Слайд 1
Системы счисления Введение Двоичная система Восьмеричная система Шестнадцатеричная система Другие системы счисления
Слайд 2
Системы счисления Тема 1. Введение
Слайд 3
Определения Система счисления – это способ записи чисел с помощью специальных знаков – цифр . Числа: 123, 45678, 1010011, CXL Цифры : 0, 1, 2, … I, V, X, L, … Алфавит – это набор цифр . {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Типы систем счисления: непозиционные – значение цифры не зависит от ее места (позиции) в записи числа; позиционные – зависит…
Слайд 4
Непозиционные системы Унарная – одна цифра обозначает единицу (1 день, 1 камень, 1 баран, …) Римская: I – 1 (палец), V – 5 (раскрытая ладонь, 5 пальцев) , X – 10 (две ладони) , L – 50, C – 100 ( Centum ) , D – 500 ( Demimille ) , M – 1000 ( Mille )
Слайд 5
Римская система счисления Правила : (обычно) не ставят больше трех одинаковых цифр подряд если младшая цифра (только одна !) стоит слева от старшей, она вычитается из суммы ( частично непозиционная!) Примеры : MDC X L I V = 1000 + 500 + 100 – 10 + 50 – 1 + 5 2389 = 2000 + 300 + 80 + 9 2389 = M M C C C L X X X I X M M CCC LXXX IX = 1 644
Слайд 6
Примеры: 3768 = 2983 = 1452 = 1999 =
Слайд 7
Римская система счисления Недостатки : для записи больших чисел ( >3999) надо вводить новые знаки-цифры ( V, X , L , C , D , M ) как записать дробные числа? как выполнять арифметические действия: CCCLIX + CLXXIV =? Где используется : номера глав в книгах: обозначение веков: « Пираты XX века» циферблат часов
Слайд 8
Славянская система счисления алфавитная система счисления (непозиционная)
Слайд 9
Позиционные системы Позиционная система: значение цифры определяется ее позицией в записи числа. Десятичная система: первоначально – счет на пальцах изобретена в Индии, заимствована арабами, завезена в Европу Алфавит: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Основание (количество цифр): 10 3 7 8 2 1 0 разряды сотни десятки единицы 8 70 300 = 3 · 10 2 + 7 · 10 1 + 8 · 10 0 Другие позиционные системы: двоичная , восьмеричная, шестнадцатеричная (информатика) двенадцатеричная (1 фут = 12 дюймов, 1 шиллинг = 12 пенсов) двадцатеричная (1 франк = 20 су) шестидесятеричная (1 минута = 60 секунд, 1 час = 60 минут)
Слайд 10
Системы счисления Тема 2. Двоичная система счисления
Слайд 11
Перевод целых чисел Двоичная система: Алфавит: 0, 1 Основание (количество цифр): 2 10 2 2 10 19 2 9 18 1 2 4 8 1 2 2 4 0 2 1 2 0 2 0 0 1 19 = 10011 2 система счисления 10011 2 4 3 2 1 0 разряды = 1 · 2 4 + 0 · 2 3 + 0 · 2 2 + 1 · 2 1 + 1 · 2 0 = 16 + 2 + 1 = 19
Слайд 12
Примеры: 131 = 79 =
Слайд 13
Примеры: 101011 2 = 110110 2 = Когда двоичное число четное? делится на 8? ?
Слайд 14
Перевод дробных чисел 10 2 2 10 0,375 = 2 101,011 2 2 1 0 -1 -2 -3 разряды = 1 · 2 2 + 1 · 2 0 + 1 · 2 -2 + 1 · 2 -3 = 4 + 1 + 0,25 + 0,125 = 5,375 ,75 0 0 0,75 2 ,5 0 1 0,5 2 , 0 1 0,7 = ? 0,7 = 0,1 0110 0110… = 0,1(0110) 2 Многие дробные числа нельзя представить в виде конечных двоичных дробей. Для их точного хранения требуется бесконечное число разрядов. Большинство дробных чисел хранится в памяти с ошибкой. 2 -2 = = 0,25 2 2 1 0,011 2
Слайд 15
Примеры: 0,625 = 3,875 =
Слайд 16
Арифметические операции сложение вычитание 0+0=0 0+1=1 1+0=1 1+1= 1 0 2 1 + 1 + 1 = 1 1 2 0-0=0 1-1=0 1-0=1 1 0 2 -1=1 перенос заем 1 0 1 1 0 2 + 1 1 1 0 1 1 2 1 0 0 0 1 1 0 2 1 0 0 0 1 0 1 2 – 1 1 0 1 1 2 0 2 1 0 10 2 1 0 0 1 1 10 2 0 1 0
Слайд 17
Примеры: 101101 2 + 11111 2 10111 2 + 101110 2 111011 2 + 11011 2 111011 2 + 10011 2
Слайд 18
Примеры: 101101 2 – 11111 2 11011 2 – 110101 2
Слайд 19
Арифметические операции умножение деление 1 0 1 0 1 2 1 0 1 2 1 0 1 0 1 2 + 1 0 1 0 1 2 1 1 0 1 0 0 1 2 1 0 1 0 1 2 – 1 1 1 2 1 1 1 2 1 1 2 1 1 1 2 – 1 1 1 2 0
Слайд 20
Плюсы и минусы двоичной системы нужны технические устройства только с двумя устойчивыми состояниями (есть ток — нет тока, намагничен — не намагничен и т.п.); надежность и помехоустойчивость двоичных кодов; выполнение операций с двоичными числами для компьютера намного проще, чем с десятичными. простые десятичные числа записываются в виде бесконечных двоичных дробей; двоичные числа имеют много разрядов; запись числа в двоичной системе однородна , то есть содержит только нули и единицы; поэтому человеку сложно ее воспринимать.
Слайд 21
Системы счисления © К.Ю. Поляков, 2007 Тема 3. Восьмеричная система счисления
Слайд 22
Восьмеричная система Основание (количество цифр): 8 Алфавит: 0, 1 , 2 , 3, 4, 5, 6, 7 10 8 8 10 100 8 12 96 4 8 1 8 4 8 0 0 1 100 = 144 8 система счисления 144 8 2 1 0 разряды = 1 · 8 2 + 4 · 8 1 + 4 · 8 0 = 64 + 32 + 4 = 100
Слайд 23
Примеры: 134 = 75 = 134 8 = 75 8 =
Слайд 24
Таблица восьмеричных чисел X 10 X 8 X 2 X 10 X 8 X 2 0 0 000 4 4 100 1 1 001 5 5 101 2 2 010 6 6 110 3 3 011 7 7 111
Слайд 25
Перевод в двоичную и обратно 8 10 2 трудоемко 2 действия 8 = 2 3 Каждая восьмеричная цифра может быть записана как три двоичных ( триада )! ! 1725 8 = 1 7 2 5 00 1 111 010 101 2 { { { {
Слайд 26
Примеры: 3467 8 = 2148 8 = 7352 8 = 1231 8 =
Слайд 27
Перевод из двоичной системы 1001011101111 2 Шаг 1 . Разбить на триады, начиная справа: 00 1 001 011 101 111 2 Шаг 2 . Каждую триаду записать одной восьмеричной цифрой: 1 3 5 7 Ответ: 1001011101111 2 = 11357 8 00 1 001 011 101 111 2 1
Слайд 28
Примеры: 101101010010 2 = 11111101011 2 = 1101011010 2 =
Слайд 29
Арифметические операции сложение 1 5 6 8 + 6 6 2 8 1 6 + 2 = 8 = 8 + 0 5 + 6 + 1 = 1 2 = 8 + 4 1 + 6 + 1 = 8 = 8 + 0 1 в перенос 1 в перенос 0 8 0 4 1 в перенос
Слайд 30
Пример 3 5 3 8 + 7 3 6 8 1 3 5 3 8 + 7 7 7 8
Слайд 31
Арифметические операции вычитание 4 5 6 8 – 2 7 7 8 ( 6 + 8 ) – 7 = 7 (5 – 1 + 8 ) – 7 = 5 (4 – 1 ) – 2 = 1 заем 7 8 1 5 заем
Слайд 32
Примеры 1 5 6 8 – 6 6 2 8 1 1 5 6 8 – 6 6 2 8
Слайд 33
Системы счисления © К.Ю. Поляков, 2007 Тема 4. Шестнадцатеричная системы счисления
Слайд 34
Шестнадцатеричная система Основание (количество цифр): 16 Алфавит: 0, 1 , 2 , 3, 4, 5, 6, 7, 8, 9, 1 0 16 16 10 10 7 16 6 96 11 16 0 0 6 10 7 = 6B 16 система счисления 1 C5 16 2 1 0 разряды = 1 ·16 2 + 12 ·16 1 + 5·16 0 = 256 + 192 + 5 = 453 A , 10 B , 11 C , 12 D , 13 E , 14 F 15 B C
Слайд 35
Примеры: 17 1 = 206 = 1BC 16 = 22B 16 = А B 16 СЕ 16 444 1 0 555 1 0
Слайд 36
Таблица шестнадцатеричных чисел X 10 X 16 X 2 X 10 X 16 X 2 0 0 0000 8 8 1000 1 1 0001 9 9 1001 2 2 0010 10 A 1010 3 3 0011 11 B 1011 4 4 0100 12 C 1100 5 5 0101 13 D 1101 6 6 0110 14 E 1110 7 7 0111 15 F 1111
Слайд 37
Перевод в двоичную систему 16 10 2 трудоемко 2 действия 16 = 2 4 Каждая шестнадцатеричная цифра может быть записана как четыре двоичных ( тетрада )! ! 7 F1A 16 = 7 F 1 A 0 1 11 { { 1 1 11 0 001 1010 2 { {
Слайд 38
Примеры: C73B 16 = 2FE1 16 =
Слайд 39
Перевод из двоичной системы 1001011101111 2 Шаг 1 . Разбить на тетрады, начиная справа: 000 1 0010 1110 1111 2 Шаг 2 . Каждую тетраду записать одной шестнадцатеричной цифрой: 000 1 0010 1110 1111 2 1 2 E F Ответ: 1001011101111 2 = 12 EF 16
Слайд 40
Примеры: 1010101101010110 2 = 111100110111110101 2 = 110110110101111110 2 = AB56 16 3CDF5 16
Слайд 41
Перевод в восьмеричную и обратно трудоемко 3 DEA 16 = 11 1101 1110 1010 2 16 10 8 2 Шаг 1 . Перевести в двоичную систему: Шаг 2 . Разбить на триады: Шаг 3 . Триада – одна восьмеричная цифра: 0 11 110 111 101 010 2 3 DEA 16 = 36752 8
Слайд 42
Примеры: A35 16 = 765 8 =
Слайд 43
Арифметические операции сложение A 5 B 16 + C 7 E 16 1 6 D 9 16 10 5 11 + 12 7 14 11+14=25= 16 +9 5+7+ 1 = 13 = D 16 10+12=22= 16 +6 1 в перенос 1 в перенос 13 9 6 1
Слайд 44
Пример: С В А 16 + A 5 9 16
Слайд 45
Арифметические операции вычитание С 5 B 16 – A 7 E 16 заем 1 D D 16 1 2 5 11 – 1 0 7 14 ( 11+ 16 ) – 14= 13 = D 16 (5 – 1 )+ 16 – 7= 13 = D 16 ( 12 – 1 ) – 10 = 1 заем 13 1 13
Слайд 46
Пример: 1 В А 16 – A 5 9 16
Слайд 47
Системы счисления © К.Ю. Поляков, 2007 Тема 5. Другие системы счисления
Слайд 48
Троичная уравновешенная система Задача Баше: Найти такой набор из 4 гирь , чтобы с их помощью на чашечках равноплечных весов можно было взвесить груз массой от 1 до 40 кг включительно. Гири можно располагать на любой чашке весов.
Слайд 49
Троичная уравновешенная система + 1 гиря справа 0 гиря снята – 1 гиря слева Веса гирь: 1 кг, 3 кг, 9 кг, 27 кг Пример: 27 кг + 9 кг + 3 кг + 1 кг = 40 кг 1 1 1 1 3ур = Реализация: ЭВМ «Сетунь», Н.П. Брусенцов (1958) 50 промышленных образцов 40 Троичная система! !
Слайд 50
Конец фильма