Методика решения задач на движение с учетом длины движущегося объекта
методическая разработка по математике (9 класс) на тему

Барсова  Мария Ивановна

Данный материал поможет учителям и учащимся при подготовке к ОГЭ по математике

Скачать:


Предварительный просмотр:

Задачи на движение с учётом длины объектов.

В задачах на движение протяжных тел требуется определить длину одного из них, или учесть его длину при нахождении компонент движения.  Можно выделить основные виды таких задач. Это – определение длины поезда проезжающего

  • мимо точечного объекта – стрелочник, семафор, придорожный столб;
  • мимо длинного объекта – платформа, мост, туннель, лесополоса;
  • мимо идущего пешехода ( навстречу или в том же направлении);
  • мимо движущегося длинного объекта – поезд, баржа.

Лучше всего решать такие задачи с помощью схем, где длинный объект изображается вектором (стрелкой). И полезно помнить, что все точки длинного объекта (поезда) движутся с одинаковой скоростью – со скоростью поезда. Поэтому достаточно для себя выбрать одну из них ( например, крайнюю правую – «нос» объекта) и решать задачу, как задачу на движение именно этой точки.

Рассмотрим на конкретных задачах.

  1. Поезд, двигаясь равномерно со скоростью 84 км/ч, проезжает мимо семафора  за 24 секунды. Найти длину поезда в метрах.

"Мимо семафора  за 24 сек" - это время от момента, когда со столбом поравнялся «нос» поезда, до момента, когда со столбом поравнялся «хвост» поезда. За это время «нос» поезда успеет «уехать» на расстояние, равное длине поезда.

Таким образом, "Мимо семафора за 24сек" - это значит, что за 24сек поезд проходит расстояние, равное своей длине.

S = V ∙ t = lпоезда 

Ответ: 560 метров

Вывод: Время движения мимо неподвижной точки – это время, за которое длинный объект проходит расстояние, равное своей длине.

  1. Поезд проезжает мост со скоростью 90 км/ч за 42 секунды. Какова длина поезда, если длина моста 634 метров?

"Проезжает мост за 42 сек" – это время от момента, когда на мост въезжает «нос» поезда, до момента, когда с моста съезжает «хвост» поезда. За это время «нос» поезда успеет «уехать» на расстояние, равное.

Таким образом, "Проезжает мост за 42 сек" – это значит, что за 42 сек поезд проходит расстояние, равное сумме длин моста и поезда. 

S = V ∙ t = l моста + lпоезда

моста + lпоезда = 90 км/ч ∙ 42 сек = 1050 м;     lпоезда = 416 м

Ответ: длина поезда 416 метров

Вывод: Если длинный объект движется мимо неподвижного длинного объекта, то он проходит расстояние равное сумме длин обоих объектов

  1. Какова длина поезда, успевающего проехать мимо идущего навстречу ему вдоль путей пешехода за 6 секунд, если скорость пешехода 4,2 км/ч, а скорость поезда 108 км/ч?

«Проехать мимо идущего навстречу пешехода за 6 секунд» - это время от момента, когда с пешеходом поравнялся «нос» поезда, до момента, когда с пешеходом поравнялся «хвост» поезда, то есть

от  и до .

Это равносильно задаче на встречное движение пешехода и хвоста. Между пешеходом и «хвостом» поезда расстояние, равное длине поезда, через 6 секунд хвост и пешеход встретятся. Каково расстояние между ними, если их скорости известны.

Тогда     (Vпоезда + Vпешехода)∙ t = Sобщее = lпоезда;

или lпоезда = Sобщее Sпоезда + S пешехода

lпоезда = ( 108км/ч + 4,2 км/ч) ∙ 6 сек = 187 м

Ответ: длина поезда 187 м

Вывод: Если длинный объект движется мимо идущего навстречу пешехода, то длина поезда равна сумме расстояний, пройденным пешеходом и поездом вместе.

  1. Какова длина поезда, успевающего проехать мимо идущего вдоль путей в том же направлении пешехода за 30 секунд, если скорость пешехода 5,4 км/ч, а скорость поезда 123 км/ч?

«проехать мимо идущего в том же направлении пешехода за30 секунд» - это время от момента, когда с пешеходом поравнялся «нос» поезда, до момента, когда с пешеходом поравнялся «хвост» поезда, то есть это время

от и до .

Это равносильно задаче на движение в одном направлении пешехода и хвоста.  «Хвост» поезда начал догонять  пешехода, когда расстояние между ними было равно длине поезда, и через 30 секунд догнал пешехода. Каким было расстояние между ними, если их скорости известны.

Тогда     (Vпоезда  Vпешехода)∙ t = Sобщее = lпоезда;

или lпоезда = Sобщее Sпоезда  S пешехода

lпоезда = ( 123 км/ч – 5,4 км/ч) ∙ 30 сек = 980 м

Ответ: длина поезда 980 м

 

Вывод: Если длинный объект движется мимо идущего в том же направлении пешехода, то длина поезда равна разности расстояний, пройденным поездом и пешеходом.

  1. Две сороконожки проползали мимо друг друга 12 секунд. Скорость старшей из них 54 см/мин, а скорость младшей из них 61 см/мин. Какова длина младшей, если старшая к своим годам достигла 12 см.

«Проползали мимо друг друга 48 секунд» - это время между моментом, когда совместятся их носы, до момента, когда совместятся их хвосты. Другими словами, перед нами задача на встречное движение хвостов при исходном расстоянии, равном сумме длин сороконожек.

Тогда     (V1 + V2)∙ t = Sобщее = l1 + l2

l1 + l2 = (54см/мин + 69 см/мин) ∙ 48 сек = 23 см;    l2 = 11см

Ответ: длина младшей сороконожки 11 см.

  1. Старый удав и резвый уж ползли к водопою. При этом уж, имея скорость 46 см/с, прополз мимо удава, длиной 8 метров, за 24 секунды. Какова длина ужа, если скорость удава 11 см/сек.

«Прополз мимо удава за 24 секунды» - это время от момента, когда нос ужа поравнялся с хвостом удава, до момента, когда хвост ужа поравнялся с носом удава, то есть это время за которое хвост ужа догонит нос удава, если расстояние между ними равно сумме их длин.

Тогда     (Vужа  Vудава)∙ t = Sобщее = l ужа + l удава ;

ужа + l удава = (46 см/с – 11 см/с) ∙24 = 840 см; ужа = 840 см – 8м = 40см

Ответ: длина ужа 40 см.

Возможны другие задачи, в которых сочетаются разные ситуации шести основных случаев, или иначе расставлены данные задачи и вопрос задач.

  1. Электричка проходит мимо столба за 8 секунд. За какое время (в секундах) пройдут мимо друг друга пассажирский поезд и электричка, если скорость пассажирского поезда равна скорости электрички, а длина пассажирского поезда в полтора раза больше длины электрички?

Решение: 1). Пусть длина электрички а метров, тогда длина поезда 1,5а метра.

2). "Мимо столба за 8 сек" - это время от момента, когда со столбом поравнялся нос электрички, до момента, когда со столбом поравнялся хвост электрички, за это время нос электрички успел "уехать" на расстояние, равное длине электрички.

Таким образом,  "Мимо столба за 8 сек" - это значит, что за 8 сек электричка проходит расстояние, равное своей длине.

Тогда скорость электричкики (а/8) м/с, такая же скорость и у поезда.

3)."Пройдут мимо друг друга пассажирский поезд и электричка" - это время от момента, когда объекты "коснутся " носами, до момента, когда объекты "коснутся " хвостами. Перефразируем эту часть задачи:

           

Хвост электрички и хвост поезда начали двигаться навстречу друг другу, когда между ними было расстояние, равное сумме длин электрички и поезда. Через сколько секунд они встретятся, если их скорости равны и равны а/8?

Надо общее расстояние (а+1.5а) разделить на общую скорость (а/8+а/8), т.е. (2.5а)/(а/4)=20

Ответ: за 20 сек

  1. Подъезжая к станции скорый поезд снизил скорость в момент, когда между кабиной машиниста и началом платформы было 320 метров, и через снова набрал её, когда между его хвостом и концом платформы стало 230 метров. С какой скоростью шёл скорый мимо платформы, если его длина 210 метров, а длина платформы 400 метров?

Решение:

 Vпоезда ∙t = Sпоезда = (320+400+230+210)м; Vпоезда =1160 м : 12 мин. = 5,8 км/ч

9.   Поезд длиной 240 метров мимо смотрителя прошёл за 12 секунд. Какова длина железнодорожного моста ( в км ), если на его прохождение поезд потратил 1 мин.   (  Ответ: 0.96 км  )

10. Найти скорость и длину поезда, зная, что он проходит мимо светофора за 7 секунд, и тратит 25 секунд на прохождение с той же скоростью вдоль платформы длиной 378 метров.    ( Ответ: 75,6 км/ч и 147 м  )

11.   Два поезда длиной 490 м и 210 м равномерно движутся навстречу друг другу по параллельным путям. Машинист одного из них заметил  встречный состав на расстоянии 700 м;  после этого через 28 секунд поезда встретились. Найти скорость каждого из них ( в км/ч ), если один из них проезжает мимо  светофора на 35 с дольше другого.  (  Ответ: 36 км/ч и 54 км/ч  )

12.   По морю параллельными курсами в одном направлении следуют два сухогруза: первый длиной 160 метров, второй — длиной 140 метров. Сначала второй сухогруз отстает от первого, и в некоторый момент времени расстояние от кормы первого сухогруза до носа второго составляет 300 метров. Через 9 минут после этого уже первый сухогруз отстает от второго так, что расстояние от кормы второго сухогруза до носа первого равно 900 метрам. На сколько километров в час скорость первого сухогруза меньше скорости второго?

13.   По морю параллельными курсами в одном направлении следуют два сухогруза: первый длиной 140 метров, второй — длиной 60 метров. Сначала второй сухогруз отстает от первого, и в некоторый момент времени расстояние от кормы первого сухогруза до носа второго составляет 800 метров. Через 15 минут после этого уже первый сухогруз отстает от второго так, что расстояние от кормы второго сухогруза до носа первого равно 1000 метрам. На сколько километров в час скорость первого сухогруза меньше скорости второго?

14.  Поезд, двигаясь равномерно со скоростью 183 км/ч, проезжает мимо пешехода, идущего в том же направлении параллельно путям со скоростью 3 км/ч, за 13 секунд. Найдите длину поезда в метрах.

15.  Три свечи имеют одинаковую длину, но разную толщину. Первая свеча была зажжена на 1 час раньше двух других, зажженных одновременно. В некоторый момент горения первая и третья свечи стали одной длины, а через 2 часа после этого одинаковой длины стали первая и вторая свечи. За сколько часов сгорает первая свеча, если вторая сгорает за 12 часов, а третья – за 8 часов?  ( Ответ: 16 часов  )


По теме: методические разработки, презентации и конспекты

Методика решения задач на растворы

Наука – химия весьма обширна, и одним из интереснейших разделов является решение задач. Практика показывает, что решение задач требует математического, а иногда нестандартного мышления. Для разв...

Опыт работы по теме "Методика решения задач по химии"

Уметь решать задачи есть искусство,приобретающееся практикой.                      Д. Пой...

Применение задач с военным содержанием на уроках математики по теме: «Решение задач на движение с помощью систем уравнений второй степени».

Имеющийся опыт в применении военной составляющей показывает, что учащиеся с большим интересом занимаются вопросами военного дела, особенно, если предлагаемые для решения задачи ставить не в сухой мате...

Методика решения задач по теме:"Равноускоренное движение",

Предлагаются два слособа решения задач по теме:"Равноускоренное двихение",...

Методика обучения учащихся решению задач на движение

Распечатка для формирования у учащихся умения решать задачи на движение. Материал можно использовать как в 5 классе, так и  при подготовке к государственной итоговой аттестации обучающихся ...

Конспект + презентация урока математики в 4 классе по теме "Решение задач на движение двух объектов"

В данном материале представлен подробный конспект урока, презентация к уроку и необходимые приложения.  Данный урок является обобщающим по данной теме....