пети?
  4. Лодка плыла 2 ч со скоростью 12,3 км/ч и 4 ч со скоростью 13,2 км/ч. Найдите среднюю скорость лодки на всём пути.
  5. Турист прошёл за три дня 48 км. В первый день он прошёл 35 % всего маршрута. Путь пройденный в первый день, составляет 80 % расстояния , пройденного во второй день. Сколько километров прошёл турист в третий день?
  6. В первый день Петя прочитал 40 % всей книги, во второй – 60 % остального, а в третий  - оставшиеся 144 страницы. Сколько всего страниц в книге?

Вариант 2

  1. Найдите среднее арифметическое чисел:  26,3; 20,2; 24,7; 18.
  2. В школе 800 учащихся. Сколько пятиклассников в этой школе, если известно, что их количество составляет 12 % количества всех учащихся?
  3. Насос перекачал в бассейн 42  воды, что составляет 60 % объёма бассейна. Найдите объём бассейна.
  4. Автомобиль ехал 3 ч со скоростью 62,6 км/ч и 2 ч со скоростью 65 км/ч. Найдите среднюю скорость автомобиля на всём пути.
  5. Токарь за три дня изготовил 80 деталей. В первый день он выполнил 30 % всей работы. Известно, что количество деталей, изготовленных в первый день, составляет 60 % количества деталей , изготовленных во второй день. Сколько деталей изготовил токарь в третий день?
  6. В первый день тракторная бригада вспахала  30 % площади всего поля, во второй –  75% остального, а в третий  - оставшиеся 14 га. Найдите площадь поля.

Вариант 3

  1. Найдите среднее арифметическое чисел:  26,4; 42,6; 31,8; 15.
  2. В магазин завезли 600 кг овощей. Картофель составляет 24% всех завезённых овощей. Сколько килограммов картофеля завезли в магазин?
  3. За первый день турист прошёл расстояние 18 км, что составляет 40 % всего пути, который он должен преодолеть. Найдите длину пути, который должен пройти турист.
  4. Катер плыл 1,5 ч со скоростью 34 км/ч и 2,5 ч со скоростью 30 км/ч. Найдите среднюю скорость катера на всём пути.
  5. За три дня оператор набрал на компьютере 60 страниц. В первый день было выполнено    35 % всей работы. Объём работы, выполненной в первый день, составляет 70 % работы, выполненной во второй день. Сколько страниц было набрано в третий день?
  6. За первый час было продано 84 % всего мороженого, за второй – 78 % остального, а за третий – оставшиеся 44 порции. Сколько порций мороженого было продано за три часа?

Вариант 4

  1. Найдите среднее арифметическое чисел:  43,6; 21,8; 32,4; 11.
  2. Площадь парка равна 40 га. Площадь озера составляет 15 % площади парка. Найдите площадь озера.
  3. За первый час движения автомобиль преодолел расстояние 72 км, что составляет 24 % длины всего пути, который ему надо проехать. Найдите общий путь, который преодолел автомобиль.
  4. Черепаха ползла 2 ч со скоростью 15,3 м/ч и 3 ч со скоростью 12, 4 м/ч. Найдите среднюю скорость черепахи на всём пути.
  5. Три насоса наполнили водой бассейн объёмом 320 . Первый насос заполнил бассейн на 30 %, что составляет 80 % объёма воды, которую перекачал второй насос. Найдите объём воды, которую перекачал третий насос.
  6. В первый день турист прошёл 20% всего пути, во второй – 60 % остального, а в третий – оставшиеся 24 км. Найдите длину пути, который прошёл турист за три дня.

Контрольная работа № 10

Обобщение и систематизация знаний учащихся

за курс математики 5 класса

Вариант 1

  1. Найдите значение выражения:  (4,1 – 0,66 : 1,2) ∙ 0,6.
  2. Миша шёл из одного села в другое 0,7 ч по полю и 0,9 ч через лес, пройдя всего 5,31 км. С какой скоростью шёл Миша через лес, если по полю он двигался со скоростью 4,5 км/ч?
  3. Решите уравнение: 9,2𝑥 – 6,8𝑥 + 0,64 = 1
  4. Ширина прямоугольного параллелепипеда равна 4 см, что составляет   его длины, а высота составляет 40 % длины. Вычислите объем параллелепипеда.
  5. Выполните действия:   20 : ( + ) – ( – ) : 5.
  6. Среднее арифметическое четырёх чисел равно 1,4, а среднее арифметическое трёх других чисел – 1,75. Найдите среднее арифметическое этих семи чисел.

Вариант 2

  1. Найдите значение выражения:  (0,49 : 1,4 – 0,325) ∙ 0,8.
  2. Катер плыл 0,4 ч по течению реки и 0,6 ч против течения, преодолев всего 16,8 км. С какой скоростью плыл катер по течению, если против течения он плыл со скоростью 16 км/ч?
  3. Решите уравнение: 7,2𝑥 – 5,4𝑥 + 0,55 = 1
  4. Ширина прямоугольного параллелепипеда равна 3,6 см, что составляет   его длины, а высота составляет 42 % длины. Вычислите объем параллелепипеда.
  5. Выполните действия:   30 : () + ( – ) : 7.
  6. Среднее арифметическое трёх чисел равно 2,5, а среднее арифметическое двух других чисел – 1,7. Найдите среднее арифметическое этих пяти чисел.

Вариант 3

  1. Найдите значение выражения:  (5,25 – 0,63 : 1,4) ∙ 0,4.
  2. Пётр шёл из  села к озеру 0,7 ч по одной дороге, а возвратился по другой дороге за  0,8 ч, пройдя всего 6,44 км. С какой скоростью шёл Пётр к озеру, если возвращался он  со скоростью 3,5 км/ч?
  3. Решите уравнение: 7,8𝑥 – 4,6𝑥 + 0,8 = 12.
  4. Ширина прямоугольного параллелепипеда равна 4,8 см, что составляет   его длины, а высота составляет 45 % длины. Вычислите объем параллелепипеда.
  5. Выполните действия:   10 : ( + ) – ( + 1) : 6.
  6. Среднее арифметическое пяти чисел равно 2,3, а среднее арифметическое трёх других чисел – 1,9. Найдите среднее арифметическое этих восьми чисел.

Вариант 4

  1. Найдите значение выражения:  (4,4 – 0,63 :1,8) ∙ 0,8.
  2. Автомобиль ехал 0,9 ч по асфальтированной дороге и 0,6 ч по грунтовой, проехав всего 93,6 км. С какой скоростью двигался автомобиль по асфальтированной дороге, если по грунтовой он ехал со скоростью 48 км/ч?
  3. Решите уравнение: 3,23𝑥 + 0,97𝑥 + 0,74 = 2.
  4. Ширина прямоугольного параллелепипеда равна 3,2 см, что составляет   его длины, а высота составляет 54 % длины. Вычислите объем параллелепипеда.
  5. Выполните действия:   50 : () – ( – ) : 9.
  6. Среднее арифметическое шести чисел равно 2,8, а среднее арифметическое четырёх других чисел – 1,3. Найдите среднее арифметическое этих десяти чисел.


По теме: методические разработки, презентации и конспекты

Рабочая программа по математике к учебнику Мерзляк А. Г.

Рабочая программа опирается на УМК: 1.         Мерзляк А.Г. Математика : 5 класс : учебник для учащихся общеобразовательных учреждений / А.Г. Мерзляк, В.Б....

Рабочая программа по математике А.Г.Мерзляк, Математика 5 ( 5 часов в неделю)

Рабочая программа содержит пояснительную записку, тематическое и календарное планирование, темы проектных работ. Рассчитана на общеобразовательный класс....

Рабочая программа по математике А.Г.Мерзляк, Математика 5+ Н.А. Ерганжиев ,Наглядная геометия ( 7 часов в неделю)

Рабочая программа рассчитана на преподавание математики в классе с углубленным изучением математики, 7 часов в неделю...

Рабочая программа по математике А.Г.Мерзляк, Математика 6 ( 5 часов в неделю)

Рабочая программа содержит пояснительную записку, тематическое и календарное планирование, темы проектных работ...

Рабочая программа по математике А.Г.Мерзляк, Математика 5 класс

Рабочая программа по математике А.Г.Мерзляк, Математика 5 класс ( 5 часов в неделю)...

Рабочая программа по математике А.Г.Мерзляк, Математика 6 класс

Рабочая программа по математике А.Г.Мерзляк, Математика 6 класс ( 5 часов в неделю)...