Рабочая программа по геометрии. 7-9 классы (УМК под ред. Л.С. Атанасяна)
рабочая программа по геометрии (7 класс)
Рабочая программа по геометрии. 7-9 классы (УМК под ред. Л.С. Атанасяна)
Скачать:
Вложение | Размер |
---|---|
geometriya_7-9_klassy.doc | 199.5 КБ |
Предварительный просмотр:
Аннотация к рабочей программе по геометрии
7-9 класс
Рабочая программа учебного предмета «Геометрия» для 7-9 классов общеобразовательных учреждений составлена на основе следующих документов:
1. Федеральный закон Российской Федерации от 29 декабря 2012 г. № 279-ФЗ «Об образовании в Российской Федерации»
2. Федеральный государственный образовательный стандарт http://минобрнауки.рф/documents/336
3. Приказ Минобразования РФ от 5 марта 2004 г. N 1089
"Об утверждении федерального компонента государственных образовательных стандартов начального общего, основного общего и среднего (полного) общего образования" с изменениями и дополнениями от 23 июня 2015 г.
4. Основная образовательная программа начального общего образования (одобрена решением федерального учебно-методического объединения по общему образованию (протокол от 8 апреля 2015 г. № 1/15).
5. Основная образовательная программа основного общего образования (одобрена решением федерального учебно-методического объединения по общему образованию (протокол от 8 апреля 2015 г. № 1/15).
6. Учебный план общеобразовательного учреждения
7. Приказ Министерства образования и науки Российской Федерации от 28 декабря 2018 г. № 345 «О федеральном перечне учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования».
8. Приказ Министерства образования и науки Российской Федерации № 986 от 4.10.2010 г. «Об утверждении федеральных требований к образовательным учреждениям в части минимальной оснащенности учебного процесса и оборудования учебных помещений».
9. Сборник рабочих программ. 7—9 классы : пособие для учителей общеобразовательных. организаций / [составитель Т. А. Бурмистрова] М. : Просвещение. 2018г.
УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС (УМК)
1. Л.С.Атанасян. Геометрия 7 класс. М. Просвещение. 2016 г.
2. Л.С.Атанасян. Геометрия 8 класс. М. Просвещение. 2016 г.
3. Л.С.Атанасян. Геометрия 9 класс. М. Просвещение. 2016 г.
УЧЕБНЫЙ ПЛАН (КОЛИЧЕСТВО ЧАСОВ)
7 класс — 2 часа в неделю, 68 часов в год
8 класс — 2 часа в неделю, 68 часа в год
9 класс — 2 часа в неделю, 68 часов в год
ЦЕЛИ:
-продолжить овладение системой геометрических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
-продолжить интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе; ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
-формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
-воспитание культуры личности и отношения к геометрии как к части общечеловеческой культуры, понимание значимости геометрии для научно-технического прогресса.
ЗАДАЧИ:
-развитие логического мышления учащихся;
-формирование умений обосновывать и доказывать суждения, приводить чёткие определения, развивать логическую интуицию;
-применение механизма логических построений;
-формирование научно-теоретическое мышление школьников.
Программы обеспечивают достижение выпускниками основной школы определённых личностных, метапредметных и предметных результатов.
ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ
1. Формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и
профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учётом устойчивых познавательных интересов.
2. Формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики.
3. Формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности.
4. Умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры.
5. Критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта.
6. Креативность мышления, находчивость, активность при решении геометрических задач.
7. Умение контролировать процесс и результат учебной математической деятельности.
8. Способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.
МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ
Умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач.
Умение осуществлять контроль по результату и по способу действия на уровне произвольного внимания и вносить не- обходимые коррективы.
Умение адекватно оценивать правильность или ошибочность выполнения учебной
задачи, её объективную трудность и собственные возможности её решения.
Осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовидовых связей.
Умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы.
Умение создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач.
Умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, общие способы работы; умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение.
Формирование и развитие учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности).
Формирование первоначальных представлений об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов.
Умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни.
Умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации.
Умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации.
Умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки.
Умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач.
Понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.
Умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем.
Умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.
ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ
Овладение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучаемых понятиях (число, геометрическая фигура, вектор, координаты) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления.
Умение работать с геометрическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики, использовать различные языки математики, проводить классификации, логические обоснования, доказательства математических утверждений.
Овладение навыками устных, письменных, инструментальных вычислений. Овладение геометрическим языком, умение использовать его для описания предметов окружающего мира, развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений.
Усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне — о простейших пространственных телах, умение применять систематические знания о них для решения геометрических и практических задач.
Умение измерять длины отрезков, величины углов, использовать формулы для
нахождения периметров, площадей и объёмов геометрических фигур.
Умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера.
СОДЕРЖАНИЕ:
- класс
Начальные геометрические сведения — 12 ч
Треугольник — 18 ч
Параллельные прямые — 13 ч
Соотношения между сторонами и углами треугольника — 20 ч
Повторение — 5 ч
- класс
Вводное повторение — 4 ч
Четырехугольники — 18 ч
Площадь — 20 ч
Подобные треугольники – 25 ч
Окружность – 22 ч
Векторы – 10 ч
Повторение – 3 ч
- класс
Вводное повторение — 2 ч
Векторы — 12 ч
Метод координат — 10 ч
Соотношение между сторонами и углами треугольника. Скалярное произведение векторов – 14 ч
Длина окружности и площадь круга — 11ч
Движение — 10 ч
Об аксиомах планиметрии — 1 ч
Повторение. Решение задач — 8 ч
ФОРМЫ ТЕКУЩЕГО КОНТРОЛЯ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ
Формы контроля: фронтальный опрос, проверка домашнего задания, индивидуальная работа у доски, индивидуальная работа по карточкам, самостоятельная работа, проверочная работа, математический диктант, тестовая работа. Промежуточная аттестация проводится в форме тестов, контрольных, самостоятельных работ.
Виды контроля знаний и умений : Предварительный (диагностический): проводят в начале учебного года, полугодия, четверти, на первых уроках нового раздела или темы учебного курса. Его функциональное назначение состоит в том, чтобы изучить уровень готовности учащихся к восприятию нового материала. В начале года необходимо проверить, что сохранилось и что «улетучилось» из изученного школьниками в прошлом учебном году (прочность знаний или остаточные знания, в современной терминологии).
Текущий: самая оперативная, динамичная и гибкая проверка результатов обучения. Текущий контроль сопровождает процесс формирования новых знаний и умений, когда еще рано говорить об их сформированности. Основная цель этого контроля – провести анализ хода формирования знаний и умений. Это дает возможность учителю своевременно выявить недостатки, установить их причины и подготовить материалы, позволяющие устранить недостатки, исправить ошибки, усвоить правила, научиться выполнять нужные операции и действия (самостоятельная работа, проверочная работа, математический диктант, тест, опрос).
Тематический: проводится после изучения какой-либо темы или двух небольших тем, связанных между собой линейными связями. Тематический контроль начинается на повторительно - обобщающих уроках. Его цель – обобщение и систематизация учебного материала всей темы.
Организуя повторение и проверку знаний и умений на таких уроках, учитель предупреждает забывание материала, закрепляет его как базу, необходимую для изучения последующих разделов учебного предмета.
Задания для контрольной работы рассчитаны на выявление знаний всей темы, на установление связей внутри темы и с предыдущими темами курса, на умение переносить знания на другой материал, на поиск выводов обобщающего характера, зачет, контрольная работа.
Итоговый: призван констатировать наличие и оценить результаты обучения за достаточно большой промежуток учебного времени – полугодие, год и ступень обучения (государственная итоговая аттестация).
Система контролирующих материалов, позволяющих оценить уровень и качество ЗУН обучающихся на входном, текущем и итоговом этапах изучения предмета включает в себя сборники тестовых и текстовых заданий.
Пояснительная записка
Рабочая программа по геометрии 7-9 классах (УМК Л.С.Атанасян)
Программа разработана на основе следующих документов:
1. Федеральный закон Российской Федерации от 29 декабря 2012 г. № 279-ФЗ «Об образовании в Российской Федерации»
2. Федеральный государственный образовательный стандарт http://минобрнауки.рф/documents/336
3. Приказ Минобразования РФ от 5 марта 2004 г. N 1089
"Об утверждении федерального компонента государственных образовательных стандартов начального общего, основного общего и среднего (полного) общего образования" с изменениями и дополнениями от 23 июня 2015 г.
4. Основная образовательная программа начального общего образования (одобрена решением федерального учебно-методического объединения по общему образованию (протокол от 8 апреля 2015 г. № 1/15).
5. Основная образовательная программа основного общего образования (одобрена решением федерального учебно-методического объединения по общему образованию (протокол от 8 апреля 2015 г. № 1/15).
6. Учебный план общеобразовательного учреждения
7. Приказ Министерства образования и науки Российской Федерации от 28 декабря 2018 г. № 345 «О федеральном перечне учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования».
8. Приказ Министерства образования и науки Российской Федерации № 986 от 4.10.2010 г. «Об утверждении федеральных требований к образовательным учреждениям в части минимальной оснащенности учебного процесса и оборудования учебных помещений»
9. Сборник рабочих программ. Геометрия. 7-9 классы. Т.А. Бурмистрова М.: Просвешение, 2018.
Овладение обучающимися системой геометрических знаний и умений необходимо в повседневной жизни, для изучения смежных дисциплин и продолжения образования.
Практическая значимость школьного курса геометрии обусловлена тем, что его объектом являются пространственные формы и количественные отношения действительного мира. Геометрическая подготовка необходима для понимания принципов устройства и использования современной техники, восприятия научных и технических понятий и идей. Математика является языком науки и техники. С её помощью моделируются и изучаются явления и процессы, происходящие в природе.
Геометрия является одним из опорных предметов основной школы: она обеспечивает изучение других дисциплин. В первую очередь это относится к предметам естественно-научного цикла, в частности к физике. Развитие логического мышления обучающимися при обучении геометрии способствует усвоению предметов гуманитарного цикла. Практические умения и навыки геометрического характера необходимы для трудовой деятельности и профессиональной подготовки школьников.
Развитие у обучающихся правильных представлений о сущности и происхождении геометрических абстракций, соотношении реального и идеального, характере отражения математической наукой явлений и процессов реального мира, месте геометрии в системе наук и роли математического моделирования в научном познании и в практике способствует формированию научного мировоззрения учащихся, а также формированию качеств мышления, необходимых для адаптации в современном информационном обществе.
Требуя от обучающихся умственных и волевых усилий, концентрации внимания, активности развитого воображения, геометрия развивает нравственные черты личности (настойчивость, целеустремлённость, творческую активность, самостоятельность, ответственность, трудолюбие, дисциплину и критичность мышления) и умение аргументированно отстаивать свои взгляды и убеждения, а также способность принимать самостоятельные решения.
Геометрия существенно расширяет кругозор обучающихся, знакомя их с индукцией и дедукцией, обобщением и конкретизацией, анализом и синтезом, классификацией и систематизацией, абстрагированием, аналогией. Активное использование задач на всех этапах учебного процесса развивает творческие способности школьников.
При обучении геометрии формируются умения и навыки умственного труда — планирование своей работы, поиск рациональных путей её выполнения, критическая оценка результатов. В процессе обучения геометрии школьники должны научиться излагать свои мысли ясно и исчерпывающе, лаконично и ёмко, приобрести навыки чёткого, аккуратного и грамотного выполнения математических записей.
Важнейшей задачей школьного курса геометрии является развитие логического мышления обучающихся. Сами объекты геометрических умозаключений и принятые в геометрии правила их конструирования способствуют формированию умений обосновывать и доказывать суждения, приводить чёткие определения, развивают логическую интуицию, кратко и наглядно вскрывают механизм логических построений и учат их применению. Тем самым геометрия занимает ведущее место в формировании научно-теоретического мышления школьников. Раскрывая внутреннюю гармонию математики, формируя понимание красоты и изящества математических рассуждений, способствуя восприятию геометрических форм, усвоению понятия симметрии, геометрия вносит значительный вклад в эстетическое воспитание обучающихся. Её изучение развивает воображение школьников, существенно обогащает и развивает их пространственные представления.
Общая характеристика предмета учебного предмета
В курсе условно можно выделить следующие содержательные линии: «Наглядная геометрия», «Геометрические фигуры», «Измерение геометрических величин», «Координаты», «Векторы», «Логика и множества», «Геометрия в историческом развитии».
Материал, относящийся к линии «Наглядная геометрия» (элементы наглядной стереометрии) способствует развитию пространственных представлений обучающихся в рамках изучения планиметрии.
Содержание разделов «Геометрические фигуры» и «Измерение геометрических величин» нацелено на получение конкретных знаний о геометрической фигуре как важнейшей математической модели для описания окружающего мира. Систематическое изучение свойств геометрических фигур позволит развить логическое мышление и показать применение этих свойств при решении задач вычислительного и конструктивного характера, а также практических.
Материал, относящийся к содержательным линиям «Координаты» и «Векторы», в значительной степени несёт в себе межпредметные знания, которые находят применение как в различных математических дисциплинах, так и в смежных предметах.
Особенностью линии «Логика и множества» является то, что представленный здесь материал преимущественно изучается при рассмотрении различных вопросов курса. Соответствующий материал нацелен на математическое развитие обучающихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи.
Линия «Геометрия в историческом развитии» предназначена для формирования представлений о геометрии как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения.
Описание места предмета геометрии 7-9 класс в учебном плане.
На изучение предмета по программе в 7 классе 2 часа в неделю, всего 68 часов;
в 8 классе 2 часа в неделю, всего 68 часов; в 9 классе 2 часа в неделю, всего 68 часов.
Личностные, метапредметные и предметные результаты освоения предмета геометрии 7-9 класс
Программа обеспечивает достижение следующих результатов освоения образовательной программы основного общего образования:
личностные:
1) формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учётом устойчивых познавательных интересов;
2) формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;
3) формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;
4) умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
5) критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
6) креативность мышления, инициативу, находчивость, активность при решении геометрических задач;
7) умение контролировать процесс и результат учебной математической деятельности;
8) способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
метапредметные:
1) умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
2) умение осуществлять контроль по результату и по способу действия на уровне произвольного внимания и вносить необходимые коррективы;
3) умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;
4) осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовидовых связей;
5) умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;
6) умение создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;
7) умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, общие способы работы; умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;
8) формирование и развитие учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);
9) формирование первоначальных представлений об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;
10) умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
11) умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
12) умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
13) умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
14) умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
Содержание предмета геометрии 7-9 класс.
Наглядная геометрия. Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений. Многогранники. Правильные многогранники. Примеры развёрток многогранников, цилиндра и конуса. Понятие объёма; единицы объёма. Объём прямоугольного параллелепипеда, куба.
Геометрические фигуры. Прямые и углы. Точка, прямая, плоскость. Отрезок, луч. Угол. Виды углов. Вертикальные и смежные углы. Биссектриса угла. Параллельные и пересекающиеся прямые. Перпендикулярные прямые. Теоремы о параллельности и перпендикулярности прямых. Перпендикуляр и наклонная к прямой. Серединный перпендикуляр к отрезку. Геометрическое место точек. Свойства биссектрисы угла и серединного перпендикуляра к отрезку.
Треугольник. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренные и равносторонние треугольники; свойства и признаки равнобедренного треугольника. Признаки равенства треугольников. Неравенство треугольника. Соотношения между сторонами и углами треугольника. Сумма углов треугольника. Внешние углы треугольника. Теорема Фалеса. Подобие треугольников. Признаки подобия треугольников. Теорема Пифагора. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0 до 180°приведение к острому углу. Решение прямоугольных треугольников. Основное тригонометрическое тождество. Формулы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Решение треугольников: теорема косинусов и теорема синусов. Замечательные точки треугольника.
Четырёхугольник. Параллелограмм, его свойства и признаки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапеции.
Многоугольник. Выпуклые многоугольники. Сумма углов выпуклого многоугольника. Правильные многоугольники.
Окружность и круг. Дуга, хорда. Сектор, сегмент. Центральный угол, вписанный угол, величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности, их свойства. Вписанные и описанные многоугольники. Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Вписанные и описанные окружности правильного многоугольника. Геометрические преобразования. Понятие о равенстве фигур. Понятие о движении: осевая и центральная симметрии, параллельный перенос, поворот. Понятие о подобии фигур и гомотетии. Построения с помощью циркуля и линейки. Основные задачи на построение: деление отрезка пополам; построение угла, равного данному; построение треугольника по трём сторонам; построение перпендикуляра к прямой; построение биссектрисы угла; деление отрезка на n равных частей. Решение задач на вычисление, доказательство и построение с использованием свойств изученных фигур.
Измерение геометрических величин. Длина отрезка. Расстояние от точки до прямой. Расстояние между параллельными прямыми. Периметр многоугольника. Длина окружности, число π; длина дуги окружности. Градусная мера угла, соответствие между величиной центрального угла и длиной дуги окружности. Понятие площади плоских фигур. Равносоставленные и равновеликие фигуры. Площадь прямоугольника. Площади параллелограмма, треугольника и трапеции. Площадь многоугольника. Площадь круга и площадь сектора. Соотношение между площадями подобных фигур. Решение задач на вычисление и доказательство с использованием изученных формул.
Координаты. Уравнение прямой. Координаты середины отрезка. Формула расстояния между двумя точками плоскости. Уравнение окружности.
Векторы. Длина (модуль) вектора. Равенство векторов. Коллинеарные векторы. Координаты вектора. Умножение вектора на число, сумма векторов, разложение вектора по двум неколлинеарным векторам. Скалярное произведение векторов.
Теоретико-множественные понятия. Множество, элемент множества. Задание множеств перечислением элементов, характеристическим свойством. Подмножество. Объединение и пересечение множеств.
Элементы логики. Определение. Аксиомы и теоремы. Доказательство. Доказательство от противного. Теорема, обратная данной. Пример и контрпример. Понятие о равносильности, следовании, употребление логических связок если ..., то ____________..., в том и только в том случае, логические связки и, или.
Геометрия в историческом развитии. От землемерия к геометрии. Пифагор и его школа. Фалес. Архимед. Построение правильных многоугольников. Трисекция угла. Квадратура круга. Удвоение куба. История числа π. Золотое сечение «Начала» Евклида. Л. Эйлер. Н. И. Лобачевский. История пятого постулата. Изобретение метода координат, позволяющего переводить геометрические объекты на язык алгебры. Р. Декарт и П. Ферма. Примеры различных систем координат на плоскости.
Таблица тематического распределения количества часов
7 класс
Раздел | Тема | Авторская программа | Рабочая программа |
I | Глава I. Начальные геометрические сведения | 7 | 11 |
II | Глава II. Треугольники | 14 | 18 |
III | Глава III. Параллельные прямые | 9 | 13 |
I | Глава IV. Соотношения между сторонами и углами треугольника | 16 | 20 |
V | Повторение. Решение задач | 4 | 6 |
Итого | 50 | 68 |
Раздел | Тема, основное содержание по темам | Рабочая программа | Характеристика основных видов деятельности ученика (на уровне учебных действий) |
1. | Глава I. Начальные геометрические сведения 1.Прямая и отрезок. Луч и угол 2.Сравнение отрезков и углов 3.Измерение отрезков. Измерение углов 4.Перпендикулярные прямые | 11 | Объяснять, что такое отрезок, луч, угол, какие фигуры называются равными, как сравниваются и измеряются отрезки и углы, что такое градус и градусная мера угла, какой угол называется прямым, тупым, острым, развёрнутым, что такое середина отрезка и биссектриса угла, какие углы называются смежными и какие вертикальными; формулировать и обосновывать утверждения о свойствах смежных и вертикальных углов; объяснять, какие прямые называются перпендикулярными; формулировать и обосновывать утверждение о свойстве двух прямых, перпендикулярных к третьей; изображать и распознавать указанные простейшие фигуры на чертежах; решать задачи, связанные с этими простейшими фигурами |
2. | Глава II. Треугольники | 18 | Объяснять, какая фигура называется треугольником, что такое вершины, стороны, углы и периметр треугольника, какой треугольник называется равнобедренным и какой равносторонним, какие треугольники называются равными; изображать и распознавать на чертежах треугольники и их элементы; формулировать и доказывать теоремы о признаках равенства треугольников; объяснять, что называется перпендикуляром, проведённым из данной точки к данной прямой; формулировать и доказывать теорему о перпендикуляре к прямой; объяснять, какие отрезки называются медианой, биссектрисой и высотой треугольника; формулировать и доказывать теоремы о свойствах равнобедренного треугольника; решать задачи, связанные с признаками равенства треугольников и свойствами равнобедренного треугольника; формулировать определение окружности; объяснять, что такое центр, радиус, хорда и диаметр окружности; решать простейшие задачи на построение (построение угла, равного данному, построение биссектрисы угла, построение перпендикулярных прямых, построение середины отрезка) и более сложные задачи, использующие указанные простейшие; сопоставлять полученный результат с условием задачи; анализировать возможные случаи |
2.1 Признаки равенства треугольников 1.Первый, второй и третий признак равенства треугольников 2.Медианы, биссектрисы и высоты треугольника | 11 | ||
Решение задач 1.Решение задач на построение 2.Решение задач на применение признаков равенства треугольников | 7 | ||
3. | Глава III. Параллельные прямые | 13 | Формулировать определение параллельных прямых; объяснять с помощью рисунка, какие углы, образованные при пересечении двух прямых секущей, называются накрест лежащими, какие односторонними и какие соответственными; формулировать и доказывать теоремы, выражающие признаки параллельности двух прямых; объяснять, что такое аксиомы геометрии и какие аксиомы уже использовались ранее; формулировать аксиому параллельных прямых и выводить следствия из неё; формулировать и доказывать теоремы о свойствах параллельных прямых, обратные теоремам о признаках параллельности, связанных с накрест лежащими, соответственными и односторонними углами, в связи с этим объяснять, что такое условие и заключение теоремы, какая теорема называется обратной по отношению к данной теореме; объяснять, в чём заключается метод доказательства от противного: формулировать и доказывать теоремы об углах с соответственно параллельными и перпендикулярными сторонами; приводить примеры использования этого метода; решать задачи на вычисление, доказательство и построение, связанные с параллельными прямыми |
3.1 Признаки параллельности прямых 1. Признаки параллельности прямых двух прямых 2. Аксиома параллельности прямых | 7 | ||
3.2. Решение задач | 6 | ||
4. | Глава IV. Соотношения между сторонами и углами треугольника | 20 | Формулировать и доказывать теорему о сумме углов треугольника и её следствие о внешнем угле треугольника, проводить классификацию треугольников по углам; формулировать и доказывать теорему о соотношениях между сторонами и углами треугольника (прямое и обратное утверждения) и следствия из неё, теорему о неравенстве треугольника; формулировать и доказывать теоремы о свойствах прямоугольных треугольников (прямоугольный треугольник с углом 30°, признаки равенства прямоугольных треугольников); формулировать определения расстояния от точки до прямой, расстояния между параллельными прямыми; решать задачи на вычисления, доказательство и построение, связанные с соотношениями между сторонами и углами тре угольника и расстоянием между параллельными прямыми, при необходимости проводить по ходу решения дополнительные построения, сопоставлять полученный результат с условием задачи, в задачах на построение исследовать возможные случаи |
1.Сумма углов треугольника 2.Соотношения между сторонами и углами треугольника 3.Прямоугольные треугольники | 10 | ||
1.Решение задач на построение 2.Построение треугольника по трем элементам 3. Решение задач | 10 | ||
5. | Повторение . Решение задач 1.Повторение по теме "Начальные геометрические сведения" о теме "Признаки равенства треугольников. Равнобедренный треугольник" 3.Повторение по теме "Параллельные прямые" 4.Повторение по теме "Соотношения между сторонами и углами треугольника 5.Повторение по теме "Задачи на построение" | 6 | Строят логические цепи рассуждений. Предвосхищают результат и уровень усвоения (какой будет результат?). Умеют слушать и слышать друг друга. Выдвигают и обосновывают гипотезы, предлагают способы их проверки. Ставят учебную задачу на основе соотнесения того, что уже известно и усвоено, и того, что еще неизвестно. Развивают умение интегрироваться в группу сверстников и строить продуктивное взаимодействие со сверстниками и взрослыми Самостоятельно создают алгоритмы деятельности при решении проблем творческого и поискового характера.
Понимают возможность различных точек зрения, не совпадающих с собственной. Осознанно и произвольно строят речевые высказывания в устной и письменной форме. Сличают способ и результат своих действий с зданным эталоном, обнаруживают отклонения и отличия от эталона. Умеют с помощью вопросов добывать недостающую информацию. Выбирают наиболее эффективные способы решения задачи в зависимости от конкретных условий. Вносят коррективы и дополнения в способ своих действий в случае расхождения эталона, реального действия и его продукта. Проявляют готовность адекватно реагировать на нужды других, оказывать помощь и эмоциональную поддержку партнерам. Осознанно и произвольно строят речевые высказывания в письменной форме. Осознают качество и уровень усвоения. Придерживаются морально-этических и психологических принципов общения и сотрудничества. |
ИТОГО | 68 часов |
8 класс
Раздел | Тема | Рабочая программа | Характеристика основных видов деятельности ученика (на уровне учебных действий) |
1. | Глава V. Четырехугольники | 14 | Объяснять, что такое ломаная, многоугольник, его вершины, смежные стороны, диагонали, изображать и распознавать многоугольники на чертежах; показывать элементы много угольника, его внутреннюю и внешнюю области; формулировать определение выпуклого многоугольника; изображать и распознавать выпуклые и невыпуклые многоугольники; формулировать и доказывать утверждения о сумме углов выпуклого многоугольника и сумме его внешних углов; объяснять, какие стороны (вершины) четырёхугольника называются противоположными; формулировать определения параллелограмма, трапеции, равнобедренной и прямоугольной трапеций, прямоугольника, ромба, квадрата; изображать и распознавать эти четырёхугольники; формулировать и доказывать утверждения об их свойствах и признаках; решать задачи на вычисление, доказательство и построение, связанные с этими видами четырёхугольников; объяснять, какие две точки называются симметричными относительно прямой (точки), в каком случае фигура называется симметричной относительно прямой (точки) и что такое ось (центр) симметрии фигуры; приводить примеры фигур, обладающих осевой (центральной) симметрией, а также примеры осевой и центральной симметрий в окружающей нас обстановке |
1.1 Многоугольники. Параллелограмм и трапеция | 8 | ||
1.2 Прямоугольник, ромб, квадрат | 6 | ||
2. | Глава VI. Площадь | 14 | Объяснять, как производится измерение площадей многоугольников, какие многоугольники называются равновеликими и какие равносоставленными; формулировать основные свойства площадей и выводить с их помощью формулы площадей прямоугольника, параллелограмма, треугольника, трапеции; формулировать и доказывать теорему об отношении площадей треугольников, имеющих по равному углу; формулировать и доказывать теорему Пифагора и обратную ей; выводить формулу Герона для площади треугольника; решать задачи на вычисление и доказательство, связанные с формулами площадей и теоремой Пифагора
|
2.1 Площадь многоугольника | 8 | ||
2.2. Теорема Пифагора | 6 | ||
3. | Глава VII. Подобные треугольники | 19 | Объяснять понятие пропорциональности отрезков; формулировать определения подобных треугольников и коэффициента подобия; формулировать и доказывать теоремы: об отношении площадей подобных треугольников, о признаках подобия треугольников, о средней линии треугольника, о пересечении медиан треугольника, о пропорциональных отрезках в прямоугольном треугольнике; объяснять, что такое метод подобия в задачах на построение, и приводить примеры применения этого метода; объяснять, как можно использовать свойства подобных треугольников в измерительных работах на местности; объяснять, как ввести понятие подобия для произвольных фигур; формулировать определение и иллюстрировать понятия синуса, косинуса и тангенса острого угла прямоугольного треугольника; выводить основное тригонометрическое тождество и значения синуса, косинуса и тангенса для углов 30°, 45°, 60°; решать задачи, связанные с подобием треугольников, для вычисления значений тригонометрических функций использовать компьютерные программы |
3.1 Признаки подобия | 8 | ||
3.2. Применение подобия | 11 | ||
4. | Глава VIII. Окружность | 17 | Исследовать взаимное расположение прямой и окружности; формулировать определение касательной к окружности; формулировать и доказывать теоремы: о свойстве касательной, о признаке касательной, об отрезках касательных, проведённых из одной точки; формулировать понятия центрального угла и градусной меры дуги окружности; формулировать и доказывать теоремы: о вписанном угле, о произведении отрезков пересекающихся хорд; формулировать и доказывать теоремы, связанные с замечательными точками треугольника: о биссектрисе угла и, как следствие, о пересечении биссектрис треугольника; о серединном перпендикуляре к отрезку и, как следствие, о пересечении серединных перпендикуляров к сторонам треугольника; о пересечении высот треугольника; формулировать определения окружностей, вписанной в многоугольник и описанной около многоугольника; формулировать и доказывать теоремы: об окружности, вписанной в треугольник; об окружности, описанной около треугольника; о свойстве сторон описанного четырёхугольника; о свойстве углов вписанного четырёх угольника; решать задачи на вычисление, доказательство и построение, связанные с окружностью, вписанными и описанными треугольниками и четырёхугольниками; исследовать свойства конфигураций, связанных с окружностью, с помощью компьютерных программ |
4.1 Касательная. Центральные и вписанные углы | 10 | ||
4.2 Вписанная и описанная окружность | 7 | ||
5. | Повторение. Решение задач 1.Повторение по теме «Четырёхугольники». 2.Повторение по теме «Площадь». 3.Повторение по теме «Подобие треугольников. Окружность». 4.Повторение по теме «Подобие треугольников. Окружность». | 4 | Строят логические цепи рассуждений. Предвосхищают результат и уровень усвоения (какой будет результат?). Умеют слушать и слышать друг друга. Выдвигают и обосновывают гипотезы, предлагают способы их проверки. Ставят учебную задачу на основе соотнесения того, что уже известно и усвоено, и того, что еще неизвестно. Развивают умение интегрироваться в группу сверстников и строить продуктивное взаимодействие со сверстниками и взрослыми Самостоятельно создают алгоритмы деятельности при решении проблем творческого и поискового характера. Понимают возможность различных точек зрения, не совпадающих с собственной. Осознанно и произвольно строят речевые высказывания в устной и письменной форме. Сличают способ и результат своих действий с заданным эталоном, обнаруживают отклонения и отличия от эталона. Умеют с помощью вопросов добывать недостающую информацию. Выбирают наиболее эффективные способы решения задачи в зависимости от конкретных условий. Вносят коррективы и дополнения в способ своих действий в случае расхождения эталона, реального действия и его продукта. |
Итого | 68 часов |
9 класс
Раздел | Тема | Рабочая программа | Характеристика основных видов деятельности ученика (на уровне учебных действий) |
1. | Глава IX. Векторы 1.Понятие вектора 2.Сложение и вычитание векторов 3. Умножение вектора на число. 4.Применение векторов к решению задач | 8 |
Формулировать определения и иллюстрировать понятия вектора, его длины, коллинеарных и равных векторов; мотивировать введение понятий и действий, связанных с векторами, соответствующими примерами, относящимися к физическим векторным величинам; применять векторы и действия над ними при решении геометрических задач |
2. | Глава X. Метод координат 1.Координаты вектора 2.Простейшие задачи в координатах 3.Уравнения окружности | 10 | Объяснять и иллюстрировать понятия прямоугольной системы координат, координат точки и координат вектора; выводить и использовать при решении задач формулы координат середины отрезка, длины вектора, расстояния между двумя точками, уравнения окружности и прямой |
3. | Глава XI. Соотношения между сторонами и углами треугольника. Скалярное произведение векторов 1.Синус, косинус, тангенс, котангенс угла 2.Соотношения между сторонами и углами треугольника 3.Скалярное произведение векторов 4.Решение задач | 11 | Формулировать и иллюстрировать определения синуса, косинуса, тангенса и котангенса углов от 0 до 180°; выводить основное тригонометрическое тождество и формулы приведения; формулировать и доказывать теоремы синусов и косинусов, применять их при решении треугольников; объяснять, как используются тригонометрические формулы в измерительных работах на местности; формулировать определения угла между векторами и скалярного произведения векторов; выводить формулу скалярного произведения через координаты векторов; формулировать и обосновывать утверждение о свойствах скалярного произведения; использовать скалярное произведение векторов при решении задач |
4. | Глава XII. Длина окружности и площадь круга 1.Правильные многоугольники 2.Длина окружности и площадь круга 3.Решение задач | 12 | Формулировать определение правильного многоугольника; формулировать и доказывать теоремы об окружностях, описанной около правильного многоугольника и вписанной в него; выводить и использовать формулы для вычисления площади правильного многоугольника, его стороны и радиуса вписанной окружности; решать задачи на построение правильных многоугольников; объяснять понятия длины окружности и площади круга; выводить формулы для вычисления длины окружности и длины дуги, площади круга и площади кругового сектора; применять эти формулы при решении задач |
5. | Глава XIII. Движение 1.Понятие движения 2.Параллельный перенос и поворот | 8 | Объяснять, что такое отображение плоскости на себя и в каком случае оно называется движением плоскости; объяснять, что такое осевая симметрия, центральная симметрия, параллельный перенос и поворот; обосновывать, что эти отображения плоскости на себя являются движениями; объяснять, какова связь между движениями и наложениями; иллюстрировать основные виды движений, в том числе с помощью компьютерных программ |
6. | Глава XIV. Начальные сведения из Стереометрии 1.Многогранники 2.Тела и поверхности вращения | 8 | Объяснять, что такое многогранник, его грани, рёбра, вершины, диагонали, какой многогранник называется выпуклым, что такое n-угольная призма, её основания, боковые грани и боковые рёбра, какая призма называется прямой и какая наклонной, что такое высота призмы, какая призма называется параллелепипедом и какой параллелепипед называется прямоугольным; формулировать и обосновывать утверждения о свойстве диагоналей параллелепипеда и о квадрате диагонали прямоугольного параллелепипеда; объяснять, что такое объём многогранника; выводить формулу объёма прямоугольного параллелепипеда; объяснять, какой многогранник называется пирамидой, что такое основание, вершина, боковые грани, боковые рёбра и высота пирамиды, какая пирамида называется правильной, что такое апофема правильной пирамиды, приводить формулу объёма пирамиды; объяснять, какое тело называется цилиндром, что такое его ось, высота, основания, радиус, боковая поверхность, образующие, развёртка боковой поверхности, какими формулами выражаются объём и площадь боковой поверхности цилиндра; объяснять, какое тело называется конусом, что такое его ось, высота, основание, боковая поверхность, образующие, развёртка боковой поверхности, какими формулами выражаются объём конуса и площадь боковой поверхности; объяснять, какая поверхность называется сферой) и какое тело называется шаром, что такое радиус и диаметр сферы (шара), какими формулами выражаются объём шара и площадь сферы; изображать и распознавать на рисунках призму, параллелепипед, пирамиду, цилиндр, конус, шар |
7. | Об аксиомах планиметрии | 2 | Строят логические цепи рассуждений. Предвосхищают результат и уровень усвоения (какой будет результат?). Умеют слушать и слышать друг друга. Выдвигают и обосновывают гипотезы, предлагают способы их проверки. Ставят учебную задачу на основе соотнесения того, что уже известно и усвоено, и того, что еще неизвестно. Развивают умение интегрироваться в группу сверстников и строить продуктивное взаимодействие со сверстниками и взрослыми |
5. | Повторение. Решение задач 1.Виды треугольников. Замечательные линии и точки треугольника 2.Тригонометрические функции острого угла прямоугольного треугольника. 3.Виды четырехугольников. Свойства и признаки. 4.Координатный и векторный методы решения задач | 9 | Самостоятельно создают алгоритмы деятельности при решении проблем творческого и поискового характера. Понимают возможность различных точек зрения, не совпадающих с собственной. Осознанно и произвольно строят речевые высказывания в устной и письменной форме. Сличают способ и результат своих действий с заданным эталоном, обнаруживают отклонения и отличия от эталона. Умеют с помощью вопросов добывать недостающую информацию. |
Итого | 68 часов |
Описание материально-технического обеспечения
1. Геометрия: 7—9 кл. / Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др. — М.: Просвещение, 2015
2. Зив Б. Г. Геометрия: дидакт. материалы: 7 кл. / Б. Г. Зив, В. М. Мейлер. — М.: Просвещение, 2015
3. Зив Б. Г. Геометрия: дидакт. материалы: 8 кл. / Б. Г. Зив,В. М. Мейлер. — М.: Просвещение, 2015
5. Зив Б. Г. Геометрия: дидакт. материалы: 9 кл. / Б. Г. Зив. —М.: Просвещение, 2015
8. Изучение геометрии в 7, 8, 9 классах: метод. рекомендации: кн. для учителя / Л. С. Атанасян, В. Ф. Бутузов, Ю. А. Глазков и др. — М.: Просвещение, 2015.
9. Мищенко Т. М. Геометрия: тематические тесты: 7 кл. /Т. М. Мищенко, А. Д. Блинков. — М.: Просвещение, 2016.
10. Мищенко Т. М. Геометрия: тематические тесты: 8 кл. /Т. М. Мищенко, А. Д. Блинков. — М.: Просвещение, 2016.
11. Мищенко Т. М. Геометрия: тематические тесты: 9 кл. /Т. М. Мищенко, А. Д. Блинков. — М.: Просвещение, 2016.
Интернет ресурсы
http://umnojenie.narod.ru/ - Способ умножения "треугольником".
http://comp-science.narod.ru - дидактические материалы по информатике и математике: материалы олимпиад школьников по программированию, подготовка к олимпиадам по программированию, дидактические материалы по алгебре и геометрии (6-9 кл.) в формате LaTeX и др.
http://www.school.mos.ru - сайт поможет школьнику найти необходимую информацию для подготовки к урокам, материал для рефератов и т.д.
http://www.history.ru/freemath.htm - бесплатные обучающие программы по математике для школьников.
http://mathem.by.ru/index.html - Математика online
http://center.fio.ru/som/subject.asp?id=10000191
http://www.samara.fio.ru/resourse/teachelp.shtml#mate
http://refportal.ru/mathemaics/ Рефераты по математике
htp://www.otbet.ru/ Делаем уроки вместе!
http://uztest.ru/logout ЕГЭ по математике
http://ege-online-test.ru/ ЕГЭ Онлайн Тест (математика)Планируемые результаты обучения предмета геометрии 7-9 класс
Результаты обучения представлены в Требованиях к уровню подготовки и задают систему итоговых результатов обучения. Результаты должны достичь решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства). А также построений геометрическими инструментами (линейка, угольник, циркуль, транспортир); владения практическими навыками использования геометрических инструментов для изображения фигур. И также нахождения длин отрезков и величин углов.
7 класс
Наглядная геометрия
Обучающийся научится:
1) распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;
2) распознавать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;
3) определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;
4) вычислять объём прямоугольного параллелепипеда.
Обучающийся получит возможность:
5) вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;6) углубить и развить представления о пространственных геометрических фигурах;
7) применять понятие развёртки для выполнения практических расчётов.
8 класс
Геометрические фигуры
Обучающийся научится:
1) пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;
2) распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;3) находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0 до 180°, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, подобие, симметрии, поворот, параллельный перенос);
4) оперировать с начальными понятиями тригонометрии и выполнять элементарные операции над функциями углов;
5) решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;
6) решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;
7) решать простейшие планиметрические задачи в пространстве.
Обучающийся получит возможность:
8) овладеть методами решения задач на вычисления и доказательства: методом от противного, методом подобия, методом перебора вариантов и методом геометрических мест точек;
9) приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;
10) овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;
11) научиться решать задачи на построение методом геометрического места точек и методом подобия;
12) приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ;
13) приобрести опыт выполнения проектов по темам: «Геометрические преобразования на плоскости», «Построение отрезков по формуле».
Измерение геометрических величин
Обучающийся научится:
1) использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, длины окружности, длины дуги окружности, градусной меры угла;
2) вычислять длины линейных элементов фигур и их углы, используя формулы длины окружности и длины дуги окружности, формулы площадей фигур;
3) вычислять площади треугольников, прямоугольников, параллелограммов, трапеций, кругов и секторов;
4) вычислять длину окружности, длину дуги окружности;
5) решать задачи на доказательство с использованием формул длины окружности и длины дуги окружности, формул площадей фигур;
6) решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства).
Обучающийся получит возможность:
7) вычислять площади фигур, составленных из двух или более прямоугольников, параллелограммов, треугольников, круга и сектора;
8) вычислять площади многоугольников, используя отношения равновеликости и равносоставленности;
9) приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении задач на вычисление площадей многоугольников.
9 класс
Координаты
Выпускник научится:
1) вычислять длину отрезка по координатам его концов; вычислять координаты середины отрезка;
2) использовать координатный метод для изучения свойств прямых и окружностей.
Выпускник получит возможность:
3) овладеть координатным методом решения задач на вычисление и доказательство;
4) приобрести опыт использования компьютерных программ для анализа частных случаев взаимного расположения окружностей и прямых;
5) приобрести опыт выполнения проектов на тему «Применение координатного метода при решении задач на вычисление и доказательство».
Векторы
Выпускник научится:
1) оперировать с векторами: находить сумму и разность двух векторов, заданных геометрически, находить вектор, равный произведению заданного вектора на число;
2) находить для векторов, заданных координатами: длину вектора, координаты суммы и разности двух и более векторов, координаты произведения вектора на число, применяя при необходимости сочетательный, переместительный и распределительный законы;
3) вычислять скалярное произведение векторов, находить угол между векторами, устанавливать перпендикулярность прямых.
Выпускник получит возможность:
4) овладеть векторным методом для решения задач на вычисление и доказательство;
5) приобрести опыт выполнения проектов на тему «Применение векторного метода при решении задач на вычисление и доказательство».
По теме: методические разработки, презентации и конспекты
Рабочая программа по геометрии в 10 классе на 2011-2012 учебный год по учебнику Атанасяна Л.С.
Рабочая программа содержит пояснительную записку и календарно-тематическое планирование на 2011-2012 учебный год...
Рабочая программа по геометрии для 7 класса по учебнику Л.С. Атанасяна
Рабочая программа курса "геометрия" составлена для учащихся 7 класса, занимающихся по учебнику Л.С. Атанасяна. Программа рассчитана на 70 учебных часов (2 часа в неделю)....
Рабочая программа по геометрии для 11 класса по учебнику Атанасяна.
Рабочая программа по геометрии для социально-гуманитарного класса (1,5 часа в неделю: 1 час - первое полугодие, 2 часа -второе)...
Рабочая программа по геометрии для 9 класса к учебнику Л.С.Атанасяна
Рабочая программа составлена на основе Федерального компонента государственного стандарта основного общего образования, примерной программы основного общего образования по математике, федерального пер...
Рабочая программа по геометрии в 10 классе по учебнику Л.С. Атанасяна
Рабочая программа по математике составлена на основе федерального компонента государственного стандарта основного общего образования....
РАБОЧАЯ ПРОГРАММА по ГЕОМЕТРИИ 7-9 класс УМК Л.С. Атанасяна Геометрия 7-9 класс
календарно-тематическое планирование и рабочая программа по геометрии на 2016-2017 учебный год...
Рабочая программа по геометрии 7-9 класс, ФГОС (к учебнику Л. С. Атанасяна и других )
Программа разработана в соответствии с требованиями ФГОС основного общего образования, на основе рабочей программы к учебнику Л. С. Атанасяна и других. 7-9 классы: учебное пособие для общеобразо...