Программа по математике 6 класс
календарно-тематическое планирование по математике (6 класс) на тему

Черняева Марина Михайловна

Программа по математике 6 класс по учебнику Бунимович

Скачать:


Предварительный просмотр:

Муниципальное образование «Городской округ Мытищи Московской области»

МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

«СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА №25»

УТВЕРЖДАЮ

Директор МБОУ СОШ №25

________________Карпенко Т.В.

«_____»___________ 2016г.

Рабочая программа

по математике для 6 А класса

на 2016-2017 учебный год

   

Составитель:

Учитель математики Черняева М.М.

2016г

. Пояснительная записка

Программа  составлена  в соответствии с требованиями учебного плана основного общего образования МБОУ СОШ № 25, предмет математика изучается в 5 классе 5 часов в неделю. Программа по математике разработана в соответствии с требованиями Федерального государственного  общеобразовательного стандарта основного общего образования (Федеральный государственный общеобразовательный стандарт основного общего образования -М.: Просвещение, 2011 г.). С рекомендациями авторской программы по математике ( Примерная программа по математике авторы: Е.А.  Бунимович  и  др.  изд.  «Просвещение «  2014г.). В соответствии со следующими нормативно-правовыми документами:

  • Федеральный закон от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации»;
  • Федеральный компонент государственного стандарта общего образования  (Приказ Минобрнауки РФ от 31 декабря 2015г № 1577)
  • Федеральный перечень учебников, рекомендованных (допущенных) Министерством образования и науки РФ к использованию в образовательном процессе в общеобразовательных учреждениях на 2015-2016 гг.

Состав учебно-методического комплекта «Сферы» по математике:

  • Математика. Арифметика. Геометрия. 5 класс: учебник для общеобразовательных учреждений/ Е.А.Бунимович, Г.В.Дорофеев, С.Б.Суворова и др., «Просвещение» 2010 г.
  • Математика. Арифметика. Геометрия. Задачник-тренажёр. 5 класс: пособие для учащихся общеобразовательных учреждений/ Е.А.Бунимович, Л.В.Кузнецова, С.С.Минаева и др., «Просвещение» 2010 г.
  • Математика. Арифметика. Геометрия. Тетрадь-тренажёр. 5 класс: пособие для учащихся общеобразовательных учреждений/ Е.А.Бунимович, Л.В.Кузнецова, С.С.Минаева и др., «Просвещение» 2010 г.
  • Математика. Арифметика. Геометрия. Тетрадь-экзаменатор. 5 класс: пособие для учащихся общеобразовательных учреждений/ Е.А.Бунимович, Л.В.Кузнецова, С.С.Минаева и др., «Просвещение» 2010 г.

Математическое образование является обязательной и неотъемлемой частью общего образования на всех ступенях школы.

Приоритетными целями обучения математики в 6 классах являются:

  • продолжение формирования центральных математических понятий (число, величина, геометрическая фигура), обеспечивающих преемственность и перспективность математического образования школьников;
  • подведение учащихся на доступном для них уровне к осознанию взаимосвязи математики и окружающего мира, пониманию математики как части общей культуры человечества;
  • развитие интеллектуальных и творческих способностей учащихся, познавательной активности, критичности мышления, интереса к изучению математики;
  • формирование умения извлекать информацию, новое знание, работать с учебным математическим текстом.

Изучение учебного предмета «Математика» направлено на решение следующих задач:

  • формирование вычислительной культуры и практических навыков вычислений;
  • формирование универсальных учебных действий, ИКТ-компетентности, основ учебно-исследовательской и проектной деятельности, умений работы с текстом;
  •  овладение формально-оперативным алгебраическим аппаратом и умением применять его к решению математических и нематематических задач; изучение свойств и графиков элементарных функций, использование функционально-графических представлений для описания и анализа реальных зависимостей;
  • ознакомление с основными способами представления и анализа статистических данных, со статистическими закономерностями в реальном мире, приобретение элементарных вероятностных представлений;
  • освоение основных фактов и методов планиметрии, формирование пространственных представлений;
  • интеллектуальное развитие учащихся, формирование качеств мышления, характерных для математической деятельности и необходимых человеку для полноценного функционирования в обществе;
  • развитие логического мышления и речевых умений: умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический);
  •  формирование представлений об идеях и методах математики как научной теории, о месте математики в системе наук, о математике как форме описания и методе познания действительности;
  • развитие представлений о математике как части общечеловеческой культуры, воспитание понимания значимости математики для общественного прогресса.

Место учебного предмета в учебном плане

Базисный учебный план на изучение математики в  6-ых классах отводит 5 учебных часов в неделю в течение каждого года обучения, всего 170 часов.

Согласно Базисного образовательного плана в 5-6 классах изучается предмет интегрированный «Математика», который включает в себя арифметический материал, элементы алгебры и геометрии, а также элементы вероятностно-статистической линии.

Программа позволяет добиваться следующих результатов освоения образовательной программы основного общего образования.

Личностные:

у учащихся будут сформированы:

1) ответственное отношение к учению;

2) готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;

3) умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

4) начальные навыки адаптации в динамично изменяющемся мире;

5) экологическая культура: ценностное отношение к природному миру, готовность следовать нормам природоохранного, здоровьесберегающего поведения;

6) формирование способности к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

7) умение контролировать процесс и результат учебной математической деятельности;

у учащихся могут быть сформированы:

1) первоначальные представления о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;

2) коммуникативная компетентность в общении и сотрудничестве со сверстниками в образовательной, учебно-исследовательской, творческой и других видах деятельности;

3) критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

4) креативность мышления, инициативы, находчивости, активности при решении арифметических задач.

Метапредметные:

регулятивные

учащиеся научатся:

1) формулировать и удерживать учебную задачу;

2) выбирать действия в соответствии с поставленной задачей и условиями её реализации;

3) планировать пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;

4) предвидеть уровень усвоения знаний, его временных характеристик;

5) составлять план и последовательность действий;

6) осуществлять контроль по образцу и вносить необходимые коррективы;

7) адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;

8) сличать способ действия и его результат с заданным эталоном с целью обнаружения отклонений и отличий от эталона;

учащиеся получат возможность научиться:

1) определять последовательность промежуточных целей и соответствующих им действий с учётом конечного результата;

2) предвидеть возможности получения конкретного результата при решении задач;

3) осуществлять констатирующий и прогнозирующий контроль по результату и по способу действия;

4) выделять и формулировать то, что усвоено и что нужно усвоить, определять качество и уровень усвоения;

5) концентрировать волю для преодоления интеллектуальных затруднений и физических препятствий;

познавательные

учащиеся научатся:

1) самостоятельно выделять и формулировать познавательную цель;

2) использовать общие приёмы решения задач;

3) применять правила и пользоваться инструкциями и освоенными закономерностями;

4) осуществлять смысловое чтение;

5) создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения задач;

6) самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

7) понимать сущность алгоритмических предписаний и уметь действовать в соответствии с предложенным алгоритмом;

8) понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;

9) находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

учащиеся получат возможность научиться:

1) устанавливать причинно-следственные связи; строить логические рассуждения, умозаключения (индуктивные, дедуктивные и по аналогии) и выводы;

2) формировать учебную и общепользовательскую компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);

3) видеть математическую задачу в других дисциплинах, в окружающей жизни;

4) выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

5) планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

6) выбирать наиболее рациональные и эффективные способы решения задач;

7) интерпретировать информации (структурировать, переводить сплошной текст в таблицу, презентовать полученную информацию, в том числе с помощью ИКТ);

8) оценивать информацию (критическая оценка, оценка достоверности);

9) устанавливать причинно-следственные связи, выстраивать рассуждения, обобщения;

коммуникативные

учащиеся научатся:

1) организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников;

2) взаимодействовать и находить общие способы работы; работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;

3) прогнозировать возникновение конфликтов при наличии разных точек зрения;

4) разрешать конфликты на основе учёта интересов и позиций всех участников;

5) координировать и принимать различные позиции во взаимодействии;

6) аргументировать свою позицию и координировать её с позициями партнёров в сотрудничестве при выработке общего решения в совместной деятельности.

Предметные:

учащиеся научатся:

1) работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики (словесный, символический, графический), обосновывать суждения, проводить классификацию;

2) владеть базовым понятийным аппаратом: иметь представление о числе, дроби, об основных геометрических объектах (точка, прямая, ломаная, угол, многоугольник, многогранник, круг, окружность);

3) выполнять арифметические преобразования, применять их для решения учебных математических задач;

4) пользоваться изученными математическими формулами;

5) самостоятельно приобретать и применять знания в различных ситуациях для решения несложных практических задач, в том числе с использованием при необходимости справочных материалов, калькулятора и компьютера;

6) пользоваться предметным указателем энциклопедий и справочников для нахождения информации;

7) знать основные способы представления и анализа статистических данных; уметь решать задачи с помощью перебора возможных вариантов;

учащиеся получат возможность научиться:

1) выполнять арифметические преобразования выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;

2) применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов;

3) самостоятельно действовать в ситуации неопределённости при решении актуальных для них проблем, а также самостоятельно интерпретировать результаты решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений.

Планируемые результаты обучения математике, 6 класс

Раздел «Арифметика»

Ученик научится:

  • понимать особенности десятичной системы счисления;
  • понимать и использовать термины и символы, связанные с понятием степени числа; вычислять значения выражений, содержащих степень с натуральным показателем;
  • применять понятия, связанные с делимостью натуральных чисел;
  • оперировать понятием десятичной дроби, выполнять вычисления с десятичными дробями;
  • понимать и использовать различные способы представления дробных чисел; переходить от одной формы записи чисел к другой, выбирая подходящую для конкретного случая форму;
  • оперировать понятиями отношения и процента;
  • решать текстовые задачи арифметическим способом;
  • применять вычислительные умения в практических ситуациях, в том числе требующих выбора нужных данных или поиска недостающих;
  • распознавать различные виды чисел: натуральное, положительное, отрицательное, дробное, целое, рациональное; правильно употреблять и использовать термины и символы, связанные с рациональными числами;
  • отмечать на координатной прямой точки, соответствующие заданным числам; определять координату отмеченной точки;
  • сравнивать рациональные числа;
  • выполнять вычисления с положительными и отрицательными числами;
  • округлять десятичные дроби;
  • работать с единицами измерения величин;
  • интерпретировать ответ задачи в соответствии с поставленным вопросом.

Ученик получит возможность научиться:

  • проводить несложные доказательные рассуждения;
  • исследовать числовые закономерности и устанавливать свойства чисел на основе наблюдения, проведения числового эксперимента;
  • применять разнообразные приемы рационализации вычислений;
  • выполнять вычисления с рациональными числами, сочетая устные и письменные приемы вычислений, применяя при необходимости калькулятор;
  • контролировать вычисления, выбирая подходящий для ситуации способ;
  • использовать в ходе решения задач представления, связанные с приближенными значениями величин.

Раздел «Алгебра»

Ученик научится:

  • использовать буквы для записи общих утверждений, правил, формул;
  • оперировать понятием «буквенное выражение»;
  • осуществлять элементарную деятельность, связанную с понятием «уравнение»;
  • выполнять стандартные процедуры на координатной плоскости: строить точки по заданным координатам, находить координаты отмеченных точек

.

Ученик получит возможность:

  • приобрести начальный опыт работы с формулами: вычислять по формулам, в том числе используемым в реальной практике; составлять формулы по условиям, заданным задачей или чертежом;
  • переводить условия текстовых задач на алгебраический язык, составлять уравнение, буквенное выражение по условию задачи;
  • познакомиться с идеей координат, с примерами использования координат в реальной жизни.

Раздел «Геометрия»

Наглядная геометрия.

Ученик научится:

  • распознавать на чертежах, рисунках, в окружающем мире плоские геометрические фигуры, конфигурации фигур, описывать их, используя геометрическую терминологию и символику, описывать свойства фигур;
  • распознавать на чертежах, рисунках, в окружающем мире пространственные геометрические фигуры, конфигурации фигур, описывать их, используя геометрическую терминологию и символику, описывать их свойства;
  • изображать геометрические фигуры и конфигурации с по мощью чертежных инструментов и от руки на нелинованной бумаге;
  • делать простейшие умозаключения, опираясь на знание свойств геометрических фигур, на основе классификаций углов, треугольников, четырехугольников;
  • вычислять периметры, площади многоугольников, объемы пространственных геометрических фигур;
  • распознавать на чертежах, рисунках,  находить в окружающем мире и изображать симметричные фигуры.

Ученик получит возможность научиться:

  • исследовать и описывать свойства геометрических фигур, используя наблюдения, измерения, эксперимент, моделирование, в том числе компьютерное моделирование и эксперимент;
  • конструировать геометрические объекты, используя различные материалы;
  • определять вид простейших сечений пространственных фигур, получаемых путем предметного или компьютерного моделирования.

Содержание курса математики 6 класса

  1. Дроби и проценты (20 ч)

Повторение: понятие дроби, основное свойство дроби, сравнение и упорядочивание дробей, правила выполнения арифметических действий с дробями.  Преобразование выражений с помощью основного свойства дроби. Решение основных задач на дроби.

Понятие процента. Нахождение процента от величины.

Столбчатые диаграммы: чтение и построение. Круговые диаграммы.

Основные цели - систематизировать знания об обыкновенных дробях, закрепить и развить навыки действий с обыкновенными дробями, познакомить учащихся с понятием процента, а также развить умение работать с диаграммами.

  1.  Прямые на плоскости и в пространстве (7 ч)

Пересекающиеся прямые. Вертикальные углы, их свойство. Параллельные прямые. Построение параллельных и перпендикулярных прямых. Примеры параллельных и перпендикулярных прямых в окружающем мире.

Расстояние между двумя точками, от точки до прямой, между двумя параллельными прямыми, от точки до плоскости.

Основные цели - создать у учащихся зрительные образы всех основных конфигураций, связанных с взаимным расположением двух прямых на плоскости и в пространстве, сформировать навыки построения параллельных и перпендикулярных прямых, научить находить расстояние от точки до прямой, между двумя параллельными прямыми.

  1. Десятичные дроби (9 ч)

Десятичная запись дробей. Представление обыкновенной дроби в виде десятичной и десятичной в виде обыкновенной; критерий обратимости обыкновенной дроби в десятичную. Изображение десятичных дробей точками на координатной прямой. Сравнение десятичных дробей. Десятичные дроби и метрическая система мер.

Основные  цели  - ввести понятие десятичной дроби, выработать навыки чтения  записи десятичных дробей, их сравнения; сформировать умения переходить от десятичной дроби к обыкновенной, выполнять обратные преобразования.

  1.  Действия с десятичными дробями (27 ч)

Сложение и вычитание десятичных дробей. Умножение и деление десятичной дроби на 10. Умножение и деление десятичных дробей. Округление десятичных дробей. Приближенное частное. Выполнение действий с обыкновенными и десятичными дробями.

Основная   цель - сформировать навыки действий с десятичными дробями, а также навыки округления десятичных дробей.

  1. Окружность (9 ч)

Взаимное расположение прямой и окружности, двух окружностей. Касательная к окружности и ее построение. Построение треугольника по трем сторонам. Неравенство треугольника. Круглые тела.

Основные   цели - создать у учащихся зрительные образы основных конфигураций, связанных с взаимным расположением прямой и окружности, двух окружностей на плоскости; научить строить треугольник по трем сторонам, сформировать представление о круглых телах (шар, конус, цилиндр).

  1. Отношения и проценты (17 ч)

Отношение чисел и величин. Масштаб. Деление в данном отношении.

Выражение процентов десятичными дробями; решение задач на проценты. Выражение отношения величин в процентах.

Основные   цели - познакомить с понятием "отношение" и сформировать навыки использования соответствующей терминологии; развить навыки вычисления с процентами.

  1. Выражения, формулы, уравнения (15 ч)

Применение букв для записи математических выражений и предложений. Буквенные выражения и числовые подстановки. Формулы. Формулы периметра треугольника, периметра и площади прямоугольника, объема параллелепипеда. Формулы длины окружности и площади круга.

Уравнение. Корень уравнения. Составление уравнения по условию текстовой задачи.

Основные   цели - сформировать первоначальные представления о языке математики, описать с помощью формул некоторые известные учащимся зависимости, познакомить с формулами длины окружности и площади круга.

  1. Симметрия (8 ч)

Осевая симметрия. Ось симметрии фигуры. Центральная симметрия. Построение фигуры, симметричной данной относительно прямой и относительно точки. Симметрия в окружающем мире.

Основные   цели - познакомить учащихся с основными видами симметрии на плоскости; научить строить фигуру, симметричную данной фигуре относительно прямой, а также точку, симметричную данной относительно точки; дать представление о симметрии в окружающем мире.

  1. Целые числа (13 ч)

Числа, противоположные натуральным. "Ряд" целых чисел. Изображение целых чисел точками на координатной прямой. Сравнение целых чисел. Сложение и вычитание целых чисел; выполнимость операции вычитания. Умножение и деление целых чисел; правила знаков.

Основные   цели - мотивировать введение отрицательных  чисел; сформировать умение сравнивать целые числа с опорой на координатную прямую, а также выполнять действия с целыми числами.

  1. Рациональные числа (17 ч)

Отрицательные дробные числа. Понятие рационального числа. Изображение чисел точками на координатной прямой. Противоположные числа. Модуль числа, геометрическая интерпретация модуля. Сравнение рациональных чисел. Арифметические действия с рациональными числами, свойства арифметических действий.

Примеры использования координат в реальной практике. Прямоугольная система координат на плоскости. Координаты точки на плоскости, абсцисса и ордината. Построение точек и фигур на координатной плоскости.

Основные   цели - выработать навыки действий с положительными и отрицательными числами; сформировать представление о декартовой системе координат на плоскости.

  1. Многоугольники и многогранники (9 ч)

Сумма углов треугольника. Параллелограмм и его свойства, построение параллелограмма. Правильные многоугольники. Площади, равновеликие и равносоставленные фигуры. Призма.

Основные   цели - развить знания о многоугольниках; развить представление о площадях, познакомить со свойством аддитивности площади, с идеей перекраивания фигуры с целью определения ее площади; сформировать представление о призме; обобщить приобретенные геометрические знания и умения и научить применять их при изучении новых фигур и их свойств.

  1. Множества. Комбинаторика. (8 ч)

Понятие множества. Примеры конечных и бесконечных множеств. Подмножества. Основные числовые множества и соотношения между ними. Разбиение множества. Объединение и пересечение множеств. Иллюстрация отношений между множествами с помощью кругов Эйлера.

Решение комбинаторных задач перебором всех возможных вариантов.

Случайное событие. Достоверное и невозможное события. Сравнение шансов событий.

Основные   цели - познакомить с простейшими теоретико-множественными понятиями, а также сформировать первоначальные навыки использования теоретико-множественного языка; развить навыки решения комбинаторных задач путем перебора всех возможных вариантов.

Повторение (11 ч)

Темы, входящие в разделы  программы

Кол-во уроков

Характеристика основных видов деятельности ученика (на уровне учебных действий)

Глава 1. Дроби, и проценты (20 уроков)

Обыкновенные дроби. Основное свойство дроби. Сравнение обыкновенных дробей

Уроки 1-2. 

Моделировать в графической и предметной форме обыкновенные дроби (в том числе с помощью компьютера). Преобразовывать, сравнивать и упорядочивать обыкновенные дроби. Соотносить дробные числа с точками координатной прямой. Проводить несложные исследования, связанные с отношениями «больше» и «меньше» между дробями

Арифметические действия с обыкновенными дробями

Уроки 3-6

Выполнять вычисления с дробями. Использовать дробную черту как знак деления при записи нового вида дробного выражения («многоэтажная» дробь). Применять различные способы вычисления значений таких выражений, выполнять преобразование «многоэтажных» дробей. Решать задачи на совместную работу. Анализировать числовые закономерности, связанные с арифметическими действиями с обыкновенными дробями, доказывать в несложных случаях выявленные свойства.

Нахождение части от целого и целого по его части

Уроки 7-11.

.

 

Решать основные задачи на дроби, применять разные способы нахождения части числа и числа по его части. Решать текстовые задачи на дроби, в том числе задачи с практическим контекстом; анализировать и осмысливать текст задачи; моделировать условие с помощью схем и рисунков; строить логическую цепочку рассуждений; выполнять самоконтроль, проверяя ответ на соответствие условию

Проценты; нахождение процентов от величины

Уроки 12-16. 

Объяснять, что такое процент, использовать и понимать стандартные обороты речи со словом «процент». Выражать проценты в дробях и дроби в процентах. Моделировать понятие процента в графической форме. Решать задачи на нахождение нескольких процентов величины, на увеличение (уменьшение) величины на несколько процентов. Применять понятие процента в практических ситуациях. Решать некоторые классические задачи, связанные с понятием процента: анализировать текст задачи, использовать приём числового эксперимента; моделировать условие с помощью схем и рисунков

Представление данных в виде таблиц, диаграмм

Уроки 17-18. 

Объяснять, в каких случаях для представления информации используются столбатые диаграммы, и в каких  круговые. Извлекать и интерпретировать информацию из готовых диаграмм, выполнять несложные вычисления по данным, представленным на диаграмме. Строить в несложных случаях столбчатые и круговые диаграммы по данным, представленным в табличной форме. Проводить исследования простейших социальных явлений по готовым диаграммам

Уроки 19-20. 

Выполнять вычисления с дробями. Преобразовывать, сравнивать и упорядочивать обыкновенные дроби. Соотносить дробные числа с точками координатной прямой. Решать текстовые задачи на дроби и проценты. Исследовать числовые закономерности

Взаимное расположение двух прямых. Пересекающиеся прямые. Перпендикулярные прямые. Вертикальные углы

Уроки 21-22. 

Распознавать случаи взаимного расположения двух прямых. Распознавать вертикальные и смежные углы. Находить углы, образованные двумя пересекающимися прямыми. Изображать две пересекающиеся прямые, строить прямую, перпендикулярную данной. Выдвигать гипотезы о свойствах смежных углов, обосновывать их

Взаимное расположение двух прямых. Параллельные прямые

Уроки 23-24.

Распознавать случаи взаимного расположения двух прямых на плоскости и в пространстве, распознавать в многоугольниках параллельные стороны. Изображать две параллельные прямые, строить прямую, параллельную данной, с помощью чертёжных инструментов. Анализировать способ построения параллельных прямых, пошагово заданный рисунками, выполнять построения. Формулировать утверждения о взаимном расположении двух прямых, свойствах параллельных прямых

Расстояние от точки до прямой, расстояние между параллельными прямыми

Уроки 25-26.

Измерять расстояние между двумя точками, от точки до прямой, между двумя параллельными прямыми, от точки до плоскости. Строить параллельные прямые с заданным расстоянием между ними. Строить геометрическое место точек, обладающих определенным свойством

Урок 27.

Распознавать случаи взаимного расположения двух прямых, распознавать в многоугольниках параллельные и перпендикулярные стороны. Изображать две пересекающиеся прямые, строить прямую, перпендикулярную данной, параллельную данной. Измерять расстояние между двумя точками, от точки до прямой, между двумя параллельными прямыми. Изображать многоугольники с параллельными, перпендикулярными сторонами

Десятичные дроби. Представление десятичной дроби в виде обыкновенной. Единицы измерения длины и массы

Уроки 28-30.

Записывать и читать десятичные дроби. Представлять десятичную дробь в виде суммы разрядных слагаемых. Моделировать десятичные дроби рисунками. Переходить от десятичных дробей к соответствующим обыкновенным со знаменателями 10, 100, 1000 и т.д., и наоборот. Изображать десятичные дроби точками на координатной прямой. Использовать десятичные дроби для перехода от одних единиц, измерения к другим; объяснять значения десятичных приставок, используемых для образования названий единиц в метрической системе мер

Представление обыкновенной дроби в виде десятичной

Уроки 31-32.

Формулировать признак обратимости обыкновенной дроби в десятичную, применять его для распознавания дробей, для которых возможна (или невозможна) десятичная запись. Представлять обыкновенные дроби в виде десятичных. Приводить примеры эквивалентных представлений дробных чисел

Сравнение десятичных дробей

Уроки 33-34.

Распознавать равные десятичные дроби. Объяснять на примерах приём сравнения десятичных дробей. Сравнивать и упорядочивать десятичные дроби. Сравнивать обыкновенную и десятичную дроби, выбирая подходящую форму записи данных чисел. Выявлять закономерность в построении последовательности десятичных дробей. Решать задачи — исследования, основанные на понимании поразрядного принципа десятичной записи дробных чисел.

Уроки 35-36.

Записывать и читать десятичные дроби. Изображать десятичные дроби точками на координатной прямой. Представлять обыкновенные дроби в виде десятичных дробей и десятичные в виде обыкновенных. Сравнивать и упорядочивать десятичные дроби. Использовать эквивалентные представления дробных чисел при их сравнении, при вычислениях. Выражать одни единицы измерения величины в других единицах (метры в километрах, минуты в часах и т.п.)

Арифметические действия с десятичными дробями. Решение текстовых задач арифметическим способом

Уроки 37-41. 

Конструировать алгоритмы сложения и вычитания десятичных дробей; иллюстрировать их примерами. Вычислять суммы и разности десятичных дробей. Вычислять значения сумм и разностей, компонентами которых являются обыкновенная дробь и десятичная, обсуждая при этом, какая форма представления чисел возможна и целесообразна. Выполнять оценку и прикидку суммы десятичных дробей. Решать текстовые задачи, предполагающие сложение и вычитание десятичных дробей

Арифметические действия с десятичными дробями

Уроки 42-44.

Исследовать закономерность в изменении положения запятой в десятичной дроби при умножении и делении её на 10, 100, 000 и т.д. Формулировать правила умножения и деления десятичной дроби на 10, 100, 1000 и т.д. Применять умножение и деление десятичной дроби на степень числа 10 для перехода от одних единиц измерения к другим. Решать задачи с реальными данными, представленными в виде десятичных дробей.

Арифметические действия с десятичными дробями. Решение текстовых задач арифметическим способом

Уроки 45-50.

 

Конструировать алгоритмы умножения десятичной дроби на десятичную дробь, на натуральное число, иллюстрировать примерами соответствующие правила. Вычислять произведение десятичных дробей, десятичной дроби и натурального числа. Вычислять произведение десятичной дроби и обыкновенной, выбирая подходящую форму записи дробных чисел. Вычислять квадрат и куб десятичной дроби. Вычислять значения числовых выражений, содержащих действия сложения, вычитания и умножения десятичных дробей. Выполнять прикидку и оценку результатов вычислений. Решать текстовые задачи арифметическим способом. Решать задачи на нахождение части, выраженной десятичной дробью, от данной величины

Арифметические действия с десятичными дробями. Решение текстовых задач арифметическим способом

Уроки 51-58. 

Обсуждать принципиальное отличие действия деления от других действий с десятичными дробями. Осваивать алгоритмы вычислений в случаях, когда частное выражается десятичной дробью. Сопоставлять различные способы представления обыкновенной дроби в виде десятичной. Вычислять частное от деления на десятичную дробь в общем случае. Решать текстовые задачи арифметическим способом, используя различные зависимости между величинами: анализировать и осмысливать текст задачи, переформулировывать условие, строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответствие условию.

Округление натуральных чисел и десятичных. Прикидка и оценка результата вычислений

Уроки 59-60.

Округлять десятичные дроби «по смыслу», выбирая лучшее из приближений с недостатком и с избытком. Формулировать правило округления десятичных дробей, применять его на практике. Объяснять, чем отличается округление десятичных дробей от округления натуральных чисел. Вычислять приближённые частные, выраженные десятичными дробями, в том числе, при решении задач практического характера. Выполнять прикидку и оценку результатов действий с десятичными дробями

Уроки 61-63.

Формулировать правила действий с десятичными дробями. Вычислять значения числовых выражений, содержащих дроби; применять свойства арифметических действий для рационализации вычислений. Исследовать числовые закономерности, используя числовые эксперимены в том числе с помощью компьютера). Выполнять прикидку и оценку результатов вычислений. Округлять десятичные дроби, находить десятичные приближения обыкновенных дробей. Решать текстовые задачи арифметическим способом, используя различные зависимости между величинами: анализировать и осмысливать текст задачи, переформулировывать условие, извлекать необходимую информацию, моделировать условие с помощью схем, рисунков, реальных предметов; строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответствие условию

Взаимное расположение прямой и окружности. Касательная к окружности

Уроки 64-65. 

Распознавать различные случаи взаимного расположения прямой и окружности, изображать их с помощью чертёжных инструментов. Исследовать свойства взаимного расположения прямой и окружности, используя эксперимент, наблюдение, измерение, моделирование, в том числе компьютерное моделирование. Строить касательную к окружности. Анализировать способ построения касательной к окружности, пошагово заданный рисунками, выполнять построения. Конструировать алгоритм построения изображений, содержащих конфигурацию «касательная к окружности», строить по алгоритму. Формулировать утверждения о взаимном расположении прямой и окружности

Взаимное расположение двух окружностей.

Уроки 66-67

Распознавать различные случаи взаимного расположения двух окружностей, изображать их с помощью чертежных инструментов и от руки. Строить точку, равноудалённую от концов отрезка. Исследовать свойства взаимного расположения прямой и окружности, используя эксперимент, наблюдение, измерение, моделирование, в том числе компьютерное моделирование. Конструировать алгоритм построения изображений, содержащих две окружности, касающиеся внешним и внутренним образом, строить по алгоритму. Формулировать утверждения о взаимном расположении двух окружностей. Сравнивать различные случаи взаимного расположения двух окружностей. Выдвигать гипотезы о свойствах конфигурации «две пересекающиеся окружности равных радиусов», обосновывать их. Строить точки, равноудаленные от концов отрезка.

Изображение геометрических фигур. Построение треугольника по трём сторонам. Неравенство треугольника

Уроки 68-69 

Распознавать различные случаи взаимного расположения прямой и окружности, двух окружностей, изображать их с помощью чертёжных инструментов и от руки. Строить треугольник по трем сторонам, описывать построение. Формулировать неравенство треугольника. Исследовать возможность построения треугольника по трем сторонам, используя неравенство треугольника

Наглядные представления о пространственных фигурах. Шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений

Урок 70

Распознавать цилиндр, конус, шар, изображать их от руки, моделировать, используя бумагу, пластилин, проволоку и др. Исследовать свойства круглых тел, используя эксперимент, наблюдение, измерение, моделирование, в том числе компьютерное моделирование. Описывать их свойства. Рассматривать простейшие комбинации тел: куб и шар, цилиндр и шар, куб и цилиндр, пирамида из шаров. Рассматривать простейшие сечения круглых тел, получаемые путём предметного или компьютерного моделирования, определять их вид. Распознавать развёртки конуса, цилиндра, моделировать конус и цилиндр из развёрток

Уроки 71-72. 

Распознавать различные случаи взаимного расположения прямой и окружности, двух прямых, двух окружностей, изображать их с помощью чертёжных инструментов. Изображать треугольник. Исследовать свойства круглых тел, используя эксперимент, наблюдение, измерение, моделирование, в том числе компьютерное моделирование. Описывать их свойства. Рассматривать простейшие сечения круглых тел, получаемые путём предметного или компьютерного моделироания, определять их вид. Сравнивать свойства квадрата и прямоугольника общего вида. Выдвигать гипотезы о свойствах изученных фигур и конфигураций, объяснять их на примерах, опровергать с помощью контрпримеров

Отношение. Решение текстовых задач арифметическим способом

Уроки 75-76.

Объяснять, как находят отношение одноимённых и разноимённых величин, находить отношения величин. Исследовать взаимосвязь отношений сторон квадратов, их периметров и площадей; длин рёбер кубов, площадей граней и объёмов. Объяснять, что показывает масштаб (карты, плана, чертежа, модели). Решать задачи практического характера на масштаб. Строить фигуры в заданном масштабе

Проценты

Уроки 77—79.

Выражать проценты десятичной дробью, выполнять обратную операцию — переходить от десятичной дроби к процентам Характеризовать доли величины, используя эквивалентные представления заданной доли с помощью дроби и процентов

Нахождение процентов от величины и величины по её процентам. Решение текстовых задач арифметическим способом

Уроки 80-83.

Решать задачи практического содержания на нахождение нескольких процентов величины, на увеличение (уменьшение) величины на несколько процентов, на нахождение величины по её проценту. Решать задачи с реальными данными на вычисление процентов величины, применяя округление, приёмы прикидки. Выполнять самоконтроль при нахождении процентов величины, используя прикидку

Выражение отношения в процентах. Решение текстовых задач арифметическим способом

Уроки 84-87.

Выражать отношение двух величин в процентах. Решать задачи, в том числе задачи с практическим контекстом, с реальными данными, на нахождение процентного отношения двух величин. Анализировать текст задачи, моделировать условие с помощью схем и рисунков, объяснять полученный результат

Уроки 88-89.

Находить отношения чисел и величин. Решать задачи, связанные с отношением величин, в том числе задачи практического характера. Решать задачи на проценты, в том числе задачи с реальными данными, применяя округление, приёмы прикидки

Использование букв для обозначения чисел, для записи свойств арифметических действий

Уроки 90-91.

.

Обсуждать особенности математического языка. Записывать математические выражения с учётом правил синтаксиса математического языка; составлять выражения но условиям задач с буквенными данными. Использовать буквы для записи математических предложений, общих утверждений; осуществлять перевод с математического языка на естественный язык и наоборот. Иллюстрировать общие утверждения, записанные в буквенном виде, числовыми примерами

Буквенные выражения. Числовое значение буквенного выражения

Уроки 92—93.

Строить речевые конструкции с использованием новой терминологии (буквенное выражение, числовая подстановка, значение буквенного выражения, допустимые значения букв). Вычислять числовые значения буквенных выражений при данных значениях букв. Сравнивать числовые значения буквенных выражений. Находить допустимые значения букв в выражении. Отвечать на вопросы задач с буквенными данными, составляя соответствующие выражения

Примеры зависимостей между величинами. Представление зависимостей в виде формул. Вычисления по формулам

Уроки 94-96. 

Составлять формулы, выражающие зависимости между величинами, в том числе по условиям, заданным рисунком. Вычислять по формулам. Выражать из формулы одну величину через другие

Длина окружности, число П. Площадь круга

Уроки 97-98

Находить экспериментальным путём отношение длины окружности к диаметру. Обсуждать особенности числа П ; находить дополнительную информацию об этом числе. Вычислять по формулам длины окружности, площади круга, объёма шара; Вычислять размеры фигур, ограниченных окружностями и их дугами. Определять числовые параметры пространственных тел, имеющих форму цилиндра, шара. Округлять результаты вычислений по формулам

Уравнение, корень уравнения. Нахождение неизвестных компонентов арифметических действий

Уроки 99-102

 

Строить речевые конструкции с использованием слов «уравнение», «корень уравнения». Проверять, является ли указанное число корнем рассматриваемого уравнения. Решать уравнения на основе зависимостей между компонентами действий. Составлять математические модели (уравнения) по условиям текстовых задач

Уроки 103-104. 

Использовать буквы для записи математических выражений и предложений. Составлять буквенные выражения по условиям задач. Вычислять числовое значение буквенного выражения при заданных значениях букв. Составлять формулы, выражающие зависимости между величинами, вычислять по формулам. Составлять уравнения по условиям задач. Решать простейшие уравнения на основе зависимостей между компонентами арифметических действий

Осевая и зеркальная симметрии. Изображение симметричных игуфр

Уроки 105-106

Распознавать плоские фигуры, симметричные относительно прямой. Вырезать две фигуры, симметричные относительно прямой, из бумаги. Строить фигуру (отрезок, ломаную, треугольник, прямоугольник, окружность), симметричную данной относительно прямой, с помощью инструментов, изображать от руки. Проводить прямую, относительно которой две фигуры симметричны. Конструировать орнаменты и паркеты, используя свойство симметрии, в том числе с помощью компьютерных программ. Формулировать свойства двух фигур, симметричных относительно прямой. Исследовать свойства фигур, симметричных относительно плоскости, используя эксперимент, наблюдение, моделирование. Описывать их свойства

Осевая и зеркальная симметрии. Изображение симметричных фигур

Уроки 107-108.

Находить в окружающем мире плоские и пространственные симметричные фигуры. Распознавать фигуры, имеющие ось симметрии. Вырезать их из бумаги, изображать от руки и с помощью инструментов. Проводить ось симметрии фигуры. Формулировать свойства равнобедренного, равностороннего треугольников, прямоугольника, квадрата, круга, связанные с осевой симметрией. Формулировать свойства параллелепипеда, куба, конуса, цилиндра, шара, связанные с симметрией относительно плоскости. Конструировать орнаменты и паркеты, используя свойство симметрии, в том числе с помощью компьютерных программ

Центральная симметрия. Изображение симметричных фигур

Уроки 109-110.

Распознавать плоские фигуры, симметричные относительно точки. Строить фигуру, симметричную данной относительно точки, с помощью инструментов, достраивать, изображать от руки. Находить центр симметрии фигуры, конфигурации. Конструировать орнаменты и паркеты, используя свойство симметрии, в том числе с помощью компьютерных программ. Формулировать свойства фигур, симметричных относительно точки. Исследовать свойства фигур, имеющих ось и центр симметрии, используя эксперимент, наблюдение, измерение, моделирование, в том числе компьютерное моделирование. Выдвигать гипотезы, формулировать, обосновывать, опровергать с помощью контрпримеров утверждения об осевой и центральной симметрии фигур

Уроки 111-112.

Находить в окружающем мире плоские и пространственные симметричные фигуры. Распознавать плоские фигуры, симметричные относительно прямой, относительно точки, пространственные фигуры, симметричные относительно плоскости. Строить фигуру, симметричную данной относительно прямой, относительно точки с помощью чертёжных инструментов. Конструировать орнаменты и паркеты, используя свойство симметрии, в том числе с помощью компьютерных программ. Исследовать свойства фигур, имеющих ось и центр симметрии, используя эксперимент, наблюдение, измерение, моделирование, в том числе компьютерное моделирование. Формулировать, обосновывать, опровергать с помощью контрпримеров утверждения о симметрии фигур

Положительные и отрицательные числа. Множество целых чисел

Урок 113.

Приводить примеры использования в жизни положительных и отрицательных чисел (температура, выигрыш- проигрыш, выше-ниже уровня моря и пр). Описывать множество целых чисел. Объяснять, какие целые числа называют противоположными. Записывать число, противоположное данному, с помощью знака «минус». Упрощать записи типа - (+3), - (-3)

Сравнение целых чисел

Уроки 114-115. 

Сопоставлять свойства ряда натуральных чисел и ряда целых чисел. Сравнивать и упорядочивать целые числа. Изображать целые числа точками на координатной прямой. Использовать координатную прямую как наглядную опору при решении задач на сравнение целых чисел

Арифметические действия с целыми числами. Свойства арифметических действий

Уроки 116-117.

Объяснять на примерах, как находят сумму двух целых чисел. Записывать с помощью букв свойство нуля при сложении, свойство суммы противоположных чисел. Упрощать запись суммы целых чисел, опуская, где это возможно, знак « + » и скобки. Переставлять слагаемые в сумме целых чисел. Вычислять суммы целых чисел, содержащие два и более слагаемых. Вычислять значения буквенных выражений

Арифметические действия с целыми числами. Свойства арифметических действий

Уроки 118-120.

Формулировать правило нахождения разности целых чисел, записывать его на математическом языке. Вычислять разность двух целых чисел. Вычислять значения числовых выражений, составленных из целых чисел с помощью знаков « + » и « —»; осуществлять самоконтроль. Вычислять значения буквенных выражений при заданных целых значениях букв. Сопоставлять выполнимость действия вычитания в множествах натуральных чисел и целых чисел

Арифметические действия с целыми числами. Свойства арифметических  действий

Уроки 121-123.

Формулировать правила знаков при умножении и делении целых чисел, иллюстрировать их примерами равенства, выражающие свойства 0 и 1 при умножении, правило умножения на -1. Вычислять произведения и частные целых чисел. Вычислять значения числовых выражений, содержащих разные действия с целыми числами. Вычислять значения буквенных выражений при заданных целых значениях букв. Исследовать вопрос об изменении знака произведения целых чисел при изменении на противоположные знаков множителей. Опровергать с помощью контрпримеров неверные утверждения о знаках результатов действий с целыми числами. Записывать на математическом языке

Уроки 124-125.

Сравнивать, упорядочивать целые числа. Формулировать правила вычисления с целыми числами, находить значения числовых и буквенных выражений, содержащих действия с целыми числами

Множество рациональных чисел. Изображение чисел точками координатной прямой

Уроки 126-128.

Применять в речи терминологию, связанную с рациональными числами; распознавать натуральные, целые, дробные, положительные, отрицательные числа; характеризовать множество рациональных чисел. Применять символьное обозначение противоположного числа, объяснять смысл записей типа (-а), упрощать соответствующие записи. Изображать рациональные числа точками координатной прямой

Сравнение рациональных чисел

Уроки 129-130.

Моделировать с помощью координатной прямой отношения «больше» и «меньше» для рациональных чисел. Сравнивать положительное число и нуль, отрицательное число и нуль, положительное и отрицательное числа, два отрицательных числа. Применять и понимать геометрический смысл понятия модуля числа, находить модуль рационального числа. Сравнивать и упорядочивать рациональные числа

Арифметические действия с рациональными числами. Свойства арифметических действий

Уроки 131-133.

Формулировать правила сложения двух чисел одного знака, двух чисел разных знаков; правило вычитания из одного числа другого; применять эти правила для вычисления сумм, разностей. Выполнять числовые подстановки в суммы и разности, записанные с помощью букв, находить соответствующие их значения. Проводить несложные исследования, связанные со свойствами суммы нескольких рациональных чисел (например, замена знака каждого слагаемого)

Арифметические действия с рациональными числами. Свойства арифметических действий

Уроки 134-136. 

Формулировать правила нахождения произведения и частного двух чисел одного знака, двух чисел разных знаков; применять эти правила при умножении и делении рациональных чисел. Находить квадраты и кубы рациональных чисел. Вычислять значения числовых выражений, содержащих разные действия. Выполнять числовые подстановки в простейшие буквенные выражения, находить соответствующие их значения

Декартовы координаты на плоскости

Уроки 137-140

Приводить примеры различных систем координат в окружающем мире, находить и записывать координаты объектов в различных системах координат (шахматная доска; широта и долгота; азимут и др.). Объяснять и иллюстрировать понятие прямоугольной системы координат на плоскости; применять в речи и понимать соответствующие термины и символику. Строить на координатной плоскости точки и фигуры по заданным координатам, находить координаты точек. Проводить исследования, связанные с взаимным расположением точек на координатной плоскости

Уроки 141-142.

Изображать рациональные числа точками координатной прямой. Применять и понимать геометрический смысл понятия модуля числа, находить модуль рационального числа. Моделировать с помощью координатной прямой отношения «больше» и «меньше» для рациональных чисел, сравнивать и упорядочивать рациональные числа. Выполнять вычисления с рациональными числами. Находить значения буквенных выражений при заданных значениях букв Строить на координатной плоскости точки и фигуры по заданным координатам, определять координаты точек  .

Параллелограмм и его свойства. Прямоугольник, квадрат, ромб. Изображение геометрических фигур

Уроки 143-144. 

Распознавать на чертежах, рисунках, в окружающем мире параллелограммы. Изображать параллелограммы с использованием чертёжных инструментов. Моделировать параллелограммы, используя бумагу, пластилин, проволоку и др. Исследовать и описывать свойства параллелограмма, используя эксперимент, наблюдение, измерение, моделирование. Использовать компьютерное моделирование и эксперимент для изучения свойств параллелограммов. Формулировать, обосновывать, опровергать с помощью контрпримеров утверждения о свойствах параллелограмма. Сравнивать свойства параллелограммов различных видов: ромба, квадрата, прямоугольника. Выдвигать гипотезы о свойствах параллелограммов различных видов, объяснять их. Конструировать способы построения параллелограммов по заданным рисункам. Строить логическую цепочку рассуждений о свойствах параллелограмма

Правильные многоугольники. Правильные многогранники. Примеры развёрток многогранников. Изображение геометрических фигур

Уроки 145-146. 

Распознавать на чертежах, рисунках, в окружающем мире правильные многоугольники, правильные многогранники. Исследовать и описывать свойства правильных многоугольников, используя эксперимент, наблюдение, измерение, моделирование. Использовать компьютерное моделирование и эксперимент для изучения свойств геометрических объектов. Изображать правильные многоугольники с помощью чертёжных инструментов по описанию и по заданному алгоритму; осуществлять самоконтроль выполненных построений. Конструировать способы построения правильных многоугольников по заданным рисункам, выполнять построения. Моделировать правильные многогранники из развёрток. Сравнивать свойства правильных многоугольников, связанные с симметрией. Формулировать, обосновывать, опровергать с помощью контрпримеров утверждения о правильных многоугольниках

Понятие площади плоских фигур. Равносоставленные и равновеликие фигуры

Уроки 147-148. 

Изображать равносоставленные фигуры, определять их площади. Моделировать геометрические фигуры из бумаги (перекраивать прямоугольник в параллелограмм, достраивать треугольник до параллелограмма). Сравнивать фигуры по площади. Формулировать свойства равно- составленных фигур. Составлять формулы для вычисления площади параллелограмма, прямоугольного треугольника. Выполнять измерения и вычислять площади параллелограммов и треугольников. Использовать компьютерное моделирование и эксперимент для изучения свойств геометрических объектов. Строить логическую цепочку рассуждений о равновеликих фигурах. Решать задачи на нахождение площадей параллелограммов и треугольников

Наглядные представления о пространственных фигурах. Призма. Примеры развёрток многогранников. Изображение геометрических фигур

Урок 149. 

Распознавать на чертежах, рисунках, в окружающем мире призмы. Называть призмы. Копировать призмы, изображённые на клетчатой бумаге, осуществлять самоконтроль, проверяя соответствие полученного изображения заданному. Моделировать призмы, используя бумагу, пластилин, проволоку и др., изготавливать из развёрток. Определять взаимное расположение граней, рёбер, вершин призмы. Исследовать свойства призмы, используя эксперимент, наблюдение, измерение, моделирование. Описывать их свойства, используя соответствующую терминологию. Формулировать утверждения о свойствах призмы, опровергать утверждения с помощью контрпримеров. Строить логическую цепочку рассуждений о свойствах призм. Составлять формулы, связанные с линейными, плоскими и пространственными характеристиками призмы. Моделировать из призм другие многогранники

Уроки 150-151..

Распознавать на чертежах, рисунках, в окружающем мире параллелограммы, правильные многоугольники, призмы, развёртки призмы. Изображать геометрические фигуры и их конфигурации от руки и с использованием чертёжных инструментов. Моделировать геометрические объекты, используя бумагу, пластилин, проволоку и др. Исследовать и описывать свойства геометрических фигур, используя эксперимент, наблюдение, измерение, моделирование. Выдвигать гипотезы о свойствах изученных фигур, обосновывать их. Формулировать утверждения о свойствах изученных фигур, опровергать утверждения с помощью контрпримеров. Использовать компьютерное моделирование и эксперимент для изучения свойств геометрических объектов. Решать задачи на нахождение длин, площадей и объёмов

Множество, элемент множества. Задание множеств перечислением элементов, характеристическим свойством. Стандартные обозначения числовых множеств. Пустое множество. Подмножества

Уроки 152-153

Приводить примеры конечных и бесконечных множеств. Строить речевые конструкции с использованием теоретико-множественной терминологии и символики; переводить утверждения с математического языка на русский и наоборот. Формулировать определение подмножества некоторого множества. Иллюстрировать понятие подмножества с помощью кругов Эйлера. Обсуждать соотношение между основными числовыми множествами. Записывать на символическом языке соотношения между множествами и приводить примеры различных вариантов их перевода на русский язык. Исследовать вопрос о числе подмножеств конечного множества

Объединение и пересечение множеств. Иллюстрация отношений между множествами с помощью диаграмм Эйлера-Венна

Уроки 154-155.

Формулировать определения объединения и пересечения множеств. Иллюстрировать эти понятия с помощью кругов Эйлера. Использовать схемы в качестве наглядной основы для разбиения множества на непересекающиеся подмножества. Проводить логические рассуждения по сюжетам текстовых задач с помощью кругов Эйлера. Приводить примеры классификаций из математики и из других областей знания

Решение комбинаторных задач перебором вариантов

Уроки 156-159.

Решать комбинаторные задачи с помощью перебора возможных вариантов, в том числе, путём построения дерева возможных вариантов. Строить теоретико-множественные модели некоторых видов комбинаторных задач

Повторение, итоговый контроль

Уроки 160-170 

Сравнивать и упорядочивать десятичные дроби, находить наименьшую и наибольшую десятичную дробь среди заданного набора чисел. Представлять обыкновенные дроби в виде десятичных; выяснять, в каких случаях это возможно. Находить десятичное приближение обыкновенной дроби с указанной точностью. Выполнять действия с дробными числами. Решать задачи на движение, содержащие данные, выраженные дробными числами. Представлять доли величины в процентах. Решать текстовые задачи на нахождение процента от данной величины. Решать задачи требующие владения понятием отношения. Составлять по рисунку формулу для вычисления периметра или площади фигуры. Сравнивать и упорядочивать положительные и отрицательные числа, находить наибольшее или наименьшее из заданного набора чисел. Выполнять числовые подстановки в буквенное выражение (в том числе, подставлять отрицательные числа), вычислять значение выражения. Отмечать точки на координатной плоскости, находить координаты отмеченных точек. Строить фигуру, симметричную данной относительно некоторой прямой; использовать при решении задач равенство симметричных фигур. Решать задачи на взаимное расположение двух окружностей на плоскости

УЧЕБНО- МЕТОДИЧЕСКОЕ

И МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ

Оснащение процесса обучения математике обеспечивается библиотечным фондом, печатными пособиями, а также информационно- коммуникативными средствами, экранно-звуковыми пособиями, техническими средствами обучения, учебно-практическими средствами обучения, учебно-лабораторным оборудованием.

Перечень изданий учебно-методических комплектов «Сферы»

 по математике для 6 классов

6 класс

  1. Бунимович Е.А. Математика. Арифметика. Геометрия. 6 класс: учебник для общеобразовательных учреждений./ Е.А. Бунимович, Л.В. Кузнецова, С.С. Минаева и др. – М.: Просвещение, 2010.
  2. Электронное приложение к учебнику. – М.: Просвещение, 2011 .
  3. Бунимович Е.А. Математика. Арифметика. Геометрия. Тетрадь-тренажёр. 6 класс: пособие  для учащихся общеобразовательных учреждений./ Е.А. Бунимович, Л.В. Кузнецова, С.С. Минаева и др. – М.: Просвещение, 2010.
  4. Бунимович Е.А. Математика. Арифметика. Геометрия. Задачник. 6 класс: пособие  для учащихся общеобразовательных учреждений./ Е.А. Бунимович, Л.В. Кузнецова, С.С. Минаева и др. – М.: Просвещение, 2010.
  5. Кузнецова Л.В.. Математика. Арифметика. Геометрия. Тетрадь-экзаменатор. 6 класс: пособие  для учащихся общеобразовательных учреждений./ Л.В. Кузнецова, С.С. Минаева, Л.О. Рослова и др. – М.: Просвещение, 2010.
  6. Кузнецова Л.В. Математика. Поурочное тематическое планирование 6 класс: пособие для  учителей общеобразовательных учреждений./ Л.В. Кузнецова, С.С. Минаева, Л.О. Рослова и др. – М.: Просвещение, 2011.

Технические средства обучения:

  • ноутбук;

Информационные средства:

  • интернет.

Учебно-практическое и учебно-лабораторное оборудование:

  • комплект чертёжных инструментов (классных и раздаточных): линейка, транспортир, угольник (30), угольник (45,45), циркуль;
  • комплекты планиметрических и стереометрических тел (демонстрационный и раздаточный);
  • комплекты для моделирования (цветная бумага, картон, калька, клей, ножницы, пластилин).

Печатные пособия:

  • таблицы по математике для 5-6 классов;
  • портреты выдающихся деятелей математики.

Сайт интернет-поддержки УМК «Сферы» :www.spheres.ru

СОГЛАСОВАНО

Протокол заседания методического

объединения учителей

от ___________ №____

Руководитель ШМО___________________                  ______

                                           (подпись)                     (расшифровка подписи)

СОГЛАСОВАНО

Зам. Директора по УВР

___________________ (ФИО)                  Дырман Л.А______

          (подпись)                              (расшифровка подписи)

«___» _______________20___г.



Предварительный просмотр:

Муниципальное образование «Городской округ Мытищи Московской области»

МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

«СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА №25»

УТВЕРЖДАЮ

Директор МБОУ СОШ №25

________________Карпенко Т.В.

«_____»___________ 2016г.

Рабочая программа

по математике для 6 А класса

на 2016-2017 учебный год

   

Составитель:

Учитель математики Черняева М.М.

2016г

. Пояснительная записка

Программа  составлена  в соответствии с требованиями учебного плана основного общего образования МБОУ СОШ № 25, предмет математика изучается в 5 классе 5 часов в неделю. Программа по математике разработана в соответствии с требованиями Федерального государственного  общеобразовательного стандарта основного общего образования (Федеральный государственный общеобразовательный стандарт основного общего образования -М.: Просвещение, 2011 г.). С рекомендациями авторской программы по математике ( Примерная программа по математике авторы: Е.А.  Бунимович  и  др.  изд.  «Просвещение «  2014г.). В соответствии со следующими нормативно-правовыми документами:

  • Федеральный закон от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации»;
  • Федеральный компонент государственного стандарта общего образования  (Приказ Минобрнауки РФ от 31 декабря 2015г № 1577)
  • Федеральный перечень учебников, рекомендованных (допущенных) Министерством образования и науки РФ к использованию в образовательном процессе в общеобразовательных учреждениях на 2015-2016 гг.

Состав учебно-методического комплекта «Сферы» по математике:

  • Математика. Арифметика. Геометрия. 5 класс: учебник для общеобразовательных учреждений/ Е.А.Бунимович, Г.В.Дорофеев, С.Б.Суворова и др., «Просвещение» 2010 г.
  • Математика. Арифметика. Геометрия. Задачник-тренажёр. 5 класс: пособие для учащихся общеобразовательных учреждений/ Е.А.Бунимович, Л.В.Кузнецова, С.С.Минаева и др., «Просвещение» 2010 г.
  • Математика. Арифметика. Геометрия. Тетрадь-тренажёр. 5 класс: пособие для учащихся общеобразовательных учреждений/ Е.А.Бунимович, Л.В.Кузнецова, С.С.Минаева и др., «Просвещение» 2010 г.
  • Математика. Арифметика. Геометрия. Тетрадь-экзаменатор. 5 класс: пособие для учащихся общеобразовательных учреждений/ Е.А.Бунимович, Л.В.Кузнецова, С.С.Минаева и др., «Просвещение» 2010 г.

Математическое образование является обязательной и неотъемлемой частью общего образования на всех ступенях школы.

Приоритетными целями обучения математики в 6 классах являются:

  • продолжение формирования центральных математических понятий (число, величина, геометрическая фигура), обеспечивающих преемственность и перспективность математического образования школьников;
  • подведение учащихся на доступном для них уровне к осознанию взаимосвязи математики и окружающего мира, пониманию математики как части общей культуры человечества;
  • развитие интеллектуальных и творческих способностей учащихся, познавательной активности, критичности мышления, интереса к изучению математики;
  • формирование умения извлекать информацию, новое знание, работать с учебным математическим текстом.

Изучение учебного предмета «Математика» направлено на решение следующих задач:

  • формирование вычислительной культуры и практических навыков вычислений;
  • формирование универсальных учебных действий, ИКТ-компетентности, основ учебно-исследовательской и проектной деятельности, умений работы с текстом;
  •  овладение формально-оперативным алгебраическим аппаратом и умением применять его к решению математических и нематематических задач; изучение свойств и графиков элементарных функций, использование функционально-графических представлений для описания и анализа реальных зависимостей;
  • ознакомление с основными способами представления и анализа статистических данных, со статистическими закономерностями в реальном мире, приобретение элементарных вероятностных представлений;
  • освоение основных фактов и методов планиметрии, формирование пространственных представлений;
  • интеллектуальное развитие учащихся, формирование качеств мышления, характерных для математической деятельности и необходимых человеку для полноценного функционирования в обществе;
  • развитие логического мышления и речевых умений: умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический);
  •  формирование представлений об идеях и методах математики как научной теории, о месте математики в системе наук, о математике как форме описания и методе познания действительности;
  • развитие представлений о математике как части общечеловеческой культуры, воспитание понимания значимости математики для общественного прогресса.

Место учебного предмета в учебном плане

Базисный учебный план на изучение математики в  6-ых классах отводит 5 учебных часов в неделю в течение каждого года обучения, всего 170 часов.

Согласно Базисного образовательного плана в 5-6 классах изучается предмет интегрированный «Математика», который включает в себя арифметический материал, элементы алгебры и геометрии, а также элементы вероятностно-статистической линии.

Программа позволяет добиваться следующих результатов освоения образовательной программы основного общего образования.

Личностные:

у учащихся будут сформированы:

1) ответственное отношение к учению;

2) готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;

3) умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

4) начальные навыки адаптации в динамично изменяющемся мире;

5) экологическая культура: ценностное отношение к природному миру, готовность следовать нормам природоохранного, здоровьесберегающего поведения;

6) формирование способности к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

7) умение контролировать процесс и результат учебной математической деятельности;

у учащихся могут быть сформированы:

1) первоначальные представления о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;

2) коммуникативная компетентность в общении и сотрудничестве со сверстниками в образовательной, учебно-исследовательской, творческой и других видах деятельности;

3) критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

4) креативность мышления, инициативы, находчивости, активности при решении арифметических задач.

Метапредметные:

регулятивные

учащиеся научатся:

1) формулировать и удерживать учебную задачу;

2) выбирать действия в соответствии с поставленной задачей и условиями её реализации;

3) планировать пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;

4) предвидеть уровень усвоения знаний, его временных характеристик;

5) составлять план и последовательность действий;

6) осуществлять контроль по образцу и вносить необходимые коррективы;

7) адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;

8) сличать способ действия и его результат с заданным эталоном с целью обнаружения отклонений и отличий от эталона;

учащиеся получат возможность научиться:

1) определять последовательность промежуточных целей и соответствующих им действий с учётом конечного результата;

2) предвидеть возможности получения конкретного результата при решении задач;

3) осуществлять констатирующий и прогнозирующий контроль по результату и по способу действия;

4) выделять и формулировать то, что усвоено и что нужно усвоить, определять качество и уровень усвоения;

5) концентрировать волю для преодоления интеллектуальных затруднений и физических препятствий;

познавательные

учащиеся научатся:

1) самостоятельно выделять и формулировать познавательную цель;

2) использовать общие приёмы решения задач;

3) применять правила и пользоваться инструкциями и освоенными закономерностями;

4) осуществлять смысловое чтение;

5) создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения задач;

6) самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

7) понимать сущность алгоритмических предписаний и уметь действовать в соответствии с предложенным алгоритмом;

8) понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;

9) находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

учащиеся получат возможность научиться:

1) устанавливать причинно-следственные связи; строить логические рассуждения, умозаключения (индуктивные, дедуктивные и по аналогии) и выводы;

2) формировать учебную и общепользовательскую компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);

3) видеть математическую задачу в других дисциплинах, в окружающей жизни;

4) выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

5) планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

6) выбирать наиболее рациональные и эффективные способы решения задач;

7) интерпретировать информации (структурировать, переводить сплошной текст в таблицу, презентовать полученную информацию, в том числе с помощью ИКТ);

8) оценивать информацию (критическая оценка, оценка достоверности);

9) устанавливать причинно-следственные связи, выстраивать рассуждения, обобщения;

коммуникативные

учащиеся научатся:

1) организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников;

2) взаимодействовать и находить общие способы работы; работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;

3) прогнозировать возникновение конфликтов при наличии разных точек зрения;

4) разрешать конфликты на основе учёта интересов и позиций всех участников;

5) координировать и принимать различные позиции во взаимодействии;

6) аргументировать свою позицию и координировать её с позициями партнёров в сотрудничестве при выработке общего решения в совместной деятельности.

Предметные:

учащиеся научатся:

1) работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики (словесный, символический, графический), обосновывать суждения, проводить классификацию;

2) владеть базовым понятийным аппаратом: иметь представление о числе, дроби, об основных геометрических объектах (точка, прямая, ломаная, угол, многоугольник, многогранник, круг, окружность);

3) выполнять арифметические преобразования, применять их для решения учебных математических задач;

4) пользоваться изученными математическими формулами;

5) самостоятельно приобретать и применять знания в различных ситуациях для решения несложных практических задач, в том числе с использованием при необходимости справочных материалов, калькулятора и компьютера;

6) пользоваться предметным указателем энциклопедий и справочников для нахождения информации;

7) знать основные способы представления и анализа статистических данных; уметь решать задачи с помощью перебора возможных вариантов;

учащиеся получат возможность научиться:

1) выполнять арифметические преобразования выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;

2) применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов;

3) самостоятельно действовать в ситуации неопределённости при решении актуальных для них проблем, а также самостоятельно интерпретировать результаты решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений.

Планируемые результаты обучения математике, 6 класс

Раздел «Арифметика»

Ученик научится:

  • понимать особенности десятичной системы счисления;
  • понимать и использовать термины и символы, связанные с понятием степени числа; вычислять значения выражений, содержащих степень с натуральным показателем;
  • применять понятия, связанные с делимостью натуральных чисел;
  • оперировать понятием десятичной дроби, выполнять вычисления с десятичными дробями;
  • понимать и использовать различные способы представления дробных чисел; переходить от одной формы записи чисел к другой, выбирая подходящую для конкретного случая форму;
  • оперировать понятиями отношения и процента;
  • решать текстовые задачи арифметическим способом;
  • применять вычислительные умения в практических ситуациях, в том числе требующих выбора нужных данных или поиска недостающих;
  • распознавать различные виды чисел: натуральное, положительное, отрицательное, дробное, целое, рациональное; правильно употреблять и использовать термины и символы, связанные с рациональными числами;
  • отмечать на координатной прямой точки, соответствующие заданным числам; определять координату отмеченной точки;
  • сравнивать рациональные числа;
  • выполнять вычисления с положительными и отрицательными числами;
  • округлять десятичные дроби;
  • работать с единицами измерения величин;
  • интерпретировать ответ задачи в соответствии с поставленным вопросом.

Ученик получит возможность научиться:

  • проводить несложные доказательные рассуждения;
  • исследовать числовые закономерности и устанавливать свойства чисел на основе наблюдения, проведения числового эксперимента;
  • применять разнообразные приемы рационализации вычислений;
  • выполнять вычисления с рациональными числами, сочетая устные и письменные приемы вычислений, применяя при необходимости калькулятор;
  • контролировать вычисления, выбирая подходящий для ситуации способ;
  • использовать в ходе решения задач представления, связанные с приближенными значениями величин.

Раздел «Алгебра»

Ученик научится:

  • использовать буквы для записи общих утверждений, правил, формул;
  • оперировать понятием «буквенное выражение»;
  • осуществлять элементарную деятельность, связанную с понятием «уравнение»;
  • выполнять стандартные процедуры на координатной плоскости: строить точки по заданным координатам, находить координаты отмеченных точек

.

Ученик получит возможность:

  • приобрести начальный опыт работы с формулами: вычислять по формулам, в том числе используемым в реальной практике; составлять формулы по условиям, заданным задачей или чертежом;
  • переводить условия текстовых задач на алгебраический язык, составлять уравнение, буквенное выражение по условию задачи;
  • познакомиться с идеей координат, с примерами использования координат в реальной жизни.

Раздел «Геометрия»

Наглядная геометрия.

Ученик научится:

  • распознавать на чертежах, рисунках, в окружающем мире плоские геометрические фигуры, конфигурации фигур, описывать их, используя геометрическую терминологию и символику, описывать свойства фигур;
  • распознавать на чертежах, рисунках, в окружающем мире пространственные геометрические фигуры, конфигурации фигур, описывать их, используя геометрическую терминологию и символику, описывать их свойства;
  • изображать геометрические фигуры и конфигурации с по мощью чертежных инструментов и от руки на нелинованной бумаге;
  • делать простейшие умозаключения, опираясь на знание свойств геометрических фигур, на основе классификаций углов, треугольников, четырехугольников;
  • вычислять периметры, площади многоугольников, объемы пространственных геометрических фигур;
  • распознавать на чертежах, рисунках,  находить в окружающем мире и изображать симметричные фигуры.

Ученик получит возможность научиться:

  • исследовать и описывать свойства геометрических фигур, используя наблюдения, измерения, эксперимент, моделирование, в том числе компьютерное моделирование и эксперимент;
  • конструировать геометрические объекты, используя различные материалы;
  • определять вид простейших сечений пространственных фигур, получаемых путем предметного или компьютерного моделирования.

Содержание курса математики 6 класса

  1. Дроби и проценты (20 ч)

Повторение: понятие дроби, основное свойство дроби, сравнение и упорядочивание дробей, правила выполнения арифметических действий с дробями.  Преобразование выражений с помощью основного свойства дроби. Решение основных задач на дроби.

Понятие процента. Нахождение процента от величины.

Столбчатые диаграммы: чтение и построение. Круговые диаграммы.

Основные цели - систематизировать знания об обыкновенных дробях, закрепить и развить навыки действий с обыкновенными дробями, познакомить учащихся с понятием процента, а также развить умение работать с диаграммами.

  1.  Прямые на плоскости и в пространстве (7 ч)

Пересекающиеся прямые. Вертикальные углы, их свойство. Параллельные прямые. Построение параллельных и перпендикулярных прямых. Примеры параллельных и перпендикулярных прямых в окружающем мире.

Расстояние между двумя точками, от точки до прямой, между двумя параллельными прямыми, от точки до плоскости.

Основные цели - создать у учащихся зрительные образы всех основных конфигураций, связанных с взаимным расположением двух прямых на плоскости и в пространстве, сформировать навыки построения параллельных и перпендикулярных прямых, научить находить расстояние от точки до прямой, между двумя параллельными прямыми.

  1. Десятичные дроби (9 ч)

Десятичная запись дробей. Представление обыкновенной дроби в виде десятичной и десятичной в виде обыкновенной; критерий обратимости обыкновенной дроби в десятичную. Изображение десятичных дробей точками на координатной прямой. Сравнение десятичных дробей. Десятичные дроби и метрическая система мер.

Основные  цели  - ввести понятие десятичной дроби, выработать навыки чтения  записи десятичных дробей, их сравнения; сформировать умения переходить от десятичной дроби к обыкновенной, выполнять обратные преобразования.

  1.  Действия с десятичными дробями (27 ч)

Сложение и вычитание десятичных дробей. Умножение и деление десятичной дроби на 10. Умножение и деление десятичных дробей. Округление десятичных дробей. Приближенное частное. Выполнение действий с обыкновенными и десятичными дробями.

Основная   цель - сформировать навыки действий с десятичными дробями, а также навыки округления десятичных дробей.

  1. Окружность (9 ч)

Взаимное расположение прямой и окружности, двух окружностей. Касательная к окружности и ее построение. Построение треугольника по трем сторонам. Неравенство треугольника. Круглые тела.

Основные   цели - создать у учащихся зрительные образы основных конфигураций, связанных с взаимным расположением прямой и окружности, двух окружностей на плоскости; научить строить треугольник по трем сторонам, сформировать представление о круглых телах (шар, конус, цилиндр).

  1. Отношения и проценты (17 ч)

Отношение чисел и величин. Масштаб. Деление в данном отношении.

Выражение процентов десятичными дробями; решение задач на проценты. Выражение отношения величин в процентах.

Основные   цели - познакомить с понятием "отношение" и сформировать навыки использования соответствующей терминологии; развить навыки вычисления с процентами.

  1. Выражения, формулы, уравнения (15 ч)

Применение букв для записи математических выражений и предложений. Буквенные выражения и числовые подстановки. Формулы. Формулы периметра треугольника, периметра и площади прямоугольника, объема параллелепипеда. Формулы длины окружности и площади круга.

Уравнение. Корень уравнения. Составление уравнения по условию текстовой задачи.

Основные   цели - сформировать первоначальные представления о языке математики, описать с помощью формул некоторые известные учащимся зависимости, познакомить с формулами длины окружности и площади круга.

  1. Симметрия (8 ч)

Осевая симметрия. Ось симметрии фигуры. Центральная симметрия. Построение фигуры, симметричной данной относительно прямой и относительно точки. Симметрия в окружающем мире.

Основные   цели - познакомить учащихся с основными видами симметрии на плоскости; научить строить фигуру, симметричную данной фигуре относительно прямой, а также точку, симметричную данной относительно точки; дать представление о симметрии в окружающем мире.

  1. Целые числа (13 ч)

Числа, противоположные натуральным. "Ряд" целых чисел. Изображение целых чисел точками на координатной прямой. Сравнение целых чисел. Сложение и вычитание целых чисел; выполнимость операции вычитания. Умножение и деление целых чисел; правила знаков.

Основные   цели - мотивировать введение отрицательных  чисел; сформировать умение сравнивать целые числа с опорой на координатную прямую, а также выполнять действия с целыми числами.

  1. Рациональные числа (17 ч)

Отрицательные дробные числа. Понятие рационального числа. Изображение чисел точками на координатной прямой. Противоположные числа. Модуль числа, геометрическая интерпретация модуля. Сравнение рациональных чисел. Арифметические действия с рациональными числами, свойства арифметических действий.

Примеры использования координат в реальной практике. Прямоугольная система координат на плоскости. Координаты точки на плоскости, абсцисса и ордината. Построение точек и фигур на координатной плоскости.

Основные   цели - выработать навыки действий с положительными и отрицательными числами; сформировать представление о декартовой системе координат на плоскости.

  1. Многоугольники и многогранники (9 ч)

Сумма углов треугольника. Параллелограмм и его свойства, построение параллелограмма. Правильные многоугольники. Площади, равновеликие и равносоставленные фигуры. Призма.

Основные   цели - развить знания о многоугольниках; развить представление о площадях, познакомить со свойством аддитивности площади, с идеей перекраивания фигуры с целью определения ее площади; сформировать представление о призме; обобщить приобретенные геометрические знания и умения и научить применять их при изучении новых фигур и их свойств.

  1. Множества. Комбинаторика. (8 ч)

Понятие множества. Примеры конечных и бесконечных множеств. Подмножества. Основные числовые множества и соотношения между ними. Разбиение множества. Объединение и пересечение множеств. Иллюстрация отношений между множествами с помощью кругов Эйлера.

Решение комбинаторных задач перебором всех возможных вариантов.

Случайное событие. Достоверное и невозможное события. Сравнение шансов событий.

Основные   цели - познакомить с простейшими теоретико-множественными понятиями, а также сформировать первоначальные навыки использования теоретико-множественного языка; развить навыки решения комбинаторных задач путем перебора всех возможных вариантов.

Повторение (11 ч)

Темы, входящие в разделы  программы

Кол-во уроков

Характеристика основных видов деятельности ученика (на уровне учебных действий)

Глава 1. Дроби, и проценты (20 уроков)

Обыкновенные дроби. Основное свойство дроби. Сравнение обыкновенных дробей

Уроки 1-2. 

Моделировать в графической и предметной форме обыкновенные дроби (в том числе с помощью компьютера). Преобразовывать, сравнивать и упорядочивать обыкновенные дроби. Соотносить дробные числа с точками координатной прямой. Проводить несложные исследования, связанные с отношениями «больше» и «меньше» между дробями

Арифметические действия с обыкновенными дробями

Уроки 3-6

Выполнять вычисления с дробями. Использовать дробную черту как знак деления при записи нового вида дробного выражения («многоэтажная» дробь). Применять различные способы вычисления значений таких выражений, выполнять преобразование «многоэтажных» дробей. Решать задачи на совместную работу. Анализировать числовые закономерности, связанные с арифметическими действиями с обыкновенными дробями, доказывать в несложных случаях выявленные свойства.

Нахождение части от целого и целого по его части

Уроки 7-11.

.

 

Решать основные задачи на дроби, применять разные способы нахождения части числа и числа по его части. Решать текстовые задачи на дроби, в том числе задачи с практическим контекстом; анализировать и осмысливать текст задачи; моделировать условие с помощью схем и рисунков; строить логическую цепочку рассуждений; выполнять самоконтроль, проверяя ответ на соответствие условию

Проценты; нахождение процентов от величины

Уроки 12-16. 

Объяснять, что такое процент, использовать и понимать стандартные обороты речи со словом «процент». Выражать проценты в дробях и дроби в процентах. Моделировать понятие процента в графической форме. Решать задачи на нахождение нескольких процентов величины, на увеличение (уменьшение) величины на несколько процентов. Применять понятие процента в практических ситуациях. Решать некоторые классические задачи, связанные с понятием процента: анализировать текст задачи, использовать приём числового эксперимента; моделировать условие с помощью схем и рисунков

Представление данных в виде таблиц, диаграмм

Уроки 17-18. 

Объяснять, в каких случаях для представления информации используются столбатые диаграммы, и в каких  круговые. Извлекать и интерпретировать информацию из готовых диаграмм, выполнять несложные вычисления по данным, представленным на диаграмме. Строить в несложных случаях столбчатые и круговые диаграммы по данным, представленным в табличной форме. Проводить исследования простейших социальных явлений по готовым диаграммам

Уроки 19-20. 

Выполнять вычисления с дробями. Преобразовывать, сравнивать и упорядочивать обыкновенные дроби. Соотносить дробные числа с точками координатной прямой. Решать текстовые задачи на дроби и проценты. Исследовать числовые закономерности

Взаимное расположение двух прямых. Пересекающиеся прямые. Перпендикулярные прямые. Вертикальные углы

Уроки 21-22. 

Распознавать случаи взаимного расположения двух прямых. Распознавать вертикальные и смежные углы. Находить углы, образованные двумя пересекающимися прямыми. Изображать две пересекающиеся прямые, строить прямую, перпендикулярную данной. Выдвигать гипотезы о свойствах смежных углов, обосновывать их

Взаимное расположение двух прямых. Параллельные прямые

Уроки 23-24.

Распознавать случаи взаимного расположения двух прямых на плоскости и в пространстве, распознавать в многоугольниках параллельные стороны. Изображать две параллельные прямые, строить прямую, параллельную данной, с помощью чертёжных инструментов. Анализировать способ построения параллельных прямых, пошагово заданный рисунками, выполнять построения. Формулировать утверждения о взаимном расположении двух прямых, свойствах параллельных прямых

Расстояние от точки до прямой, расстояние между параллельными прямыми

Уроки 25-26.

Измерять расстояние между двумя точками, от точки до прямой, между двумя параллельными прямыми, от точки до плоскости. Строить параллельные прямые с заданным расстоянием между ними. Строить геометрическое место точек, обладающих определенным свойством

Урок 27.

Распознавать случаи взаимного расположения двух прямых, распознавать в многоугольниках параллельные и перпендикулярные стороны. Изображать две пересекающиеся прямые, строить прямую, перпендикулярную данной, параллельную данной. Измерять расстояние между двумя точками, от точки до прямой, между двумя параллельными прямыми. Изображать многоугольники с параллельными, перпендикулярными сторонами

Десятичные дроби. Представление десятичной дроби в виде обыкновенной. Единицы измерения длины и массы

Уроки 28-30.

Записывать и читать десятичные дроби. Представлять десятичную дробь в виде суммы разрядных слагаемых. Моделировать десятичные дроби рисунками. Переходить от десятичных дробей к соответствующим обыкновенным со знаменателями 10, 100, 1000 и т.д., и наоборот. Изображать десятичные дроби точками на координатной прямой. Использовать десятичные дроби для перехода от одних единиц, измерения к другим; объяснять значения десятичных приставок, используемых для образования названий единиц в метрической системе мер

Представление обыкновенной дроби в виде десятичной

Уроки 31-32.

Формулировать признак обратимости обыкновенной дроби в десятичную, применять его для распознавания дробей, для которых возможна (или невозможна) десятичная запись. Представлять обыкновенные дроби в виде десятичных. Приводить примеры эквивалентных представлений дробных чисел

Сравнение десятичных дробей

Уроки 33-34.

Распознавать равные десятичные дроби. Объяснять на примерах приём сравнения десятичных дробей. Сравнивать и упорядочивать десятичные дроби. Сравнивать обыкновенную и десятичную дроби, выбирая подходящую форму записи данных чисел. Выявлять закономерность в построении последовательности десятичных дробей. Решать задачи — исследования, основанные на понимании поразрядного принципа десятичной записи дробных чисел.

Уроки 35-36.

Записывать и читать десятичные дроби. Изображать десятичные дроби точками на координатной прямой. Представлять обыкновенные дроби в виде десятичных дробей и десятичные в виде обыкновенных. Сравнивать и упорядочивать десятичные дроби. Использовать эквивалентные представления дробных чисел при их сравнении, при вычислениях. Выражать одни единицы измерения величины в других единицах (метры в километрах, минуты в часах и т.п.)

Арифметические действия с десятичными дробями. Решение текстовых задач арифметическим способом

Уроки 37-41. 

Конструировать алгоритмы сложения и вычитания десятичных дробей; иллюстрировать их примерами. Вычислять суммы и разности десятичных дробей. Вычислять значения сумм и разностей, компонентами которых являются обыкновенная дробь и десятичная, обсуждая при этом, какая форма представления чисел возможна и целесообразна. Выполнять оценку и прикидку суммы десятичных дробей. Решать текстовые задачи, предполагающие сложение и вычитание десятичных дробей

Арифметические действия с десятичными дробями

Уроки 42-44.

Исследовать закономерность в изменении положения запятой в десятичной дроби при умножении и делении её на 10, 100, 000 и т.д. Формулировать правила умножения и деления десятичной дроби на 10, 100, 1000 и т.д. Применять умножение и деление десятичной дроби на степень числа 10 для перехода от одних единиц измерения к другим. Решать задачи с реальными данными, представленными в виде десятичных дробей.

Арифметические действия с десятичными дробями. Решение текстовых задач арифметическим способом

Уроки 45-50.

 

Конструировать алгоритмы умножения десятичной дроби на десятичную дробь, на натуральное число, иллюстрировать примерами соответствующие правила. Вычислять произведение десятичных дробей, десятичной дроби и натурального числа. Вычислять произведение десятичной дроби и обыкновенной, выбирая подходящую форму записи дробных чисел. Вычислять квадрат и куб десятичной дроби. Вычислять значения числовых выражений, содержащих действия сложения, вычитания и умножения десятичных дробей. Выполнять прикидку и оценку результатов вычислений. Решать текстовые задачи арифметическим способом. Решать задачи на нахождение части, выраженной десятичной дробью, от данной величины

Арифметические действия с десятичными дробями. Решение текстовых задач арифметическим способом

Уроки 51-58. 

Обсуждать принципиальное отличие действия деления от других действий с десятичными дробями. Осваивать алгоритмы вычислений в случаях, когда частное выражается десятичной дробью. Сопоставлять различные способы представления обыкновенной дроби в виде десятичной. Вычислять частное от деления на десятичную дробь в общем случае. Решать текстовые задачи арифметическим способом, используя различные зависимости между величинами: анализировать и осмысливать текст задачи, переформулировывать условие, строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответствие условию.

Округление натуральных чисел и десятичных. Прикидка и оценка результата вычислений

Уроки 59-60.

Округлять десятичные дроби «по смыслу», выбирая лучшее из приближений с недостатком и с избытком. Формулировать правило округления десятичных дробей, применять его на практике. Объяснять, чем отличается округление десятичных дробей от округления натуральных чисел. Вычислять приближённые частные, выраженные десятичными дробями, в том числе, при решении задач практического характера. Выполнять прикидку и оценку результатов действий с десятичными дробями

Уроки 61-63.

Формулировать правила действий с десятичными дробями. Вычислять значения числовых выражений, содержащих дроби; применять свойства арифметических действий для рационализации вычислений. Исследовать числовые закономерности, используя числовые эксперимены в том числе с помощью компьютера). Выполнять прикидку и оценку результатов вычислений. Округлять десятичные дроби, находить десятичные приближения обыкновенных дробей. Решать текстовые задачи арифметическим способом, используя различные зависимости между величинами: анализировать и осмысливать текст задачи, переформулировывать условие, извлекать необходимую информацию, моделировать условие с помощью схем, рисунков, реальных предметов; строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответствие условию

Взаимное расположение прямой и окружности. Касательная к окружности

Уроки 64-65. 

Распознавать различные случаи взаимного расположения прямой и окружности, изображать их с помощью чертёжных инструментов. Исследовать свойства взаимного расположения прямой и окружности, используя эксперимент, наблюдение, измерение, моделирование, в том числе компьютерное моделирование. Строить касательную к окружности. Анализировать способ построения касательной к окружности, пошагово заданный рисунками, выполнять построения. Конструировать алгоритм построения изображений, содержащих конфигурацию «касательная к окружности», строить по алгоритму. Формулировать утверждения о взаимном расположении прямой и окружности

Взаимное расположение двух окружностей.

Уроки 66-67

Распознавать различные случаи взаимного расположения двух окружностей, изображать их с помощью чертежных инструментов и от руки. Строить точку, равноудалённую от концов отрезка. Исследовать свойства взаимного расположения прямой и окружности, используя эксперимент, наблюдение, измерение, моделирование, в том числе компьютерное моделирование. Конструировать алгоритм построения изображений, содержащих две окружности, касающиеся внешним и внутренним образом, строить по алгоритму. Формулировать утверждения о взаимном расположении двух окружностей. Сравнивать различные случаи взаимного расположения двух окружностей. Выдвигать гипотезы о свойствах конфигурации «две пересекающиеся окружности равных радиусов», обосновывать их. Строить точки, равноудаленные от концов отрезка.

Изображение геометрических фигур. Построение треугольника по трём сторонам. Неравенство треугольника

Уроки 68-69 

Распознавать различные случаи взаимного расположения прямой и окружности, двух окружностей, изображать их с помощью чертёжных инструментов и от руки. Строить треугольник по трем сторонам, описывать построение. Формулировать неравенство треугольника. Исследовать возможность построения треугольника по трем сторонам, используя неравенство треугольника

Наглядные представления о пространственных фигурах. Шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений

Урок 70

Распознавать цилиндр, конус, шар, изображать их от руки, моделировать, используя бумагу, пластилин, проволоку и др. Исследовать свойства круглых тел, используя эксперимент, наблюдение, измерение, моделирование, в том числе компьютерное моделирование. Описывать их свойства. Рассматривать простейшие комбинации тел: куб и шар, цилиндр и шар, куб и цилиндр, пирамида из шаров. Рассматривать простейшие сечения круглых тел, получаемые путём предметного или компьютерного моделирования, определять их вид. Распознавать развёртки конуса, цилиндра, моделировать конус и цилиндр из развёрток

Уроки 71-72. 

Распознавать различные случаи взаимного расположения прямой и окружности, двух прямых, двух окружностей, изображать их с помощью чертёжных инструментов. Изображать треугольник. Исследовать свойства круглых тел, используя эксперимент, наблюдение, измерение, моделирование, в том числе компьютерное моделирование. Описывать их свойства. Рассматривать простейшие сечения круглых тел, получаемые путём предметного или компьютерного моделироания, определять их вид. Сравнивать свойства квадрата и прямоугольника общего вида. Выдвигать гипотезы о свойствах изученных фигур и конфигураций, объяснять их на примерах, опровергать с помощью контрпримеров

Отношение. Решение текстовых задач арифметическим способом

Уроки 75-76.

Объяснять, как находят отношение одноимённых и разноимённых величин, находить отношения величин. Исследовать взаимосвязь отношений сторон квадратов, их периметров и площадей; длин рёбер кубов, площадей граней и объёмов. Объяснять, что показывает масштаб (карты, плана, чертежа, модели). Решать задачи практического характера на масштаб. Строить фигуры в заданном масштабе

Проценты

Уроки 77—79.

Выражать проценты десятичной дробью, выполнять обратную операцию — переходить от десятичной дроби к процентам Характеризовать доли величины, используя эквивалентные представления заданной доли с помощью дроби и процентов

Нахождение процентов от величины и величины по её процентам. Решение текстовых задач арифметическим способом

Уроки 80-83.

Решать задачи практического содержания на нахождение нескольких процентов величины, на увеличение (уменьшение) величины на несколько процентов, на нахождение величины по её проценту. Решать задачи с реальными данными на вычисление процентов величины, применяя округление, приёмы прикидки. Выполнять самоконтроль при нахождении процентов величины, используя прикидку

Выражение отношения в процентах. Решение текстовых задач арифметическим способом

Уроки 84-87.

Выражать отношение двух величин в процентах. Решать задачи, в том числе задачи с практическим контекстом, с реальными данными, на нахождение процентного отношения двух величин. Анализировать текст задачи, моделировать условие с помощью схем и рисунков, объяснять полученный результат

Уроки 88-89.

Находить отношения чисел и величин. Решать задачи, связанные с отношением величин, в том числе задачи практического характера. Решать задачи на проценты, в том числе задачи с реальными данными, применяя округление, приёмы прикидки

Использование букв для обозначения чисел, для записи свойств арифметических действий

Уроки 90-91.

.

Обсуждать особенности математического языка. Записывать математические выражения с учётом правил синтаксиса математического языка; составлять выражения но условиям задач с буквенными данными. Использовать буквы для записи математических предложений, общих утверждений; осуществлять перевод с математического языка на естественный язык и наоборот. Иллюстрировать общие утверждения, записанные в буквенном виде, числовыми примерами

Буквенные выражения. Числовое значение буквенного выражения

Уроки 92—93.

Строить речевые конструкции с использованием новой терминологии (буквенное выражение, числовая подстановка, значение буквенного выражения, допустимые значения букв). Вычислять числовые значения буквенных выражений при данных значениях букв. Сравнивать числовые значения буквенных выражений. Находить допустимые значения букв в выражении. Отвечать на вопросы задач с буквенными данными, составляя соответствующие выражения

Примеры зависимостей между величинами. Представление зависимостей в виде формул. Вычисления по формулам

Уроки 94-96. 

Составлять формулы, выражающие зависимости между величинами, в том числе по условиям, заданным рисунком. Вычислять по формулам. Выражать из формулы одну величину через другие

Длина окружности, число П. Площадь круга

Уроки 97-98

Находить экспериментальным путём отношение длины окружности к диаметру. Обсуждать особенности числа П ; находить дополнительную информацию об этом числе. Вычислять по формулам длины окружности, площади круга, объёма шара; Вычислять размеры фигур, ограниченных окружностями и их дугами. Определять числовые параметры пространственных тел, имеющих форму цилиндра, шара. Округлять результаты вычислений по формулам

Уравнение, корень уравнения. Нахождение неизвестных компонентов арифметических действий

Уроки 99-102

 

Строить речевые конструкции с использованием слов «уравнение», «корень уравнения». Проверять, является ли указанное число корнем рассматриваемого уравнения. Решать уравнения на основе зависимостей между компонентами действий. Составлять математические модели (уравнения) по условиям текстовых задач

Уроки 103-104. 

Использовать буквы для записи математических выражений и предложений. Составлять буквенные выражения по условиям задач. Вычислять числовое значение буквенного выражения при заданных значениях букв. Составлять формулы, выражающие зависимости между величинами, вычислять по формулам. Составлять уравнения по условиям задач. Решать простейшие уравнения на основе зависимостей между компонентами арифметических действий

Осевая и зеркальная симметрии. Изображение симметричных игуфр

Уроки 105-106

Распознавать плоские фигуры, симметричные относительно прямой. Вырезать две фигуры, симметричные относительно прямой, из бумаги. Строить фигуру (отрезок, ломаную, треугольник, прямоугольник, окружность), симметричную данной относительно прямой, с помощью инструментов, изображать от руки. Проводить прямую, относительно которой две фигуры симметричны. Конструировать орнаменты и паркеты, используя свойство симметрии, в том числе с помощью компьютерных программ. Формулировать свойства двух фигур, симметричных относительно прямой. Исследовать свойства фигур, симметричных относительно плоскости, используя эксперимент, наблюдение, моделирование. Описывать их свойства

Осевая и зеркальная симметрии. Изображение симметричных фигур

Уроки 107-108.

Находить в окружающем мире плоские и пространственные симметричные фигуры. Распознавать фигуры, имеющие ось симметрии. Вырезать их из бумаги, изображать от руки и с помощью инструментов. Проводить ось симметрии фигуры. Формулировать свойства равнобедренного, равностороннего треугольников, прямоугольника, квадрата, круга, связанные с осевой симметрией. Формулировать свойства параллелепипеда, куба, конуса, цилиндра, шара, связанные с симметрией относительно плоскости. Конструировать орнаменты и паркеты, используя свойство симметрии, в том числе с помощью компьютерных программ

Центральная симметрия. Изображение симметричных фигур

Уроки 109-110.

Распознавать плоские фигуры, симметричные относительно точки. Строить фигуру, симметричную данной относительно точки, с помощью инструментов, достраивать, изображать от руки. Находить центр симметрии фигуры, конфигурации. Конструировать орнаменты и паркеты, используя свойство симметрии, в том числе с помощью компьютерных программ. Формулировать свойства фигур, симметричных относительно точки. Исследовать свойства фигур, имеющих ось и центр симметрии, используя эксперимент, наблюдение, измерение, моделирование, в том числе компьютерное моделирование. Выдвигать гипотезы, формулировать, обосновывать, опровергать с помощью контрпримеров утверждения об осевой и центральной симметрии фигур

Уроки 111-112.

Находить в окружающем мире плоские и пространственные симметричные фигуры. Распознавать плоские фигуры, симметричные относительно прямой, относительно точки, пространственные фигуры, симметричные относительно плоскости. Строить фигуру, симметричную данной относительно прямой, относительно точки с помощью чертёжных инструментов. Конструировать орнаменты и паркеты, используя свойство симметрии, в том числе с помощью компьютерных программ. Исследовать свойства фигур, имеющих ось и центр симметрии, используя эксперимент, наблюдение, измерение, моделирование, в том числе компьютерное моделирование. Формулировать, обосновывать, опровергать с помощью контрпримеров утверждения о симметрии фигур

Положительные и отрицательные числа. Множество целых чисел

Урок 113.

Приводить примеры использования в жизни положительных и отрицательных чисел (температура, выигрыш- проигрыш, выше-ниже уровня моря и пр). Описывать множество целых чисел. Объяснять, какие целые числа называют противоположными. Записывать число, противоположное данному, с помощью знака «минус». Упрощать записи типа - (+3), - (-3)

Сравнение целых чисел

Уроки 114-115. 

Сопоставлять свойства ряда натуральных чисел и ряда целых чисел. Сравнивать и упорядочивать целые числа. Изображать целые числа точками на координатной прямой. Использовать координатную прямую как наглядную опору при решении задач на сравнение целых чисел

Арифметические действия с целыми числами. Свойства арифметических действий

Уроки 116-117.

Объяснять на примерах, как находят сумму двух целых чисел. Записывать с помощью букв свойство нуля при сложении, свойство суммы противоположных чисел. Упрощать запись суммы целых чисел, опуская, где это возможно, знак « + » и скобки. Переставлять слагаемые в сумме целых чисел. Вычислять суммы целых чисел, содержащие два и более слагаемых. Вычислять значения буквенных выражений

Арифметические действия с целыми числами. Свойства арифметических действий

Уроки 118-120.

Формулировать правило нахождения разности целых чисел, записывать его на математическом языке. Вычислять разность двух целых чисел. Вычислять значения числовых выражений, составленных из целых чисел с помощью знаков « + » и « —»; осуществлять самоконтроль. Вычислять значения буквенных выражений при заданных целых значениях букв. Сопоставлять выполнимость действия вычитания в множествах натуральных чисел и целых чисел

Арифметические действия с целыми числами. Свойства арифметических  действий

Уроки 121-123.

Формулировать правила знаков при умножении и делении целых чисел, иллюстрировать их примерами равенства, выражающие свойства 0 и 1 при умножении, правило умножения на -1. Вычислять произведения и частные целых чисел. Вычислять значения числовых выражений, содержащих разные действия с целыми числами. Вычислять значения буквенных выражений при заданных целых значениях букв. Исследовать вопрос об изменении знака произведения целых чисел при изменении на противоположные знаков множителей. Опровергать с помощью контрпримеров неверные утверждения о знаках результатов действий с целыми числами. Записывать на математическом языке

Уроки 124-125.

Сравнивать, упорядочивать целые числа. Формулировать правила вычисления с целыми числами, находить значения числовых и буквенных выражений, содержащих действия с целыми числами

Множество рациональных чисел. Изображение чисел точками координатной прямой

Уроки 126-128.

Применять в речи терминологию, связанную с рациональными числами; распознавать натуральные, целые, дробные, положительные, отрицательные числа; характеризовать множество рациональных чисел. Применять символьное обозначение противоположного числа, объяснять смысл записей типа (-а), упрощать соответствующие записи. Изображать рациональные числа точками координатной прямой

Сравнение рациональных чисел

Уроки 129-130.

Моделировать с помощью координатной прямой отношения «больше» и «меньше» для рациональных чисел. Сравнивать положительное число и нуль, отрицательное число и нуль, положительное и отрицательное числа, два отрицательных числа. Применять и понимать геометрический смысл понятия модуля числа, находить модуль рационального числа. Сравнивать и упорядочивать рациональные числа

Арифметические действия с рациональными числами. Свойства арифметических действий

Уроки 131-133.

Формулировать правила сложения двух чисел одного знака, двух чисел разных знаков; правило вычитания из одного числа другого; применять эти правила для вычисления сумм, разностей. Выполнять числовые подстановки в суммы и разности, записанные с помощью букв, находить соответствующие их значения. Проводить несложные исследования, связанные со свойствами суммы нескольких рациональных чисел (например, замена знака каждого слагаемого)

Арифметические действия с рациональными числами. Свойства арифметических действий

Уроки 134-136. 

Формулировать правила нахождения произведения и частного двух чисел одного знака, двух чисел разных знаков; применять эти правила при умножении и делении рациональных чисел. Находить квадраты и кубы рациональных чисел. Вычислять значения числовых выражений, содержащих разные действия. Выполнять числовые подстановки в простейшие буквенные выражения, находить соответствующие их значения

Декартовы координаты на плоскости

Уроки 137-140

Приводить примеры различных систем координат в окружающем мире, находить и записывать координаты объектов в различных системах координат (шахматная доска; широта и долгота; азимут и др.). Объяснять и иллюстрировать понятие прямоугольной системы координат на плоскости; применять в речи и понимать соответствующие термины и символику. Строить на координатной плоскости точки и фигуры по заданным координатам, находить координаты точек. Проводить исследования, связанные с взаимным расположением точек на координатной плоскости

Уроки 141-142.

Изображать рациональные числа точками координатной прямой. Применять и понимать геометрический смысл понятия модуля числа, находить модуль рационального числа. Моделировать с помощью координатной прямой отношения «больше» и «меньше» для рациональных чисел, сравнивать и упорядочивать рациональные числа. Выполнять вычисления с рациональными числами. Находить значения буквенных выражений при заданных значениях букв Строить на координатной плоскости точки и фигуры по заданным координатам, определять координаты точек  .

Параллелограмм и его свойства. Прямоугольник, квадрат, ромб. Изображение геометрических фигур

Уроки 143-144. 

Распознавать на чертежах, рисунках, в окружающем мире параллелограммы. Изображать параллелограммы с использованием чертёжных инструментов. Моделировать параллелограммы, используя бумагу, пластилин, проволоку и др. Исследовать и описывать свойства параллелограмма, используя эксперимент, наблюдение, измерение, моделирование. Использовать компьютерное моделирование и эксперимент для изучения свойств параллелограммов. Формулировать, обосновывать, опровергать с помощью контрпримеров утверждения о свойствах параллелограмма. Сравнивать свойства параллелограммов различных видов: ромба, квадрата, прямоугольника. Выдвигать гипотезы о свойствах параллелограммов различных видов, объяснять их. Конструировать способы построения параллелограммов по заданным рисункам. Строить логическую цепочку рассуждений о свойствах параллелограмма

Правильные многоугольники. Правильные многогранники. Примеры развёрток многогранников. Изображение геометрических фигур

Уроки 145-146. 

Распознавать на чертежах, рисунках, в окружающем мире правильные многоугольники, правильные многогранники. Исследовать и описывать свойства правильных многоугольников, используя эксперимент, наблюдение, измерение, моделирование. Использовать компьютерное моделирование и эксперимент для изучения свойств геометрических объектов. Изображать правильные многоугольники с помощью чертёжных инструментов по описанию и по заданному алгоритму; осуществлять самоконтроль выполненных построений. Конструировать способы построения правильных многоугольников по заданным рисункам, выполнять построения. Моделировать правильные многогранники из развёрток. Сравнивать свойства правильных многоугольников, связанные с симметрией. Формулировать, обосновывать, опровергать с помощью контрпримеров утверждения о правильных многоугольниках

Понятие площади плоских фигур. Равносоставленные и равновеликие фигуры

Уроки 147-148. 

Изображать равносоставленные фигуры, определять их площади. Моделировать геометрические фигуры из бумаги (перекраивать прямоугольник в параллелограмм, достраивать треугольник до параллелограмма). Сравнивать фигуры по площади. Формулировать свойства равно- составленных фигур. Составлять формулы для вычисления площади параллелограмма, прямоугольного треугольника. Выполнять измерения и вычислять площади параллелограммов и треугольников. Использовать компьютерное моделирование и эксперимент для изучения свойств геометрических объектов. Строить логическую цепочку рассуждений о равновеликих фигурах. Решать задачи на нахождение площадей параллелограммов и треугольников

Наглядные представления о пространственных фигурах. Призма. Примеры развёрток многогранников. Изображение геометрических фигур

Урок 149. 

Распознавать на чертежах, рисунках, в окружающем мире призмы. Называть призмы. Копировать призмы, изображённые на клетчатой бумаге, осуществлять самоконтроль, проверяя соответствие полученного изображения заданному. Моделировать призмы, используя бумагу, пластилин, проволоку и др., изготавливать из развёрток. Определять взаимное расположение граней, рёбер, вершин призмы. Исследовать свойства призмы, используя эксперимент, наблюдение, измерение, моделирование. Описывать их свойства, используя соответствующую терминологию. Формулировать утверждения о свойствах призмы, опровергать утверждения с помощью контрпримеров. Строить логическую цепочку рассуждений о свойствах призм. Составлять формулы, связанные с линейными, плоскими и пространственными характеристиками призмы. Моделировать из призм другие многогранники

Уроки 150-151..

Распознавать на чертежах, рисунках, в окружающем мире параллелограммы, правильные многоугольники, призмы, развёртки призмы. Изображать геометрические фигуры и их конфигурации от руки и с использованием чертёжных инструментов. Моделировать геометрические объекты, используя бумагу, пластилин, проволоку и др. Исследовать и описывать свойства геометрических фигур, используя эксперимент, наблюдение, измерение, моделирование. Выдвигать гипотезы о свойствах изученных фигур, обосновывать их. Формулировать утверждения о свойствах изученных фигур, опровергать утверждения с помощью контрпримеров. Использовать компьютерное моделирование и эксперимент для изучения свойств геометрических объектов. Решать задачи на нахождение длин, площадей и объёмов

Множество, элемент множества. Задание множеств перечислением элементов, характеристическим свойством. Стандартные обозначения числовых множеств. Пустое множество. Подмножества

Уроки 152-153

Приводить примеры конечных и бесконечных множеств. Строить речевые конструкции с использованием теоретико-множественной терминологии и символики; переводить утверждения с математического языка на русский и наоборот. Формулировать определение подмножества некоторого множества. Иллюстрировать понятие подмножества с помощью кругов Эйлера. Обсуждать соотношение между основными числовыми множествами. Записывать на символическом языке соотношения между множествами и приводить примеры различных вариантов их перевода на русский язык. Исследовать вопрос о числе подмножеств конечного множества

Объединение и пересечение множеств. Иллюстрация отношений между множествами с помощью диаграмм Эйлера-Венна

Уроки 154-155.

Формулировать определения объединения и пересечения множеств. Иллюстрировать эти понятия с помощью кругов Эйлера. Использовать схемы в качестве наглядной основы для разбиения множества на непересекающиеся подмножества. Проводить логические рассуждения по сюжетам текстовых задач с помощью кругов Эйлера. Приводить примеры классификаций из математики и из других областей знания

Решение комбинаторных задач перебором вариантов

Уроки 156-159.

Решать комбинаторные задачи с помощью перебора возможных вариантов, в том числе, путём построения дерева возможных вариантов. Строить теоретико-множественные модели некоторых видов комбинаторных задач

Повторение, итоговый контроль

Уроки 160-170 

Сравнивать и упорядочивать десятичные дроби, находить наименьшую и наибольшую десятичную дробь среди заданного набора чисел. Представлять обыкновенные дроби в виде десятичных; выяснять, в каких случаях это возможно. Находить десятичное приближение обыкновенной дроби с указанной точностью. Выполнять действия с дробными числами. Решать задачи на движение, содержащие данные, выраженные дробными числами. Представлять доли величины в процентах. Решать текстовые задачи на нахождение процента от данной величины. Решать задачи требующие владения понятием отношения. Составлять по рисунку формулу для вычисления периметра или площади фигуры. Сравнивать и упорядочивать положительные и отрицательные числа, находить наибольшее или наименьшее из заданного набора чисел. Выполнять числовые подстановки в буквенное выражение (в том числе, подставлять отрицательные числа), вычислять значение выражения. Отмечать точки на координатной плоскости, находить координаты отмеченных точек. Строить фигуру, симметричную данной относительно некоторой прямой; использовать при решении задач равенство симметричных фигур. Решать задачи на взаимное расположение двух окружностей на плоскости

УЧЕБНО- МЕТОДИЧЕСКОЕ

И МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ

Оснащение процесса обучения математике обеспечивается библиотечным фондом, печатными пособиями, а также информационно- коммуникативными средствами, экранно-звуковыми пособиями, техническими средствами обучения, учебно-практическими средствами обучения, учебно-лабораторным оборудованием.

Перечень изданий учебно-методических комплектов «Сферы»

 по математике для 6 классов

6 класс

  1. Бунимович Е.А. Математика. Арифметика. Геометрия. 6 класс: учебник для общеобразовательных учреждений./ Е.А. Бунимович, Л.В. Кузнецова, С.С. Минаева и др. – М.: Просвещение, 2010.
  2. Электронное приложение к учебнику. – М.: Просвещение, 2011 .
  3. Бунимович Е.А. Математика. Арифметика. Геометрия. Тетрадь-тренажёр. 6 класс: пособие  для учащихся общеобразовательных учреждений./ Е.А. Бунимович, Л.В. Кузнецова, С.С. Минаева и др. – М.: Просвещение, 2010.
  4. Бунимович Е.А. Математика. Арифметика. Геометрия. Задачник. 6 класс: пособие  для учащихся общеобразовательных учреждений./ Е.А. Бунимович, Л.В. Кузнецова, С.С. Минаева и др. – М.: Просвещение, 2010.
  5. Кузнецова Л.В.. Математика. Арифметика. Геометрия. Тетрадь-экзаменатор. 6 класс: пособие  для учащихся общеобразовательных учреждений./ Л.В. Кузнецова, С.С. Минаева, Л.О. Рослова и др. – М.: Просвещение, 2010.
  6. Кузнецова Л.В. Математика. Поурочное тематическое планирование 6 класс: пособие для  учителей общеобразовательных учреждений./ Л.В. Кузнецова, С.С. Минаева, Л.О. Рослова и др. – М.: Просвещение, 2011.

Технические средства обучения:

  • ноутбук;

Информационные средства:

  • интернет.

Учебно-практическое и учебно-лабораторное оборудование:

  • комплект чертёжных инструментов (классных и раздаточных): линейка, транспортир, угольник (30), угольник (45,45), циркуль;
  • комплекты планиметрических и стереометрических тел (демонстрационный и раздаточный);
  • комплекты для моделирования (цветная бумага, картон, калька, клей, ножницы, пластилин).

Печатные пособия:

  • таблицы по математике для 5-6 классов;
  • портреты выдающихся деятелей математики.

Сайт интернет-поддержки УМК «Сферы» :www.spheres.ru

СОГЛАСОВАНО

Протокол заседания методического

объединения учителей

от ___________ №____

Руководитель ШМО___________________                  ______

                                           (подпись)                     (расшифровка подписи)

СОГЛАСОВАНО

Зам. Директора по УВР

___________________ (ФИО)                  Дырман Л.А______

          (подпись)                              (расшифровка подписи)

«___» _______________20___г.


По теме: методические разработки, презентации и конспекты

Рабочая программапо математике для 5 класса.Разработано в соответствии с ФГОС ООО

Пояснительная записка к рабочей программе по математике. 5 класс. Данная рабочая программа по математике для 5 класса разработана на ФГОС по программе ООО, с учетом требований федерального компонента ...

КАЛЕНДАРНО – ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ По математике Класс 6 Ступень обучения

Программа составлена на основе _авторской программы : В.И. Жохов Математика.  5-6 классы по учебникам Н.Я.Виленкина, В.И. Жохова и др.  - М: «Мнемозина», 2009. ...

КАЛЕНДАРНО – ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ По математике Класс 6 Ступень обучения

Программа составлена на основе _авторской программы : В.И. Жохов Математика.  5-6 классы по учебникам Н.Я.Виленкина, В.И. Жохова и др.  - М: «Мнемозина», 2009. ...

урок по математике "Класс нашей мечты"

Имя урока: "Класс нашей мечты"Тема урока: Прямоугольный параллелепипед. Объем прямоугольного параллелепипеда.Цели урока: - закрепить практические умения при выполнении различных заданий по теме...

Рабочая программа по математике класс (автор Виленкин Н.Я.))

Рабочая проргамма содержит пояснительную записку, календарно-тематическое планирование, требования  к подготовке учащихся...

рабочая программапо математике 5 класс ФГОС

Рабочая программа по математике для 5 класса на уровень основного общего образования в соответствии с ФГОС...