Элективный курс "Юный математик"
рабочая программа по математике (5 класс) на тему

Васильева Кристина Валерьевна

Актуальность создания программы факультатива по математике для учащихся 5 классов. Факультативные занятия имеют большое значение для развития личности, только здесь в полной мере можно осуществить индивидуальный и дифференцированный подход. Сюда приходят не за отметкой, а за радостью познания, своего собственного открытия, только здесь идёт оценка развития учащегося в сравнении с самим собой, а не соответствие нормам и требованиям стандарта образования.

Скачать:

ВложениеРазмер
Файл programma_po_elektivu_yunyy_matematik.docx58.87 КБ

Предварительный просмотр:

Управление образования Администрации Первомайского района

Томской области Муниципальное бюджетное общеобразовательное учреждение

Ореховская средняя общеобразовательная школа

Принята  на заседании педагогического совета школы

Протокол № ____

 от «__»____________201___г.

               

«Утверждено»

Директор

МБОУ  Ореховской СОШ    

_____________/______________/

                                 ФИО

Приказ №________

от «___»_____________201___г.

РАБОЧАЯ УЧЕБНАЯ ПРОГРАММА

факультативного курса по математике

« Юный математик»

5  (пятый)

Программу составила: Васильева Кристина Валерьевна

учитель математики

I квалификационной категории

                                                                                       Орехово 2015

Пояснительная записка

Рабочая программа факультативного курса по математике составлена на основе  федерального государственного образовательного стандарта основного общего образования.  

Актуальность создания программы факультатива по математике для учащихся 5 классов. Факультативные занятия имеют большое значение для развития личности, только здесь в полной мере можно осуществить индивидуальный и дифференцированный подход. Сюда приходят не за отметкой, а за радостью познания, своего собственного открытия, только здесь идёт оценка развития учащегося в сравнении с самим собой, а не соответствие нормам и требованиям стандарта образования. В этом смысле, олимпиады являются  для учащихся как раз той выраженной в баллах оценкой своего развития. Кроме того, ребята получают возможность сравнить себя и свои достижения со сверстниками из других школ, городов и даже стран. Особенно интересен в этом отношении Всероссийский математический конкурс «Кенгуру»,  дистанционные олимпиады по сети Интернет («Ребус», олимпиад «имени Олехника») и Интернет-карусели, где работу оценивает беспристрастный компьютер, а результат можно увидеть во всероссийском масштабе, но минус в том, что рассуждения и стиль мышления ребёнка никому не интересны. Участие в муниципальном и региональном этапе Всероссийской олимпиады школьников  позволяют раскрыть потенциал каждого школьника.

Структура программы концентрическая, т.е. одна и та же тема может изучаться как в 5, так и в 6, 7 классах. Это связано с тем, что на разных ступенях обучения дети могут усваивать один и тот же материал, но уже  разной степени сложности с учетом приобретенных ранее знаний.

Общая характеристика факультативного курса

 Факультатив  позволяет планомерно вести внеурочную деятельность по предмету; позволяет расширить и углубить знания по математике, различные формы проведения занятий, способствуют повышению интереса к предмету, рассмотрение более сложных заданий олимпиадного характера, способствует развитию логического мышления учащихся; работа в разновозрастной группе способствует обмену опытом и социализации учащихся.

Основная цель программы: создание условия для побуждения и развития устойчивого интереса учащихся к математике и её приложениям, развитие творческого и логического мышления, подготовке к олимпиадам и конкурсам различного уровня.

Задачи:

1. Овладение комплексом математических знаний, умений и навыков необходимых:

а) для повседневной жизни и профессиональной деятельности, не связанной с математикой;

б) для изучения на современном уровне школьных предметов естественно-научного и гуманитарного циклов;

  в) для изучения математики в любой из форм непрерывного образования;

2. Формирование умения ставить перед собой цель, достигать её, не ущемляя прав окружающих людей;

 3. Формирование умения адекватно себя оценивать и самостоятельно делать выбор, адекватный своим способностям;  

4. Развитие внимания, памяти;

5. Формирование навыков поиска информации, работы с учебной и научно-популярной литературой, каталогами, компьютерными источниками информации;

 6. Повышение уровня владения учащимися родным языком с точки зрения правильности и точности выражения мыслей в активной и пассивной речи;

7. Формирование навыком научно-исследовательской работы.  

Место факультативного курса в учебном плане

 Программа факультатива по математике рассчитана на 34 часа в год  при 1 часе в неделю. Программой предусмотрено проведение теоретических и практических занятий.

                     

Ценностные ориентиры содержания факультативного курса.

 Формировать основы гражданской личности на базе: чувства сопричастности и гордости за свою Родину, народ, историю; восприятия мира как единого и целостного при разнообразии культур, национальностей, религий. Формирование психологических условий развития общения на основе: доброжелательности, доверия и внимательности к людям, готовности к сотрудничеству и дружбе, оказанию помощи тем, кто в ней нуждается; признавать право каждого на собственное мнение. Развитие ценностно-смысловой сферы личности на основе общечеловеческих  принципов нравственности и гуманизма: принятие и уважения ценностей семьи и общества, школы, коллектива; формирование  и развитие этических чувств – стыда, вины, совести. Развитие умения учиться – как первого шага к самообразованию: формирование самоуважения ,готовности открыто выражать и отстаивать свою     позицию, адекватно оценивать свои поступки.  

Личностные, метапредметные и предметные

результаты освоения факультативного курса.

 Изучение математики на факультативе в 5 классе  направлено на достижение целей.

 Личностные:

  • формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
  • развитие логического и критического мышления; культуры речи, способности к умственному эксперименту;
  • воспитание качеств личности, способность принимать самостоятельные решения;
  • формирование качеств мышления;
  • развитие интереса к математическому творчеству и математических способностей;

Метопредметные:

  • развитие представлений о математике как форме описания и методе познания действительности;
  • формирование общих способов интеллектуальной деятельности,  характерных для математики;
  • оценивать уровень владения тем или иным учебным действием (отвечать на вопрос «что я не знаю и не умею?» и «что мне для этого нужно»).
  • развивать логическое мышление, так как логика – это искусство рассуждать, умение делать правильные выводы;
  • развивать творческое мышление учащихся через решение задач исследовательского характера;
  • оценивать весомость приводимых доказательств и рассуждений («убедительно, ложно, истинно, существенно, не существенно»);

Предметные:

  • овладение математическими знаниями и умениями, необходимыми для продолжения образования, изучения смежных дисциплин.

Учащиеся должны уметь:

  • использовать геометрический язык для описания предметов окружающего мира в простейших случаях;
  • строить простейшие геометрические фигуры, складывать из бумаги простейшие фигурки – оригами.
  • Проводить опыты. Делать выводы и обобщения. Вычислять  объёмы.

Содержание изучаемого курса

В данном разделе рассмотрены основные темы курса. Указаны разделы по каждой теме с кратким их описанием. Приведены примеры заданий для каждого раздела.( Темы приведены ниже).

Формы и виды контроля.

Соревнования,  портфолио, выставки, конкурсы, фестивали.

Планируемые результаты:

  • учащиеся должны научиться анализировать задачи, составлять план решения, решать задачи, находить рациональные, оригинальные способы решения, делать выводы;                                        
  • решать задачи на смекалку, на сообразительность;    решать олимпиадные задачи;                    
  • работать в коллективе и самостоятельно;  расширить  свой математический кругозор;                                                                            
  • пополнить свои математические знания;   научиться работать с дополнительной литературой;                                                                
  • уметь проводить математическое исследования;    
  • уметь использовать математические модели для решения задач из различных областей знаний.

Результатом деятельности учащихся на факультативных занятиях является проведение математических и межпредметных исследований,   участие в муниципальных и региональных олимпиадах, всероссийских конкурсах,  Интернет-олимпиадах, научно-практических конференциях  по математике.

                   

Календарно-тематическое планирование  факультативного курса «Юный математик»

 Класс: 5

Учитель: Васильева Кристина Валерьевна

Кол-во часов за год:

Всего: 34

В неделю: 1

№ урока

Содержание материала

Характеристика основных видов деятельности ученика

Кол-во часов

Дата проведения

всего

теория

практика

План

Факт

1

Вводное занятие: «Что такое математика?» История математики, счёта, систем счисления

Развивать интереса к предмету, желание изучать предмет.

1,5

1,5

2

Приёмы и методы быстрого
счёта

2

1

1

3

Симметрия в жизни
человека

Уметь видеть фигуры на плоскости и в пространстве. Развивать художественный вкуса, умение видеть геометрию в окружающем нас мире.

2

1

1

4

Решение практических задач по расчёту семейного бюджета

Применять и переводить в различные единицы.

1

-

1

5

Статистический анализ данных. Проведение исследования на практике. Обработка данных.

Проводить опыты.  Развивать комбинаторный стиль мышления.  Делать выводы и обобщения.

1

-

1

6

Идеи и методы решения нестандартных задач

2

 1

1

7

Доказательство от противного

Уметь  делать выводы и обобщения.

1

1

-

8

Чётность

2

1

2

9

Графы

1

1

-

10

Принцип Дирихле

1

-

11

Делимость и остатки

1

-

1

12

Раскраски

 Развивать творческое мышление.

2

-

2

13

Математические игры. Выигрышные стратегии

1

1

14

Решение занимательных задач

 1

 -

 1

15

Задачи на разрезание и со спичками.

Уметь видеть фигуры на плоскости и в пространстве. Развивать навыки работы с чертежными инструментами. Уметь строить перпендикулярные прямые. Проводить опыты. Делать выводы и обобщения.

1,5

0,5

1

16

Магические квадраты

Развивать комбинаторный стиль мышления. Развивать творческое мышление

1

1

17

Фокусы с разгадыванием чисел

1

-

1

18

Поиск ошибок в решениях-ловушках

1

-

1

19

Логические задачи. Парадоксы.

2

1

1

20

Задачи на переливание

Проводить опыты. Делать выводы и обобщения. Вычислять  объёмы.

1

1

21

Участие в олимпиадах, конкурсах, каруселях, играх и турнирах

5

-

5

22

Подготовка и участие в неделе «Математики»

2

-

2

Итого

34

12

22

 

Описание материально- технического обеспечение образовательного процесса

А.Я. Канель-Белов, А.К. Ковальджи Как решают нестандартные задачи. Москва, МЦНМО, 2009

В.И. Арнольд Задачи для детей от 5 до 15 лет. Москва, МЦНМО, 2007

Н.Я. Виленкин и др. Комбинаторика. Москва, МЦНМО, 2007

Журналы «Квант» и «Математика в школе» разных лет

Я.И.Перельман, Занимательная алгебра. Москва, «Наука», 1974

А.В.Шевкин, Школьная олимпиада по математике. Москва, «Русское слово», 2002

Всероссийская школа математики и физики «Авангард» тесты, 2007

А.В. Фарков, Математические олимпиады в школе, 5-11 класс. Москва, Айрис-Пресс, 2004

А.В. Фарков, Математические кружки в школе 5-8 классы. Москва, Айрис-пресс, 2006

Л.Ф. Пичурин, За страницами учебника алгебры: Книга для учащихся 7-9 классов. Москва, Просвещение, 1990.

Л.Ю. Березина, Графы и их применение. Москва, «Просвещение», 1979

Всем кто учится. http://www.alleng.ru

Математическое образование. Прошлое и настоящее. http://www.mathedu.ru

Единая коллекция цифровых образовательных ресурсов. http://school-collection.edu.ru

 Конкур Ребус help@konkurs-rebus.ru

Всероссийские олимпиады и конкурсы.vot-zadachka.ru/

                         

                                                       

                                                         Организация занятий

        Для успешного достижения поставленных целей и задач  при формировании факультативной группы необходимо учитывать не только желание ребенка заниматься, но и его конкретные математические способности. Это можно выявить при беседе с учителем начальной школы, а так же по результатам исследований психологов и итогам школьных олимпиад, провести вводное тестирование за курс начальной школы. На основе полученных данных необходимо организовать на занятиях индивидуальный подход, использовать работу в группах учащихся с разным уровнем математической подготовки. Оптимальный состав учебной группы – 15 человек. Продолжительность одного занятия 45 минут.  

Формы проведения занятий: тестирование;   лекции и рассказы учителя;  доклады               учащихся;  практикум по  решению задач;  решение задач, повышенной трудности;              игровые занятия;  практические занятия, в том числе по изготовлению материальных моделей; работа с различными источниками информации: научно - популярной литературой, компьютерными программами, Интернетом;    участие в Интернет-олимпиадах, Интернет-каруселях и конкурсах по математике;  подготовка и проведение недели «Математики. Информатики. Физики» в школе; работа над исследовательскими проектами.

Содержание изучаемого курса

В данном разделе рассмотрены основные темы курса. Указаны разделы по каждой теме с кратким их описанием. Приведены примеры заданий для каждого раздела.( Темы приведены ниже).

Тема: «Приёмы счёта»

Приемы быстрого сложения, вычитания, умножения, деления и возведения в квадрат. Например, умножение на 4, на 10, на 11, на 25 и др. Использование сочетательного свойства сложения и  распределительного свойства умножения, выбор рационального способа действий.

 Тема: «Арифметические задачи»

Арифметические задачи таят огромные возможности для того, чтобы научить решающих их школьников самостоятельно думать, анализируя неочевидные жизненные ситуации, приходя к пониманию первопричин разных явлений природы и жизни, а также к оценке возможных последствий принимаемых решений. Обучение арифметике включает в качестве одного из основных элементов воспитание умения ориентироваться в различных по своей природе взаимоотношениях между величинами.                                                                                                 Примеры:1)   арифметические задачи для простой формулы 3-1=2:

·      Сколько распилов делят бревно на 3 части?

·      На сколько число братьев в Таниной семье больше числа сестёр, если у Тани на 3 брата больше, чем сестёр?

·      Сколько сотен лет назад основан университет, который будет через 100 лет праздновать свой трёхсотлетний юбилей?

2)   Из стакана с молоком перелили ложку в банку с чаем, а потом такую же ложку смеси перелили обратно в стакан. Чего больше в результате: молока в банке с чаем или чая в стакане молока?

3)   Если продать 20 коров, то заготовленного сена хватит на 10 дней дольше, если же прикупить 30, то запас сена исчерпается на 10 днями раньше. Сколько было коров и на сколько дней заготовлено сено?

4)   Пароход идёт вниз по течению 2 часа, вверх – 3 часа. Сколько времени между теми же двумя пунктами вниз по течению проплывёт бревно?

Тема: «Идеи и методы решения нестандартных задач»

Решение олимпиадных задач служит хорошей подготовкой к будущей научной деятельности, заостряет интеллект. Многие рассматриваемые на факультативных занятиях задачи, интересны и сами по себе и служат материалом для описания ряда общематематических идей решения задач. На занятиях используется два способа для освоения новых методов и идей решения задач:

1)   Сначала рассмотреть описание идеи, потом разобрать примеры, потом решать задачи на эту тему;

2)   Сразу начать с задачи, чтобы учащиеся сами смогли найти идею, а уже потом рассмотреть её авторское решение и разобрать примеры.

Рассматриваемые методы:

1)   Поиск родственных задач(поиск более простой «родственной» задачи, рассмотрение частного случая, разбиение на подзадачи, обобщить задачу, свести к более простой);

2)   Доказательство от противного;

3)   Чётность: многие задачи легко решаются, если заметить, что некоторая величина имеет определённую чётность. Например чётность суммы или произведение, разбить объекты на пары, заметить чередование состояний, раскрасить объекты в два цвета. Чётность в играх – это возможность сохранить чётность некоторой величины при своём ходе;

4)   Обратный ход: если в задаче задана некоторая операция, и эта операция обратима, то можно сделать «обратный ход» от конечного результата к исходным данным;

5)   Подсчёт двумя способами: для составления уравнений некоторую величину выражают двумя способами;

6)   Индукция: рассматривается доказательство цепочки утверждений для n=1, 2, 3 и т.д. и выявленная закономерность записывается в общем виде для любого n.

Тема: «Графы»

Во многих ситуациях удобно изображать объекты точками, а связи между ними – линиями и стрелками. Такой способ представления называется графом.

Примеры:

1)   У трех подружек – Ксюши, Насти и Оли – новогодние карнавальные костюмы и шапочки к ним белого, синего и фиолетового цветов. У Насти цвет костюма и шапочки совпали, у Ксюши ни костюм, ни шапочка не были фиолетового цвета, а Оля была в белой шапочке, но цвет костюма у неё не был белым. Как были одеты девочки?

2)   Расположите на плоскости 6 точек и соедините их непересекающимися линиями так, чтобы из каждой точки выходили четыре линии.

3)   Выпишите в ряд цифры от 1 до 9 так, чтобы число, составленное из двух соседних цифр, делилось на одно из чисел 7 или 13.

Тема: «Принцип Дирихле»

Если десять кроликов сидят в девяти ящиках, то в некотором ящике сидят не меньше двух кроликов.

Примеры:

1)   В школе 400 учеников. Докажите, что хотябы двое из них родились в один день года.

2)   На дворе гуляли кролики и куры. Всего 40 ног и 16 голов. Сколько было кроликов и сколько кур?

3)   Кот Базилио пообещал Буратино открыть великую тайну, ели он составит чудесный квадрат 6Х6 из чисел +1, -1, 0 так, чтобы все суммы по строкам и столбцам и по большим диагоналям были различны. Помогите Буратино.

Тема: «Делимость и остатки»

В теме рассматривается теория остатков. Доказываются признаки делимости в общем виде.

Пример:Можно ли разделить на 3 одинаковых букета 21 розу и 17 гвоздик, чтобы в каждом букете были и розы, и гвоздики.

 Тема: «Раскраски»

На факультативе рассматривается три типа задач:

1)   Раскраска уже дана, например шахматная доска;

2)   Раскраску с заданными свойствами надо придумать;

3)   Раскраска используется как идея решения.

Примеры:

1)   Из шахматной доски вырезали две противоположные угловые клетки. Докажите, что оставшуюся фигуру нельзя разрезать на «домино» из двух клеток.

2)   Можно ли все клетки доски 9х9 обойти конём по одному разу и вернуться в исходную клетку?

3)   Дан куб 6х6х6. Найдите максимально возможное число параллелепипедов 4х1х1 (со сторонами параллельными сторонам куба), которые можно поместить в этот куб без пересечений.

Тема: «Игры»

Математическая игра характеризуется тем, что позиция может изменяться только в зависимости от хода игрока (шахматы, шашки, крестики-нолики, игра Баше). В математических играх существует понятие выигрышная стратегия, т.е. набор правил, следуя которым, один из игроков обязательно выиграет (независимо от того как играет соперник).

Идеи разработки стратегии игры:

1)   соответствие (основано на симметричности хода),

2)   решение с конца (попадание в выигрышную позицию),

3)   передача хода (заставить противника попасть в проигрышную позицию).

Тема: «Логические задачи»

1) Задачи на переливание. Задачи решаются в два способа с обязательным оформлением в таблице. Уровень сложности зависит от количества ходов-переливаний.

Пример:Как с помощью двух ведер по 2 л и 7 л можно набрать из реки ровно 3 л воды.

2) Задачи на взвешивание. Решение рассматривается в виде «дерева» ходов.

Пример:Как с помощью весов без гирь можно ровно за два взвешивания отделить из девяти одинаковых монет одну фальшивую, которая легче по весу?.

3) Логические задачи, решаемые с помощью таблиц. Решение оформляется в виде таблиц, где знаком «+» отмечается возможная, реальная ситуация, а знаком «-» - невозможная по условию задачи. Сложность варьируется от 3-х элементов сравнивания (более простые задачи) до 5-ти (более сложные).

Пример:В одном дворе живут четыре  друга. Вадим и шофер старше Сергея; Николай и слесарь занимаются боксом; электрик – младший из друзей; по вечерам Антон и токарь играют в домино против Сергея и электрика. Определите профессию каждого из друзей.

Тема: «Знакомство с геометрией»

Все занятия носят практический и игровой характер.

1)      Простейшие геометрические фигуры (круг, треугольник, квадрат, прямоугольник, ромб, параллелограмм, трапеция), их свойства. Даются определения фигур, рассматриваются «видимые» свойства. Круг, его радиус, диаметр, хорда. Треугольник. Виды треугольников. Равнобедренный треугольник. Равносторонний треугольник. Прямоугольный треугольник, его элементы, египетский треугольник.

2)      Задачи на разрезание. Одни из самых сложных задач. Разрезать фигуру на требуемое число частей так, чтобы из них можно было составить другую заданную фигуру. Можно использовать игру-головоломку «Танграм».

3)      Геометрические головоломки со спичками. Проводится под девизом «Спички детям - не игрушка!». Если есть такая возможность, то у каждого ребенка на столе вместо спичек – счетные палочки. Выкладывая из них заданную фигуру, он с помощью заданного количества перемещений палочек должен получить другую фигуру.

Дидактические материалы для проведения занятий

 Материалы для вводного тестирования 5 класс:

1.  Наполненный доверху водой сосуд весит 5 кг, а наполненный наполовину - 3 кг 250 г. Сколько воды вмещает сосуд?

А. 3 кг.

Б.3 кг 500 г.

В.3кг 750 г .

Г.4 кг

2.  Дима сложил квадратный листок бумаги пополам, потом еще раз и еще раз.
В центре того, что получилось, он проделал дырку, а потом снова развернул лист. Сколько дырок он увидел?

А. 2.           

Б. 4.

В. 8.

Г. 16.

3.  У Гарри Поттера есть волшебные очки, в которых он видит все чёрное - белым, а все белое – чёрным. Гарри посмотрел через эти очки на прямоугольник, изображенный справа. Что он увидел?

А.            

Б. 

В. 

Г.

4.  На прямой отметили несколько точек. Затем отметили середины отрезков, соединяющих соседние точки. Всего отмеченными оказались 137 точек. Сколько точек отметили вначале?

А. 69.           

Б. 68.

В. 67.

Г. 63.

5.  Буквами от А до И обозначены цифры от 1 до 9: каждая буква обозначает одну цифру и каждая цифра обозначена одной буквой. Две буквы, стоящие рядом обозначают соответствующее двузначное число. Г + Д = Б; Б´З = ЖВ; Б = В´А;
Б´В = ЕИ; Д > Г; Б < З. Чему равно З + И?

А. 15.           

Б. 13.

В. 12.

Г. 11.

6.  От кубика, склеенного из бумаги (см. рисунок справа), отрезали уголок. Этот кубик разрезали по некоторым ребрам, развернули и получили одну из фигурок A - Г. Какую?

А.

Б. 

В. 

Г. 

7.  На каждой кочке в маленьком болотце сидят не меньше, чем по 3 лягушки, а всего лягушек – 145 .Тогда число кочек в этом болотце не может равняться …

А. 23.

Б.31.

В.44.

Г.55.

8.       Вы стоите против дома, номер которого 53 (нечётная сторона улицы). Мимо скольких домов по этой стороне вы должны пройти, чтобы дойти до дома, номер которого в три раза больший, если на улице нет домов с одинаковыми номерами?

А. 51.

Б.53.

В.54.

Г.106.

9.       Товарный поезд имеет длину 1 км и движется со скоростью 50 км/ч. За какое время он пройдёт тоннель длиной 1 км?

А. 1 мин. 12 с.

  Б.2 мин. Б. 2 мин.40 с.

В.2 мин. 24 с.

Г.1 мин. 20 с.

10.  Автобусу нужно 30 минут, чтобы добраться из пункта А в пункт Б. Автобусы из пункта А отправляются каждые две минуты. Одновременно с одним из автобусов из пункта А в пункт Б отправился автомобиль. Автомобилю требуется 7,5 минут, чтобы добраться до пункта Б. Сколько автобусов обгонит на своем пути автомобиль?

А. 6.        

Б. 8. 

В 10. 

Г 12. 

11.  Четверо друзей играли в футбол. Вот что они говорят:

Тарас: «Гол забил либо я, либо Саша».

Саша: «Гол забил не я и не Дима».

Дима: «Один из них сказал неправду».

Данила: «Ты ошибаешься, Дима».

Кто же забил гол, если только трое из них сказали правду?

А. Тарас.

Б.Саша.

В.Дима.

Г.Данила.

12.  Четверо работников должны были выполнить определённую работу за определённый срок. Каждый из них работал с одинаковой скоростью, однако после первого дня работы двое уволились. Двое оставшихся могут закончить работу на два дня позже запланированного срока. Сколько дней первоначально отводилось для выполнения всего объёма работы?

А. 2.

Б.3.

В.4.

Г.6.

13.  14 ребят отправились в лодочный поход. У четверых из них вместе с каждым из них в походе участвовало трое братьев, у каждого из шестерых ребят было по 2 брата – также участников похода. У двух человек вместе с ними в поход отправилось по одному брату. И только у двоих ребят – участников похода не было ни одного брата в этом походе. Сколько всего матерей дожидалось возвращения своих детей из похода?

А. 9.           

Б. 8.

В. 7.

Г. 6.

14.  На двух чашах весов стояли 24 гири: на левой чаше только пятикилограммовые, на правой – только трёхкилограммовые. Весы находятся в равновесии. На какой чаше больше гирь и на сколько?

А. На лево
, на 4.

Б.На левой, на 6.

В.На правой, на 4.

Г.На правой, на 6.

15.  В урне лежит 30 шаров, белых и красных. Известно, что среди любых 12 шаров имеется хотя бы один белый, а среди любых 20 – хотя бы один красный. На сколько белых шаров больше, чем красных?

А. 6.           

Б. 7.

В. 8.

Г. 9.

 

Итоговая олимпиада 5 класс

1.      Внуку столько же месяцев, сколько бабушке лет. Вместе им 91 год. Сколько лет бабушке?

2.      В семье четверо детей  5, 8, 13 и 15 лет. Детей зовут Аня, Боря, Вера, Галя. Сколько лет Гале, если одной из девочек 5 лет? Аня старше Бори, а сумма лет Ани и Веры делится на 3.

3.      Сумма уменьшаемого, вычитаемого и разности равна 48. Найти уменьшаемое.

4.      Шесть девочек выбирали водящую с помощью считалки. Та, на которую выпадало последнее слово, выходила из круга, и счет повторялся вновь. Считающая девочка каждый круг начинала с себя и в результате стала водящей, причем счет каждый раз заканчивался перед ней. Какое наименьшее число слов могло быть в считалке?

5.      Билет на стадион стоил 160 руб. После того как цену на билет снизили, количество посетителей увеличилось в 2 раза, а сбор увеличился на 25%. На сколько рублей снизили цену на билет?

6.      Группа туристов должна была прибыть на вокзал в 5 ч. К этому времени с турбазы за ними должен был приехать автобус. Однако, прибыв на вокзал в 3ч 10минут, туристы пошли пешком на турбазу. Встретив на дороге автобус, они сели в него и прибыли на турбазу на 20 минут раньше предусмотренного времени. С какой скоростью шли туристы до встречи с автобусом, если скорость автобуса 60 км/ч?

7.      От Нижнего Новгорода до Астрахани пароход идет 5 суток, а обратно – 7 суток. Сколько времени будут плыть плоты от Нижнего Новгорода до Астрахани?

8.      Ученик  измерил длину и ширину прямоугольника. Он умножил целую часть длины на целую часть ширины и получил 14; умножил целую часть длины на дробную часть ширины и получил 5,6; умножил дробную часть длины на целую часть ширины и получил 1. Определить  площадь прямоугольника.

 

 

     

                                                 


По теме: методические разработки, презентации и конспекты

Программа элективного курса "Математика и романтика"

Разработана программа элективного курса для старшеклассников...

Элективный курс "Математика и музыка" для 10-11 классов

Курс призван расширить знания учащихся о музыкальном искусстве в контексте одного из многочисленных аспектов его бытования, сосредоточить их внимание на осмыслении различных точек соприкосновения иску...

элективный курс математика 9 класс

Рабочая программа элективного курса по математике 9 класс...

ПРОГРАММА Элективного курса «математика в задачах» (10-11 классы)

I. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА.Эта программа рассчитана для гуманитарных и общеобразовательных классов средней школы.Настоящая программа предусматривает наиболее полное развитие целостной математической сос...

Рабочая программа элективного курса "Математика в экономике"

  Актуальность элективного курса «Математика в экономике» состоит в том, что он дополняет и развивает школьный курс математики, а так же является информационной поддержкой выбранного...

рабочая программа элективный курс математика-9

В курсе планиметрии встречаются задачи, связанные с «разрезанием фигуры на части и перекладыванием этих частей» при вычислении площадей многоугольников. В основе этого метода лежит понятие рав...