Системы счисления
презентация к уроку по информатике и икт на тему

Глазырин Михаил Анатольевич

презентация

Скачать:

ВложениеРазмер
Файл sistemy_schisleniya.pptx100.5 КБ

Предварительный просмотр:


Подписи к слайдам:

Слайд 1

Представление (кодирование) чисел Информация и информационные процессы

Слайд 2

Двоичное кодирование в компьютере Вся информация, которую обрабатывает компьютер должна быть представлена двоичным кодом с помощью двух цифр: 0 и 1 . Эти два символа принято называть двоичными цифрами или битами . С помощью двух цифр 0 и 1 можно закодировать любое сообщение. Это явилось причиной того, что в компьютере обязательно должно быть организованно два важных процесса: кодирование и декодирование. Кодирование – преобразование входной информации в форму, воспринимаемую компьютером, т.е. двоичный код. Декодирование – преобразование данных из двоичного кода в форму, понятную человеку.

Слайд 3

Почему двоичное кодирование С точки зрения технической реализации использование двоичной системы счисления для кодирования информации оказалось намного более простым, чем применение других способов. Действительно, удобно кодировать информацию в виде последовательности нулей и единиц, если представить эти значения как два возможных устойчивых состояния электронного элемента: 0 – отсутствие электрического сигнала; 1 – наличие электрического сигнала. Эти состояния легко различать. Недостаток двоичного кодирования – длинные коды . Но в технике легче иметь дело с большим количеством простых элементов, чем с небольшим числом сложных. Способы кодирования и декодирования информации в компьютере, в первую очередь, зависит от вида информации, а именно, что должно кодироваться: числа, текст, графические изображения или звук.

Слайд 4

Система счисления Для записи информации о количестве объектов используются числа. Числа записываются с помощью набора специальных символов. Система счисления — способ записи чисел с помощью набора специальных знаков, называемых цифрами.

Слайд 5

Виды систем счисления СИСТЕМЫ СЧИСЛЕНИЯ ПОЗИЦИОННЫЕ НЕПОЗИЦИОННЫЕ В непозиционных системах счисления величина, которую обозначает цифра, не зависит от положения в числе. XXI В позиционных системах счисления величина , обозначаемая цифрой в записи числа, зависит от её положения в числе ( позиции ). 211 УНАРНЫЕ В унарных системах счисления существует единственная цифра и величина , обозначаемая цифрой в записи числа, не зависит от положения в числе. \\\

Слайд 6

Непозиционные системы счисления Каноническим примером фактически непозиционной системы счисления является римская , в которой в качестве цифр используются латинские буквы: I обозначает 1, V - 5, X - 10, L - 50, C - 100, D - 500, M -1000. Натуральные числа записываются при помощи повторения этих цифр. Например, II = 1 + 1 = 2, здесь символ I обозначает 1 независимо от места в числе. Для правильной записи больших чисел римскими цифрами необходимо сначала записать число тысяч, затем сотен, затем десятков и, наконец, единиц. Пример: число 1988. Одна тысяча M, девять сотен CM, восемьдесят LXXX, восемь VIII. Запишем их вместе: MCMLXXXVIII. MCMLXXXVIII = 1000+(1000-100)+( 50+ 10 +10+10 )+5+1+1+1 = 19 8 8 Для изображения чисел в непозиционной системе счисления нельзя ограничится конечным набором цифр. Кроме того, выполнение арифметических действий в них крайне неудобно.

Слайд 7

Позиционные системы счисления В позиционных системах счисления величина, обозначаемая цифрой в записи числа, зависит от её положения в числе (позиции). Количество используемых цифр называется основанием системы счисления . Например, 11 – это одиннадцать, а не два: 1 + 1 = 2 (сравните с римской системой счисления). Здесь символ 1 имеет различное значение в зависимости от позиции в числе.

Слайд 8

Первые позиционные системы счисления Самой первой такой системой, когда счетным "прибором" служили пальцы рук, была пятеричная . Некоторые племена на филиппинских островах используют ее и в наши дни, а в цивилизованных странах ее реликт, как считают специалисты, сохранился только в виде школьной пятибалльной шкалы оценок.

Слайд 9

Двенадцатеричная система счисления Следующей после пятеричной возникла двенадцатеричная система счисления. Возникла она в древнем Шумере. Некоторые учёные полагают, что такая система возникала у них из подсчёта фаланг на руке большим пальцем. Широкое распространение получила двенадцатеричная система счисления в XIX веке. На ее широкое использование в прошлом явно указывают названия числительных во многих языках, а также сохранившиеся в ряде стран способы отсчета времени, денег и соотношения между некоторыми единицами измерения. Год состоит из 12 месяцев, а половина суток состоит из 12 часов. Элементом двенадцатеричной системы в современности может служить счёт дюжинами. Первые три степени числа 12 имеют собственные названия: 1 дюжина = 12 штук; 1 гросс = 12 дюжин = 144 штуки; 1 масса = 12 гроссов = 144 дюжины = 1728 штук. Английский фунт состоит из 12 шиллингов.

Слайд 10

Шестидесятеричная система счисления Следующая позиционная система счисления была придумана еще в Древнем Вавилоне, причем вавилонская нумерация была шестидесятеричная , т.е. в ней использовалось шестьдесят цифр! В более позднее время использовалась арабами, а также древними и средневековыми астрономами. Шестидесятеричная система счисления, как считают исследователи, являет собой синтез уже вышеупомянутых пятеричной и двенадцатеричной систем.

Слайд 11

Какие позиционные системы счисления используются сейчас? В настоящее время наиболее распространены десятичная , двоичная , восьмеричная и шестнадцатеричная системы счисления. Двоичная, восьмеричная (в настоящее время вытесняется шестнадцатеричной) и шестнадцатеричная система часто используется в областях, связанных с цифровыми устройствами, программировании и вообще компьютерной документации. Современные компьютерные системы оперируют информацией представленной в цифровой форме. Числовые данные преобразуются в двоичную систему счисления .

Слайд 12

Десятичная система счисления Десятичная система счисления — позиционная система счисления по основанию 10. Предполагается, что основание 10 связано с количеством пальцев рук у человека. Наиболее распространённая система счисления в мире. Для записи чисел используются символы 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , называемые арабскими цифрами.

Слайд 13

Двоичная система счисления Двоичная система счисления — позиционная система счисления с основанием 2. Используются цифры 0 и 1. Двоичная система используется в цифровых устройствах, поскольку является наиболее простой и удовлетворяет требованиям: Чем меньше значений существует в системе, тем проще изготовить отдельные элементы. Чем меньше количество состояний у элемента, тем выше помехоустойчивость и тем быстрее он может работать. Простота создания таблиц сложения и умножения — основных действий над числами

Слайд 14

Алфавит десятичной, двоичной, восьмеричной и шестнадцатеричной систем счисления Система счисления Основание Алфавит цифр Десятичная 10 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Двоичная 2 0, 1 Восьмеричная 8 0, 1, 2, 3, 4, 5, 6, 7 Шестнадцатеричная 16 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Слайд 15

Соответствие десятичной, двоичной, восьмеричной и шестнадцатеричной систем счисления p=10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 p=2 0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111 10000 p=8 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 20 p=16 0 1 2 3 4 5 6 7 8 9 A B C D E F 10 Количество используемых цифр называется основанием системы счисления . При одновременной работе с несколькими системами счисления для их различения основание системы обычно указывается в виде нижнего индекса, который записывается в десятичной системе: 123 10 — это число 123 в десятичной системе счисления; 1111011 2 — то же число, но в двоичной системе. Двоичное число 1111011 можно расписать в виде: 1111011 2 = 1*2 6 + 1*2 5 + 1*2 4 + 1*2 3 + 0*2 2 + 1*2 1 + 1*2 0 .

Слайд 16

Перевод чисел из одной системы счисления в другую Чтобы перевести число из позиционной системы счисления с основанием p в десятичную , надо представить это число в виде суммы степеней p и произвести указанные вычисления в десятичной системе счисления. Например, переведем число 1011 2 в десятичную систему счисления. Для этого представим это число в виде степеней двойки и произведем вычисления в десятичной системе счисления. 1011 2 = 1*2 3 + 0*2 2 + 1*2 1 + 1*2 0 = 1*8 + 0*4 + 1*2 + 1*1 = 8 + 0 + 2 + 1 = 11 10 Рассмотрим еще один пример. Переведем число 52,74 8 в десятичную систему счисления. 52,74 8 = 5*8 1 + 2*8 0 + 3*8 -1 + 4*8 -2 = 5*8 + 2*1 + 7*1/8 +4*1/49 = 40 + 2 + 0,875 + 0,0625 = 42,9375 10

Слайд 17

Перевод чисел из одной системы счисления в другую Перевод из десятичной системы счисления в систему счисления с основанием p осуществляется последовательным делением десятичного числа и его десятичных частных на p , а затем выписыванием последнего частного и остатков в обратном порядке. Переведем десятичное число 20 10 в двоичную систем счисления (основание системы счисления p=2). В итоге получили 20 10 = 10100 2 .

Слайд 18

Числа в компьютере Числа в компьютере хранятся и обрабатываются в двоичной системе счисления . Последовательность нулей и единиц называют двоичным кодом. Специфической особенности представления чисел в памяти компьютера рассмотрим на других уроках по теме « системы счисления ».

Слайд 19

Вопросы: Что такое система счисления? Какие два вида систем счисления вы знаете? Что такое основание системы счисления? Что такое алфавит системы счисления? Примеры. В какой системе счисления хранятся и обрабатываются числа в памяти компьютера?


По теме: методические разработки, презентации и конспекты

Урок-закрепление по теме: "Системы счисления. Перевод целых чисел из одной позиционной системы счисления в другую"

Целью данного урока является закрепление учащимися 8-го класса умений по переводу целых чисел из одной системы счисления в другую. В ходе урока учащиеся работают в группах по 2-3 человека. Самос...

Системы счисления. Основные понятия. Двоичная система счисления

Мультимедийная презентация содержит основные понятия по теме "Системы счисленя". Двоичная система счисления представлена в презентации по следующей схеме: основание, узловые и алгоритмические числа, п...

Урок по теме «Системы счисления. Двоичная система счисления» предназначен для изучения в 9 классах.

Урок по теме «Системы счисления. Двоичная система счисления» предназначен для изучения в 9 классах.На уроке раскрывается понятие «Системы счисления», рассматриваются примеры систем счисления, а также ...

Системы счисления. Перевод чисел из одной системы счисления в другую систему счисления.

План-конспект урока с использованием ЭОР "Системы счисления. Перевод чисел из одной системы счисления в другую систему счисления"....

Урок-игра по информатике и ИКТ в 8 классе по теме: «Системы счисления. Перевод из одной системы счисления в другие, арифметические операции в двоичной системе счисления»

Урок-игра по информатике и ИКТ в 8 классе по теме: «Системы счисления. Перевод из одной системы счисления в другие, арифметические операции в двоичной системе счисления»...

«Системы счисления. Перевод из одной системы счисления в другие, арифметические операции в двоичной системе счисления»

систематизировать знания учащихся по теме «Системы счисления. Перевод из одной системы счисления в другие, арифметические операции в двоичной системе счисления»...