Рабочая программа по геометрии 8 класс
рабочая программа по геометрии (8 класс)

Михалева Наталья Александровна

Рабочая программа по геометрии 8 класс

Скачать:

ВложениеРазмер
Microsoft Office document icon rp_-_geometriya_8_klass_fgos.doc228.5 КБ

Предварительный просмотр:

Муниципальное бюджетное общеобразовательное учреждение

«Тарбагатайская средняя общеобразовательная школа»

Рассмотрена на методическом

объединении

Протокол №_____

от «_____» ___________2018 г

Руководитель МО

______/_________________/

Одобрена не методическом объединении

Протокол №____

От «___»_______2018 г

Руководитель МС _____/________________/

Утверждаю:________

Приказ №_______

от «_____»__________2018г Директор школы:________

/___________________/

Рабочая программа

По геометрии

Класс _ 8 ___

Количество часов  68 часов

Учитель: Михалева Наталья Александровна

Тарбагатай, 2018

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

В соответствии с п. 2 ст. 32 Закона РФ «Об образовании в РФ» в компетенцию образовательного учреждения входит разработка и утверждение рабочих программ учебных курсов и дисциплин.

Рабочая программа – это нормативно-управленческий документ учителя, предназначенный для реализации государственного образовательного стандарта, включающего требования к минимуму содержания, уровню подготовки учащихся. Его основная задача – обеспечить выполнение учителем государственных образовательных стандартов и учебного плана по предмету.

Рабочая программа реализует право учителя расширять, углублять, изменять, формировать содержание обучения, определять последовательность изучения материала, распределять учебные часы по разделам, темам, урокам в соответствии с поставленными целями и задачами. При необходимости в течение учебного года учитель может вносить в учебную программу коррективы: изменять последовательность уроков внутри темы, количество часов, переносить сроки проведения контрольных работ.

Рабочая программа составлена на основе:

  1. Закон «Об образовании в Российской Федерации»;
  2. Федеральный компонент государственного стандарта;
  3.  Примерная программа основного общего образования по математике;
  4. Список учебников ОУ, соответствующий Федеральному перечню учебников, утвержденных, рекомендованных (допущенных) к использованию в образовательном процессе в образовательных учреждениях на 2020-2021 уч. год, реализующих программы общего образования;
  5. Учебный план МБОУ «Тарбагатайская СОШ» на 2018-2019 учебный год;
  6. Сборник рабочих программ. 7—9 классы : учеб. пособие для общеобразоват. организаций. М. : Просвещение, 2018

Данная рабочая программа ориентирована на учащихся 8 класса.

Описание ценностных ориентиров содержания учебного предмета

Математическое образование играет важную роль как в практической, так и в духовной жизни общества. Практическая сторона математического образования связана с формированием способов деятельности, духовная — с интеллектуальным развитием человека, формированием характера и общей культуры.

Практическая полезность математики обусловлена тем, что ее предметом являются фундаментальные структуры реального мира: пространственные формы и количественные отношения — от простейших, усваиваемых в непосредственном опыте, до достаточно сложных, необходимых для развития научных и технологических идей. Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие и интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. Каждому человеку в своей жизни приходится выполнять достаточно сложные расчеты, находить в справочниках нужные формулы и применять их, владеть практическими приемами геометрических измерений и построений, читать информацию, представленную в виду таблиц, диаграмм, графиков, понимать вероятностный характер случайных событий, составлять несложные алгоритмы и др.

Без базовой математической подготовки невозможно стать образованным современным человеком. В школе математика служит опорным предметом для изучения смежных дисциплин. В послешкольной жизни реальной необходимостью в наши дни является непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической. И наконец, все больше специальностей, где необходим высокий уровень образования, связано с непосредственным применением математики (экономика, бизнес, финансы, физика, химия, техника, информатика, биология, психология и др.). Таким образом, расширяется круг школьников, для которых математика становится значимым предметом.

Для жизни в современном обществе важным является формирование математического стиля мышления, проявляющегося в определенных умственных навыках. В процессе математической деятельности в арсенал приемов и методов человеческого мышления естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений и правила их конструирования вскрывают механизм логических построений, вырабатывают умения формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мышление. Ведущая роль принадлежит математике в формировании алгоритмического мышления и воспитании умений действовать по заданному алгоритму и конструировать новые. В ходе решения задач — основной учебной деятельности на уроках математики — развиваются творческая и прикладная стороны мышления.

Обучение математике дает возможность развивать у учащихся точную, экономную и информативную речь, умение отбирать наиболее подходящие языковые (в частности, символические, графические) средства.

Математическое образование вносит свой вклад в формирование общей культуры человека. Необходимым компонентом общей культуры в современном толковании является общее знакомство с методами познания действительности, представление о предмете и методе математики, его отличия от методов естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач.

Изучение математики способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии.

История развития математического знания дает возможность пополнить запас историко-научных знаний школьников, сформировать у них представления о математике как части общечеловеческой культуры. Знакомство с основными историческими вехами возникновения и развития математической науки, с историей великих открытий, именами людей, творивших науку, должно войти в интеллектуальный багаж каждого культурного человека.

Цели обучения математики в общеобразовательной школе определяются ее ролью в развитии общества в целом и формировании личности каждого отдельного человека. Геометрия – один из важнейших компонентов математического образования. Она необходима для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, развития пространственного воображения и интуиции, математической культуры, эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

В программе определена последовательность изучения материала в рамках стандарта для старшей школы и пути формирования знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования, а так же развития учащихся.

Общая характеристика учебного предмета

Цели и задачи курса

Изучение математики в основной школе направлено на достижение следующих целей:

  1. в направлении личностного развития
  • развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;
  • формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
  • воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;
  • формирование качеств мышления, необходимых для адаптации в современном информационном обществе;
  • развитие интереса к математическому творчеству и математических способностей.
  1. В метапредметном направлении
  • формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
  • развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;
  • формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности.

          Задачи предмета:

  1. Развитие алгоритмического мышления, необходимого для освоения курса информатики; овладение навыками дедуктивных рассуждений, развитие воображения, способностей к математическому творчеству.
  2. Получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов, для формирования у учащихся представлений о роли математики в развитии цивилизации и культуры.
  3. Формирование языка описания объектов окружающего мира для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся.
  4. Формирование у учащихся умения воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты.

Изучение математики в 8 классе направлено на формирование следующих  компетенций:

  • учебно-познавательной;
  • ценностно-ориентационной;
  • рефлексивной;
  • коммуникативной;
  • информационной;
  • социально-трудовой.

Математическое образование в школе строится с учетом принципов непрерывности (изучение математики на протяжении всех лет обучения в школе), преемственности (учет положительного опыта, накопленного в отечественном и за рубежном математическом образовании), вариативности (возможность реализации одного и того же содержания на базе  различных научно-методических подходов),  дифференциации (возможность для учащихся получать математическую подготовку разного уровня в соответствии с их индивидуальными особенностями).

Планируется использование таких педагогических технологий в преподавании предмета, как дифференцированное обучение, КСО, проблемное обучение, ЛОО, технология развивающего обучения, тестирование, технология критического мышления, ИКТ. Использование этих технологий позволит более точно реализовать потребности учащихся в математическом образовании и поможет подготовить учащихся к государственной итоговой аттестации.

Структура курса

Содержание математического образования применительно к 8 классу представлено в виде следующих содержательных разделов: алгебра, функции, вероятность и статистика, геометрия.

Цель содержания раздела «Геометрия» - развивать у учащихся пространственное воображение и логическое мышление путём систематического изучения свойств геометрических фигур на плоскости и в пространстве и применения этих свойств при решении задач вычислительного и конструктивного характера. Существенная роль при этом отводится развитию геометрической интуиции. Сочетание наглядности со строгостью является неотъемлемой частью геометрических знаний. Материал, относящийся к блокам «Координаты» и «Векторы», в значительной степени несёт в себе межпредметные знания, которые находят применение как в различных математических дисциплинах, так и в смежных предметах.

Целью изучения курса геометрии является систематическое изучение свойств геометрических фигур на плоскости, формирование пространственных представлений, развитие логического мышления и подготовка аппарата, необходимого для изучения смежных дисциплин (физики, черчения и т. д.) и курса стереометрии в старших классах. Курс характеризуется рациональным сочетанием логической строгости и геометрической наглядности. Увеличивается теоретическая значимость изучаемого материала, расширяются внутренние логические связи курса, повышается роль дедукции, степень абстрактности изучаемого материала. Учащиеся овладевают приемами аналитико-синтетической деятельности при доказательстве теорем и решении задач. Систематическое изложение курса позволяет начать работу по формированию представлений о строении математической теории, обеспечивает развитие логического мышления школьников. Изложение материала характеризуется постоянным обращением к наглядности, использованием рисунков и чертежей на всех этапах обучения и развитием геометрической интуиции. Использование примеров из практики развивает умение учащихся вычленять геометрические факты, формы и отношения в предметах и явлениях действительности, использовать язык геометрии для их описания.

Общеучебные цели:

  • овладение системой математических знаний и умений, необходимых для применения практической деятельности изучения смежных дисциплин, продолжения образования;
  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений;
  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
  • воспитание культуры личности, отношения к математике как части общечеловеческой культуры, понимание значимости математики для научно технического прогресса;
  • развитие представлений о полной картине мира, о взаимосвязи математики с другими предметами.

В курсе геометрии 8-го класса продолжается решение задач на признаки равенства треугольников, но в совокупности с применением новых теоретических факторов. Теореме о сумме углов выпуклого многоугольника позволяет расширить класс задач. Формируется практические навыки вычисления площадей многоугольников в ходе решения задач. Особое внимание уделяется применению подобия треугольников к доказательствам теорем и решению задач. Даются первые знания о синусе, косинусе и тангенсе острого угла прямоугольного треугольника. Даются учащимся систематизированные сведения об окружности и её свойствах, вписанной и описанной окружностях. Серьезное внимание уделяется формированию умений рассуждать, делать простые доказательства, давать обоснования выполняемых действий. Параллельно закладываются основы для изучения систематических курсов стереометрии, физики, химии и других смежных предметов.

Общепредметные цели курса:

-развивать пространственное мышление и математическую культуру;

-учить ясно и точно излагать свои мысли ;

-формировать качества личности необходимые человеку в повседневной жизни: умение преодолевать трудности ,доводить начатое дело до конца;

-помочь приобрести опыт исследовательской работы.

Место предмета в учебном плане.

Программой отводится на изучение геометрии по 2 урока в неделю, что составляет 68 часов в учебный год. Из них контрольных работ 6 часов, которые распределены по разделам следующим образом: «Четырехугольники» 1 час, «Площадь» 1 час, «Подобие треугольников» 2 часа, «Окружность» 1 час и 1 час отведен на итоговую контрольную работу.

Промежуточная аттестация проводится в форме тестов, самостоятельных, проверочных работ и математических диктантов (по 10 - 15 минут) в конце логически законченных блоков учебного материала. Итоговая аттестация предусмотрена в виде контрольной работы.

Домашнее задание описано на блок уроков. По ходу работы, в зависимости от темпа прохождение материала номера заданий распределяются по урокам так, что по окончании изучения блока все задания выполнены учащимися в обязательном порядке.

Учет возрастных и психологических особенностей детей

Ценнейшее психологическое приобретение этого возраста — открытие своего внутреннего мира. Это возраст быстрых перемен в теле, в чувствах, позициях и оценках, отношениях с родителями и сверстниками. Это время устремления в будущее, которое притягивает и тревожит, время, полное стрессов и путаницы. Для него характерен повышенный уровень притязаний, критическое отношение к взрослым. Ключевые переживания этого возраста — любовь и дружба. В это время формируется мировоззрение, начинается поиск смысла жизни. Центральное новообразование этого возраста — личностное самоопределение.

В возрасте 13-14 лет меняется система ценностей и интересов. То, что было ценно обесценивается, появляются новые кумиры, подросток перестает прямо копировать взрослых, характер взаимоотношений с взрослыми и родителями часто носят протестный характер. В этом возрасте очень вероятно «заражение» фанатизмом т.к. подростки тянутся ко всему необычному, часто увлекаются неформальными течениями.

Внешне кризис подросткового возраста проявляется в грубости, скрытности и нарочитости поведения, стремление поступать наперекор требованию и желанию взрослых, в игнорировании замечаний, ухода от обычной сферы общения. 

У подростка часто возникает беспричинное чувство тревоги, колеблется самооценка, он в это время очень раним, конфликтен, может впадать в депрессию. В тоже время перестройка отношения подростка к себе влияет не только на его эмоциональное самочувствие, но и на развитие его творческих способностей и удовлетворенность и жизнью вообще. Учеба в это время отходит на второй план (чтобы учение было привлекательным, нужно находить в материале то, что могло бы способствовать общению подростков).

Содержание обучения

Четырехугольник. Многоугольник, выпуклый многоугольник, четырёхугольник. Сумма углов выпуклого многоугольника. Вписанные и описанные многоугольники. Правильные многоугольники. Параллелограмм, его свойства и признаки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапеции, равнобедренная трапеция. Осевая и центральна симметрия.

Основная цель – изучить наиболее важные виды четырёхугольников: параллелограмм, прямоугольник, квадрат, ромб, трапеция; дать представление о фигурах, обладающих осевой и центральной симметрией.

Площадь. Понятие площади многоугольника. Площади прямоугольника, параллелограмма, треугольника, трапеции. Теорема Пифагора.

Основная цель – расширить и углубить представления учащихся об измерении и вычислении площадей; вывести формулы площадей прямоугольника, параллелограмма, треугольника, трапеции; доказать одну из самых главных теорем геометрии - теорему Пифагора.

Подобные треугольники. Подобные треугольники. Признаки  подобия треугольников. Применение подобия к доказательству теорем и решению задач. Синус, косинус и тангенс острого угла прямоугольного треугольника.

 Основная цель- ввести понятие  подобных треугольников; рассмотреть  признаки  подобия треугольников и их применения; сделать первый шаг в освоении учащимися тригонометрического аппарата геометрии.

Окружность и круг. Центр, радиус, диаметр. Дуга, хорда. Сектор, сегмент. Центральный, вписанный угол; величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности; равенство касательных, проведенных из одной точки. Метрические соотношения в окружности: свойства секущих, касательных, хорд.

Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Вписанные и описанные четырехугольники. Вписанные и описанные окружности правильного многоугольника.

Основная цель - расширить сведения об окружности, изучить новые факты, связанные с окружностью; познакомить учащихся с четырьмя замечательными точками треугольника.

Требование к подготовке учащихся

В результате изучения геометрии ученик должен уметь

  • пользоваться языком геометрии для описания предметов окружающего мира;
  • распознавать плоские геометрические фигуры, различать их взаимное расположение, аргументировать суждения, используя определения, свойства, признаки;
  • изображать планиметрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования планиметрических фигур;
  • вычислять значения геометрических величин (длин, углов, площадей), в том числе: для углов от 0 до 180° определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;
  • решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, идеи симметрии;
  • проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
  • решать простейшие планиметрические задачи в пространстве;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • описания реальных ситуаций на языке геометрии;
  • расчетов, включающих простейшие тригонометрические формулы;
  • решения геометрических задач с использованием тригонометрии
  • решения практических задач, связанных с нахождением геометрических величин  - длин, площадей основных геометрических фигур (используя при необходимости справочники и технические средства);
  • построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).

УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ

1.  « Примерная программ по математике для общеобразовательных школ, гимназий, лицеев. Математика 5-11 классы» Дрофа, Москва,2016г.; 

2. Учебник Геометрия, 7 – 9: Учеб. для общеобразоват. учреждений/ Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. – М.: Просвещение, 2016

3. Рабочая тетрадь. Геометрия: рабочая тетрадь для 8 класса общеобразовательных учреждений. Л.С. Атанасян, В.Ф. Бутузов- М. Просвещение 2016г

4. Л.С. Атанасян, В.Ф. Бутузов Изучение геометрии в 7-9 классах: Методические рекомендации к учебнику. Книга для учителя. – М.: Просвещение, 2016.

5. Б.Г. Зив, В.М. Мейлер, А.П. Баханский. Задачи по геометрии для 7 – 11 классов. – М.: Просвещение, 2003.

6. Б.Г. Зив, В.М. Мейлер, Дидактические материалы по геометрии для 8 класса. –М.; Просвещение, 2005г

7. С.М. Саакян, В.Ф. Бутузов. Изучение геометрии в 7-9 классах: Методические рекомендации к учебнику. Книга для учителя. – М.: Просвещение, 2001.

8. Научно-теоретический и методический журнал «Математика в школе»

Специфическое сопровождение (оборудование)

  1. Интерактивная доска;
  2. Персональный компьютер;
  3. Мультимедийный проектор;
  4. Демонстрационные измерительные инструменты и приспособления (размеченные и неразмеченные линейки, циркули, транспортиры, наборы угольников, мерки);
  5. Демонстрационные пособия для изучения геометрических величин (длины, периметра, площади): палетка, квадраты (мерки) и др.;

   6. Демонстрационные пособия для изучения геометрических фигур: модели геометрических фигур и тел, развертки геометрических тел; 

7. Демонстрационные таблицы.

Информационное сопровождение:

  1. Сайт ФИПИ;
  2. Сайт газеты «Первое сентября»;
  3. Сайт «uztest.ru». 
  4.  «Большая электронная детская энциклопедия по математике»,
  5. «1С: Школа. Математика, 5 – 11 кл. Практикум».

Календарно-тематическое планирование

68 часов, 8 класс

Содержание учебного материала

Кол-во часов

Дата

Корректировка

Повторение

2

Четырехугольники

11

3

Многоугольники

1

4

Выпуклый многоугольник. Четырехугольник

1

5

Параллелограмм. Свойства параллелограмма

1

6

Признаки параллелограмма

1

7

Трапеция

   1

8

Решение задач по теме «Параллелограмм. Трапеция»

1

9

Прямоугольник

1

10

Ромб.  Квадрат

1

11

Решение задач

1

12

Осевая и центральная симметрия

1

13

Контрольная работа № 1

1

Площади

14

14

Понятие площади многоугольника

1

15

Площадь прямоугольника

1

16

Площадь параллелограмма

1

17

Решение задач на вычисление площади параллелограмма

1

18

Площадь треугольника

1

19

Площадь трапеции

1

20

Решение задач на вычисление площадей фигур

1

21

Контрольная работа № 2

1

22

Теорема Пифагора

1

23

Теорема, обратная теореме Пифагора

1

24-25

Решение задач на применение теоремы Пифагора

2

26

Формула Герона

1

27

Контрольная работа № 3

1

Подобные треугольники

19

28

Пропорциональные отрезки. Определение подобных треугольников.

1

29

Отношение площадей подобных треугольников.

1

30

Первый признак подобия треугольников

1

31

Второй признак подобия треугольников

1

32

Третий признак подобия треугольников

1

33

Решение задач на применение признаков подобия треугольников

1

34

Решение задач на применение признаков подобия треугольников

1

35

Контрольная работа №4

1

36

Средняя линия треугольника

1

37

Пропорциональные отрезки в прямоугольном треугольнике.

1

38

Пропорциональные отрезки в прямоугольном треугольнике. Решение задач

1

39

Практическое приложение подобия треугольников

1

40

Измерительные работы на местности. О подобии произвольных фигур

1

41

Синус, косинус и тангенс острого угла прямоугольного треугольника.

1

42

Значения синуса, косинуса и тангенса для углов 30°, 45° и 60°.

1

43

Соотношения между сторонами и углами прямоугольного треугольника.

1

44-45

Решение задач по теме.

2

46

Контрольная работа №5

1

Окружность

16

47

Взаимное расположение прямой и окружности

1

48

Касательная к окружности.

1

49

Градусная мера дуги окружности

1

50

Теорема о вписанном угле.

1

51

Решение задач на применение теоремы о вписанном угле

1

52

Теорема об отрезках пересекающихся хорд.

1

53

Решение задач по теме «Центральные и вписанные углы»

1

54

Свойство биссектрисы угла.

1

55

Свойство серединного перпендикуляра к отрезку

1

56

Теорема о точке пересечения высот треугольника

1

57

Вписанная окружность.

1

58

Свойство описанного четырехугольника.

1

59

Описанная окружность.

1

60

Свойство вписанного четырехугольника.

1

61

Решение задач по теме «Окружность»

1

62

Контрольная работа №6

1

Повторение курса 8 класса

6

63

Повторение. Четырехугольники

1

64

Повторение. Площадь. Теорема Пифагора

1

65

Повторение . Подобные треугольники

1

66

Повторение . Окружность

1

67

Итоговая контрольная работа

1

68

Анализ итоговой контрольной работы

1

Национально-региональный компонент





Принцип региональности, заключающийся в опоре на культурные достижения, национальные традиции, нравственно-ценностные взгляды родного народа является одним из важных принципов в образовании.

Включение в учебные предметы национально-регионального компонента направлено на формирование этнокультуроведческой компетенции:

  • умение расшифровывать коды родной культуры;
  • знание особенностей природы, хозяйства, общественных отношений;
  • системное знание национальных процессов;
  • самоидентификация с этносом;
  • национальное самоосознание личности в поликультурном пространстве;
  • толерантность, уважение инокультурных традиций и обычаев.

Рабочая программа предусматривает реализацию  национально-регионального компонента на уроках математики посредством решения задач, составленных на культурно-краеведческом материале Республики Бурятия. Числовые данные взяты из научной, справочной, художественной литературы. Задачи интересны в познавательном отношении. С их помощью есть прекрасная возможность знакомить школьников с природой Бурятии, культурой, историей, традициями, с устным народным творчеством. Простые задачи можно предложить для устного счета, более сложные – для самостоятельного решения или включить в домашнее задание. Задачи практического характера вызывают особый интерес, побуждают к деятельности.

Национально-региональный компонент включен в следующие разделы: «Осевая и центральная симметрия», «Площади».

1. Сообщения учащихся об осевой и центральной симметрии в архитектуре зданий г.Улан-удэ.

2. Пол в комнате имеющего форму прямоугольника со сторонами 5,5 м и 6 м, нужно покрыть паркетом прямоугольной формы. Длина каждой дощечки паркета равна 30 см, а ширина – 5 см. Сколько потребуется дощечек для покрытия пола?

График контрольных работ, 8 класс

2018-2019 учебный год

тема

По плану

фактически

1

Контрольная работа № 1 по теме «Четырехугольники»

2

Контрольная работа № 2 по теме «Площади»

3

Контрольная работа № 3 по теме «Теорема Пифагора»

4

Контрольная работа № 3 по теме «Подобные треугольники»

5

Контрольная работа № 4 по теме «Соотношение между сторонами и углами треугольника»

6

Контрольная работа № 5 по теме «Окружность»


По теме: методические разработки, презентации и конспекты

Рабочая программа по геометрии 7 класс по учебнику Атанасян Л. С. Бутузов В. Ф. и др. Геометрия 7-9 классы

Рабочая программа по геометрии 7 класс по учебнику Атанасян Л. С. Бутузов В. Ф. и др. Геометрия 7-9 классы (2 часа в неделю)...

Рабочая программа по геометрии 11 класс (2 часа в неделю, всего 68 часов) Учебник Геометрия 10-11 класс. Погорелов А.В.

Рабочая программа по геометрии 11 класс (2 часа в неделю, всего 68 часов) Учебник Геометрия 10-11 класс. Погорелов А.В. Базовый уровень...

Рабочая программа по геометрии 10 класс (2 часа в неделю, всего 68 часов) Учебник Геометрия 10-11 класс. Погорелов А.В.

Рабочая программа по геометрии 10 класс (2 часа в неделю, всего 68 часов) Учебник Геометрия 10-11 класс. Погорелов А.В. Базовый уровень...

Рабочая программа по математике (алгебре) 5-9 классы и рабочая программа по геометрии 7-9 класс

Рабочая программа составлена на основе примерных программ основного общего образования по математике 2004 года по учебным комплектам: математика 5-6 класс - Н. Я. Виленкин и др., алгебра - Ю. Н. Макар...

Рабочие программы по математике для 5 класса, по алгебре для 8 класса. УМК А. Г. Мордкович. Рабочие программы по геометрии для 7 и 8 класса. Программа соответствует учебнику Погорелова А.В. Геометрия: Учебник для 7-9 классов средней школы.

Рабочая программа содержит пояснительную записку, содержание учебного материала, учебно - тематическое планирование , требования к математической подготовке, список рекомендованной литературы, календа...

Аннотация к рабочей программе по геометрии, 11 класс + рабочая программа по геометрии для 11 класса

Аннотация к рабочей программе по МАТЕМАТИКЕ (геометрии). Класс: 11.Программа по геометрии для 11 класса составлена на основе Федерального компонента государственного образовательного стандарта среднег...

РАБОЧАЯ ПРОГРАММА Предмет геометрия Класс 9 Учитель Асессорова Е.М.

РАБОЧАЯ ПРОГРАММА        Предмет    геометрия      Класс         9 Учитель      Асессорова Е.М....