Урок математики в 6 классе.Тема урока: "Сравнение чисел".
презентация урока для интерактивной доски по математике (6 класс) по теме

Балан Валентина Михайловна

Урок математики в 6 классе с использованием интерактивной доски по теме: «Сравнение чисел».

Скачать:


Предварительный просмотр:

МОУ «Парканская ООШ №2 им. Д.И.Мищенко»                                                            

Урок математики

в 6 классе

                                                     

Подготовила:                                                                                    

        Балан Валентина Михайловна,

       учитель математики и информатики

I категории

C:\Documents and Settings\User\Local Settings\Temporary Internet Files\Content.Word\Новый рисунок.png

с. Парканы

2017 год

План-конспект урока по математике 6 класс

Тема урока: Сравнение чисел Слайд 1

Тип урока:   урок изучения нового материала 

Цели и задачи: Слайд 2

  • Сформировать у учащихся умение сравнивать положительные и отрицательные числа как с помощью  координатной прямой, так и с помощью правил сравнения;
  • Развивать навыки взаимоконтроля и самооценки в приобретении новых знаний и умений;
  • Формировать познавательный интерес на уроках математики.

Оснащение урока:  интерактивная доска, учебник, карточки - задания – распечатанные.

План урока.

  1. Организационный момент. Настрой на работу.
  2. Этап подготовки учащихся к активному и сознательному усвоению нового    материала.   Постановка целей.
  3. Этап усвоения новых знаний. Работа в группах.
  4. Физминутка.
  5. Этап закрепления изученного материала.
  6.  Самостоятельная работа.
  7. Проверка самостоятельной работы.
  8.  Подведение итогов урока. Рефлексия.
  9.  Домашнее задание.

Ход урока

1. Организационный момент. Вступительное слово  учителя: Здравствуйте, ребята.

Я рада снова видеть вас на уроке. Какой сегодня замечательный день! Еще может быть будет ветер и снег, но на улице устанавливается все более теплая температура воздуха. Я желаю вам сегодня на уроке постоянно работать, ставить новые цели и стремиться к их достижению.      Римский философ, историк Сенека еще в 1в. н.э. писал:

Слайд 3                                                                 «Не для школы, а для жизни мы учимся!»

 2. Повторение (устно) Слайд 4. (Работа с градусниками). Давайте вернемся к погоде.

  1. Какими числами, мы обозначаем  теплую температуру воздуха? (+).
  2. Сразу возникает вопрос: А – холодную? (Отрицательными).
  3. А где наглядно мы можем увидеть все эти числа? (при измерении температуры, обозначении глубин и вершин). На каком из градусников мы это видим?
  4. А как такие числа называются? (противоположные)
  5. Чем отличаются друг от друга положительные и отрицательные числа?  (знаками)
  6.  Что можно сказать про число 0? (число, которое не относится ни к положительным, ни к отрицательным.)
  7. Слайд 5. (Голубые парашютики). Посмотрите на доску. Что это изображено? (координатная прямая).
  8. Дайте определение координатной прямой. Расположите числа на координатной прямой. Ребята, а сейчас, когда вы расположили данные числа – назовите пары противоположных.
  9. Ребята, давайте сейчас вспомним, какие числа называются целыми? (Натуральные – что это за числа?, противоположные им числа и нуль). Верно!!!
  10. Слайд 6. (модуль целого числа). А теперь дайте определение модуля числа.  (Модулем числа а называют расстояние (в единичных отрезках) от начала координат до точки А (а.))
  11. Каким числом не может быть модуль числа?
  12. Чему равен модуль положительного числа? Пример.
  13. Чему равен модуль отрицательного числа?  Пример.
  14. Чему равен модуль нуля? Пример.

Послушайте сказку «Совещание чисел».

Слайд 7. (Сиреневые воздушные шары). Однажды  в царстве чисел случилась сильная буря. Все числа дробные, целые, положительные и отрицательные  перемешались, никто не знал своего места. Нуль решил навести порядок в царстве чисел и собрал всех на совещание. А совещание проходило на координатной прямой. 

НУЛЬ стал держать речь. «Так дорогие числа, отрицательные и положительные. Вправо на координатной прямой друг за другом, начиная с 1,  располагайтесь целые положительные числа, а влево начиная с -1 целые отрицательные. Нуль хорошо понимал, что в математике и без дробных чисел не обойтись. Между ними встаньте вы, дробные числа. Согласились числа с нулём, встали на координатной прямой, как посоветовал НУЛЬ.

 Стало множество  чисел на координатной прямой упорядочено,  но теперь у  жителей то и дело стали возникать разногласия. Им стало важно различать, какое из них больше, а какое меньше.

Ребята, давайте поможем числам решить эту проблему, а заодно и сами научимся что делать? Правильно. Сравнивать числа. Итак,  запишем в тетради число и тему урока.

Тема урока «Сравнение чисел».

Давайте определим для себя цели урока

Цель нашего урока - научиться сравнивать любые числа между собой, а также сравнивать числа  с нулём.

3. Этап усвоения новых знаний. Работа в группах.

А какие числа мы уже умеем сравнивать? Положительные  (натуральные, десятичные дроби, обыкновенные дроби)

   Слайд 8.    Ребята, в 5 классе, когда мы сравнивали числа, пользовались координатным лучом и простым правилом: «Из двух чисел больше то, которое расположено правее». Например, 9>7, т.к. 9 правее. Это же правило касается любых чисел.

  1. Сравните числа:

 15     28

13,7   8,6

12,3   12,29

 80        79

125      0

-12    20

-12    -15

-15     0

Почему не смогли сравнить последние пары чисел? (Не умеем сравнивать отрицательные числа между собой и числа с разными знаками).

Сейчас вы выступите в роли исследователей.

Работаем в группах. Каждая группа работает над своим исследованием.  Исследование осуществляется по алгоритму. Пользуясь алгоритмом исследования, вы его выполняете. А потом выводите определенное правило.                                                                                                              

        Слайд 9.     Группа № 1      

  1. Отметьте точки на координатной прямой: А(3), В(5), С(2), D(), О (0)
  2.  Объясните, как расположены точки относительно нуля?
  3. Сравните с помощью координатной прямой числа:

 3 и 0         5 и 0            2 и 0           и 0

4. Сформулируйте правило сравнения любого положительного числа и нуля.

Приведите свои примеры.

                                                

                                                             0

Примерный ответ: выполнив задание, мы пришли к выводу, что

 

Слайд 10.    Группа 2.

  1. Отметьте на координатной прямой точки: А(-3), В( -5), С(-2), D(-), O(0).
  2. Объясните, как расположены точки относительно нуля?
  3. Что говорят про координату точки, которая расположена левее.
  4. Сравните с помощью координатной прямой числа:

-3 и 0                   -5 и 0          0 и -2               0 и -

 5. Сделайте вывод о сравнении любых отрицательных чисел с нулем.

Приведите свои примеры.

        

                                                       0                                    

Учащиеся решают, исследуют, обсуждают задания, помогают друг другу, открывают новые для себя правила, делают выводы. От каждой группы по 1 человеку показывают результаты своих исследований. А теперь давайте попробуем объединить эти два правила: Слайд 11.    

Нуль _________________ любого отрицательного числа, но _____________ любого положительного числа.

После того, как защитились 2 группы. Хорошо поработали, передохнуть от работы поможет физминутка.  

Слайд 12.    4. Физминутка. (2 мин).

Молодцы!  Передохнули, продолжим.

Я хотела бы напомнить о том, как важно следить за осанкой. Правильная осанка не только делает фигуру стройной, но и  придаёт человеку бодрость, уверенность в себе. Слайд 13.    Рене Декарт, который  дал геометрическое истолкование положительных и отрицательных чисел, был не только математиком и физиком, но и философом. Одно из его изречений на доске: «Наблюдайте за вашим телом, если хотите, чтобы ум работал правильно». Давайте примем правильную осанку и продолжим работу.                          

Продолжают защиту следующие две группы. Проговаривают правило, которое получили. Особое внимание уделим сравнению двух отрицательных чисел. Чем меньше по модулю число, тем оно больше, т.к. правее.  А если нет координатной прямой, то как сравнить? Например, –130 и –100? (сравнение по модулю). Если сравнивать по модулям из двух отрицательных чисел меньше то, чей модуль больше.

Слайд 14.    Группа 3.

1. Отметьте на координатной прямой точки: А(-3), В ( -2).
2. Сравните числа -3 и -2 с помощью координатной прямой.
3. Найдите модули этих чисел. Сравните модули.
4. Отметьте на координатной прямой точки: С(-5), D(-1). 
5. Найдите модули этих чисел. 
6.Сравните модули. 
7.Сделайте вывод, как сравнить числа -5 и -1 по их модулям.
Выведите правило сравнения отрицательных чисел

        

                                                       0    

Слайд 15.    Группа 4.

1.Отметьте на координатной прямой точки: А(-5), В(2), С(-), D(4), O(0).

2. Точки с какими координатами лежат левее точки О(0), какие правее О(0)?

3.Выполните сравнение:

-5 и 2          -и 2             4 и -           -5 и 4                  -и 4

4. Какое больше из чисел положительное или отрицательное?

5. Сформулируйте правило сравнения отрицательных и положительных чисел.

Приведите свои примеры.

        

                                                    0    

       

5. Этап закрепления изученного материала                                       

Мало правила понимать, надо их хорошо запомнить. Ещё раз расскажите их друг другу (стр. 159). Работа в парах. (Дети пользуются учебником). А теперь от теории перейдём к практике.

Слайд 16 (пустой, 17.    Выполним письменно: №№ 958, 960 с комментированием у доски.

а) 8,9      9,2                       г) -5,5     -7,2                ж) -        

б) -240     3,2                     д) -96,9       -90,3          з) -2      -4

в) 4,5      -800                    е) -1000       0

6. Самостоятельная работа.

         Слайд 18.    У вас на столах есть рабочие листы с заданиями. Положим их перед собой. Работаем на листах в клетку. Какое задание? (сравнить числа) Какими правилами мы воспользуемся? На эту работу 5 минут. Для подсказки пользуемся схемами в тетради.

                     СРАВНИТЕ:                                                           ОТВЕТЫ:

ВАРИАНТ №1

ВАРИАНТ №2

ВАРИАНТ №1

ВАРИАНТ №2

-35 и 41

31 и -45

-35 < 41

5-6 «+» отметка 5

31 > -45

-26 и -31

-42 и -15

-26 > -31

4-5 «+» отметка 4

-42 <  -15

 и

 и

 <  

3-2 «+» отметка 3

 >

 и

 и

 >

 >

-45,3 и -57,8

-96,9 и -90,3                    

-45,3 > -57,8

-96,9 < -90,3                    

−370 и 0

−521 и 0

−370 < 0

−521 < 0

7. Проверка самостоятельной работы.

Выполнили работу. Хорошо! Теперь каждый из вас будет исполнять роль учителя. Обменяйтесь карточками, выполним взаимопроверку. Если вы сомневаетесь, то сверьтесь с доской  (на доске – правильные ответы.)

С помощью взаимопроверки ученики оценивают работу товарища:    

Поднимите  руки у кого всё выполнено правильно? У кого «4», «3»? На какое правило больше ошибок. Разбор ошибок на доске. Какой знак необходимо вставить? Вывод.

Слайд 19.    Выполним устно № 961.

Пользуясь таблицей, назовите города сначала в порядке возрастания их высоты над уровнем Мирового океана, а затем в порядке убывания.

 http://gdz-fox.ru/images/matematika/GDZ-6-Vilenkin/977/31052016-18.png

8. Выполним задание №2. Слайд 20.    

5,2

0,7

-5,3

-4,1

-7,8

5,9

-14,5

10,14

-6,4

10,130

0

У

Г

Х

М

Р

П

Б

А

А

Т

А

8

7

4

5

2

9

1

10

3

9

6

Для того, чтобы расшифровать слово вам необходимо расставить числа в порядке возрастания. Затем заменить каждое число буквой. У вас получится слово. Что означает это слово, мы узнаем из следующего слайда.

Расшифрованное слово запишите в тетради.

Ответ: БРАХМАГУПТА

Слайд 21.    Историческая справка.

Брахмагупта – индийский математик, который жил в VII веке.

Одним из первых он начал использовать положительные и отрицательные числа. Положительные числа он называл «имущество», отрицательные – «долги».

9. Подведение итогов урока. Рефлексия

- Что сегодня нового вы узнали на уроке?

- Что понравилось? Что не понравилось?

Ребята, я прошу вас дать самооценку своей деятельности на уроке:

В конце урока подводится итог работы, уровень достижения цели:

·     Сегодня на уроке я научился…

·     Мне было интересно…

·     Мне было трудно:

·     Я понял …

·     Я почувствовал, что…

·     Больше всего мне понравилось…

·     Мне было интересно…

·     Своей работой на уроке я доволен (не совсем, не доволен), потому что…

Оцени себя сам!

поняли ли теорию:

как запомнили правила:

эмоциональный настрой

правила понял (а) все

+

запомнил (а) все правила

+

чувствовал (а) свободно, комфортно

 +

правила понял (а) не все

±

не все правила запомнил (а)

±

чувствовал (а) стеснительно, не комфортно

±

ничего не понял (а)

-

не запомнил (а)

ни одного

-

ничего не понравилось, чувствовал (а) плохо

-

Слайд 22.    Домашнее задание. П. 29 А) выучить правила сравнения чисел;

Б) № 979, № 981 / №974



Предварительный просмотр:

Группа № 1      

  1. Отметьте точки на координатной прямой: А(3), В(5), С(2), D(), О (0)
  2.  Объясните, как расположены точки относительно нуля?
  3. Сравните с помощью координатной прямой числа:

 3 и 0         5 и 0            2 и 0           и 0

4. Сформулируйте правило сравнения любого положительного числа и нуля.

                                                

                                                    0

Примерный ответ: выполнив задание, мы пришли к выводу, что

 

 Группа 2

  1. Отметьте на координатной прямой точки: А(-3), В( -5), С(-2), D(-), O(0).
  2. Объясните, как расположены точки относительно нуля?
  3. Что говорят про координату точки, которая расположена левее.
  4. Сравните с помощью координатной прямой числа:

-3 и 0                   -5 и 0          0 и -2               0 и -

 5. Сделайте вывод о сравнении любых отрицательных чисел с нулем.

        

                                                                0                                    

Группа 3.                                                                                                                              1. Отметьте на координатной прямой точки: А(-3), В ( -2).
2. Сравните числа -3 и -2 с помощью координатной прямой.
3. Найдите модули этих чисел. Сравните модули.________________________________________
4. Отметьте на координатной прямой точки: С(-5), D(-1). 
5. Найдите модули этих чисел.   

6.Сравните модули. ______________________________________
7.Сделайте вывод, как сравнить числа -5 и -1 по их модулям.
Выведите правило сравнения отрицательных чисел

        

                                                       0  

 

Группа 4.  

1.Отметьте на координатной прямой точки: А(-5), В(2), С(-), D(4), O(0).

2. Точки с какими координатами лежат левее точки О(0), какие правее О(0)?

3.Выполните сравнение:

-5 и 2          -и 2             4 и -           -5 и 4                  -и 4

4. Какое больше из чисел положительное или отрицательное?

5. Сформулируйте правило сравнения отрицательных и положительных чисел.

        

                                                            0

       



Предварительный просмотр:

Фамилия, Имя____________________________________________________

Вопросы, задания

Ответы

1

Какими числами, мы обозначаем  теплую температуру воздуха?

2

Какими числами, мы обозначаем  холодную температуру воздуха?

3

А где наглядно мы можем увидеть все эти числа?

4

Как такие числа называются?

5

Чем отличаются друг от друга положительные и отрицательные числа?

6

Что можно сказать про число 0?

7

Дайте определение координатной прямой.

8

Какие числа называются целыми?

9

Дайте определение модуля числа.

10

Каким числом не может быть модуль числа?

11

Чему равен модуль положительного числа?

12

Чему равен модуль отрицательного числа?  

13

Чему равен модуль нуля?

Группа № 1       Отметьте точки на координатной прямой: А(3), В(5), С(2), D(), О (0)

  1.  Объясните, как расположены точки относительно нуля?
  2. Сравните с помощью координатной прямой числа:

 3 и 0         5 и 0            2 и 0           и 0

4. Сформулируйте правило сравнения любого положительного числа и нуля.

                                                

                                                             0

Примерный ответ: выполнив задание, мы пришли к выводу, что

 

 Группа 2. Отметьте на координатной прямой точки: А(-3), В( -5), С(-2), D(-), O(0).

  1. Объясните, как расположены точки относительно нуля?
  2. Что говорят про координату точки, которая расположена левее.
  3. Сравните с помощью координатной прямой числа:

-3 и 0                   -5 и 0          0 и -2               0 и -

 5. Сделайте вывод о сравнении любых отрицательных чисел с нулем.

        

                                                                 0                                    

Нуль _________________ любого отрицательного числа, но _____________ любого положительного числа.

 Группа 3. 1. Отметьте на координатной прямой точки: А(-3), В ( -2).
2. Сравните числа -3 и -2 с помощью координатной прямой.
3. Найдите модули этих чисел. Сравните модули.________________________________________
4. Отметьте на координатной прямой точки: С(-5), D(-1). 
5. Найдите модули этих чисел.   6.Сравните модули. ______________________________________
7.Сделайте вывод, как сравнить числа -5 и -1 по их модулям.
Выведите правило сравнения отрицательных чисел

        

                                                       0    

Группа 4.  1.Отметьте на координатной прямой точки: А(-5), В(2), С(-), D(4), O(0).

2. Точки с какими координатами лежат левее точки О(0), какие правее О(0)?

3.Выполните сравнение:

-5 и 2          -и 2             4 и -           -5 и 4                  -и 4

4. Какое больше из чисел положительное или отрицательное?

5. Сформулируйте правило сравнения отрицательных и положительных чисел.

        

                                                                       0

       

 Выполним письменно: №958 Отметьте на прямой числа 0; 1; -3; -5; 8; -7; -2; -10 и 3. Сравните: а) 0 и 3; б) 0 и -5; в) 8 и 0; г) -7 и 0; д) -2 и 3; е) -7 и 1; ж) 1 и -10; з) 3 и -3; и) 1 и 8; к) -5 и -3; л) -5 и -10; м) -2 и -5. 

№960 а) 8,9 *  9,2             г) -5,5 * -7,2                ж) -  *   

б) -240 *  3,2                     д) -96,9  * -90,3          з) -2  * -4

в) 4,5  *  -800                    е) -1000  * 0

Самостоятельная работа.  СРАВНИТЕ

ВАРИАНТ №1

ВАРИАНТ №2

-35 и 41

31 и -45

-26 и -31

-42 и -15

 и

 и

 и

 и

-45,3 и -57,8

-96,9 и -90,3                    

−370 и 0

−521 и 0

 Для того, чтобы расшифровать слово вам необходимо расставить числа в порядке возрастания. Затем заменить каждое число буквой. У вас получится слово.

5,2

0,7

-5,3

-4,1

-7,8

5,9

-14,5

10,14

-6,4

10,130

0

У

Г

Х

М

Р

П

Б

А

А

Т

А

Оцени себя сам!

поняли ли теорию:

как запомнили правила:

эмоциональный настрой

правила понял (а) все

+

запомнил (а) все правила

+

чувствовал (а) свободно, комфортно

 +

правила понял (а) не все

±

не все правила запомнил (а)

±

чувствовал (а) стеснительно, не комфортно

±

ничего не понял (а)

-

не запомнил (а)

ни одного

-

ничего не понравилось, чувствовал (а) плохо

-

Домашнее задание. П. 29

А) выучить правила сравнения чисел ; Б) № 979, № 981 / №974



Предварительный просмотр:

Для работы с «Уроком для ИД» ( интерактивной доски) необходимо:

  1. скачать все три части архива;
  2. Разархивировать (извлечь файлы в текущую папку), выделив все три архива одновременно.

По теме: методические разработки, презентации и конспекты

Конспект урока математики, 5 класс. Тема: Равносильность предложений

Конспект урока математики, 5 класс. Тема: Равносильность предложенийУчебник  Дорофеева и Петерсон "Математика,5"Программа "Школа 2000"...

Конспект урока математики. 1 класс. Тема: Закрепление полученных знаний;примеры вида:□+-2. Нахождение суммы в пределах 10.

Программа «Школа России». Для детей, обучающихся по программе V вида.Тип урока: закрепление знаний....

урок математики 6 класс тема Числовые неравенства

Открытый урок по теме Умножение и деление числовых неравенств по предмету математика в 6 классе. Урок построен в виде урока - практикума. План урока.1.Сообщение темы и постановка целей урока2. Пр...

Урок математики 6 класс Тема "Умножение десятичных дробей"

Дан  подробный конспект урока, представленный на Фестивале педагогических идей "Открытый урок"...

Конспект урока математики 1 класс Тема: "Количество предметов. Понятия: "Много-мало"

Конспек урока математики в 1 классе для детей с тяжелой степенью умственной отсталости. На тему: "Количество предметов. Понятия: "Много-мало".На этом уроке дети в игровой форме познакомятся с количест...

Урок-экскурсия по государственному историко-культурному музею-заповеднику "Московский Кремль". Математика 5 класс. Тема "Десятичная запись дробных чисел".

Урок по математике в 5 классе по теме "Десятичная запись дробных чисел" содержит конспект урока и презентацию.Цели урока: научить читать и записывать десятичные дроби, переводить обыкновенную дробь со...

урок математики, 5 класс. Тема: Дробь как результат деления натуральных чисел (УМК Никольского и др.)

Цель урока: записать результат измерения с помощью числа нового вида.Тип урока. Постановка учебной задачи.Задачи урока.Образовательные – содействовать развитию поиска решения задачи, содействовать раз...