Повторение 11кл .Геометрия
учебно-методический материал по геометрии (11 класс) на тему
Предварительный просмотр:
Повторение 11кл ур №3
Кл. работа | Дом . работа | |
1. | В сосуд, имеющий форму правильной треугольной призмы, налили 2300 воды и погрузили в воду деталь. При этом уровень воды поднялся с отметки 25 см до отметки 27 см. Найдите объем детали. Ответ выразите в см | В сосуд, имеющий форму правильной треугольной призмы, налили 1000 воды и погрузили в воду деталь. При этом уровень воды поднялся с отметки 20 см до отметки 22 см. Найдите объем детали. Ответ выразите в |
2. | Найдите площадь боковой поверхности правильной шестиугольной призмы, сторона основания которой равна 5, а высота – 10. | Найдите площадь боковой поверхности правильной шестиугольной призмы, сторона основания которой равна 5, а высота — 5. |
3. | В сосуд, имеющий форму правильной треугольной призмы, налили воду. Уровень воды достигает 80 см. На какой высоте будет находиться уровень воды, если ее перелить в другой такой же сосуд, у которого сторона основания в 4 раза больше, чем у первого? Ответ выразите в см. | В сосуд, имеющий форму правильной треугольной призмы, налили воду. Уровень воды достигает см. На какой высоте будет находиться уровень воды, если ее перелить в другой такой же сосуд, у которого сторона основания в раза больше, чем у первого? Ответ выразите в сантиметрах.
|
4. | Найдите площадь поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными 6 и 8, и боковым ребром, равным 10. | Найдите площадь поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными 3 и 4, и боковым ребром, равным 5. |
5. | Найдите боковое ребро правильной четырехугольной призмы, если сторона ее основания равна 20, а площадь поверхности равна 1760. | Найдите боковое ребро правильной четырехугольной призмы, если сторона ее основания равна 30, а площадь поверхности равна 2760. |
6. | Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 8, боковое ребро равно 5. Найдите объем призмы. | Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 4 и 6, боковое ребро равно 5. Найдите объем призмы. |
7. | Гранью параллелепипеда является ромб со стороной 1 и острым углом 60°. Одно из ребер параллелепипеда составляет с этой гранью угол в 60° и равно 2. Найдите объем параллелепипеда. | Гранью параллелепипеда является ромб со стороной 4 и острым углом 30°. Одно из ребер параллелепипеда составляет с этой гранью угол в 30° и равно 6. Найдите объем параллелепипеда. |
8. | Через среднюю линию основания треугольной призмы, объем которой равен 32, проведена плоскость, параллельная боковому ребру. Найдите объем отсеченной треугольной призмы. | Через среднюю линию основания треугольной призмы, объем которой равен 18, проведена плоскость, параллельная боковому ребру. Найдите объем отсеченной треугольной призмы. |
9. | Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Найдите объём этой призмы, если объём отсеченной треугольной призмы равен 5. | Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Найдите объём этой призмы, если объём отсеченной треугольной призмы равен 7. |
10. | От треугольной призмы, объем которой равен 6, отсечена треугольная пирамида плоскостью, проходящей через сторону одного основания и противоположную вершину другого основания. Найдите объем оставшейся части. | От треугольной призмы, объем которой равен 150, отсечена треугольная пирамида плоскостью, проходящей через сторону одного основания и противоположную вершину другого основания. Найдите объем оставшейся части. |
11. | Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 8, высота призмы равна 10. Найдите площадь ее поверхности. | Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 5 и 12, высота призмы равна 8. Найдите площадь ее поверхности. |
12. | В основании прямой призмы лежит ромб с диагоналями, равными 6 и 8. Площадь ее поверхности равна 248. Найдите боковое ребро этой призмы. | В основании прямой призмы лежит ромб с диагоналями, равными 16 и 30. Площадь ее поверхности равна 2588. Найдите боковое ребро этой призмы. |
13. | Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 8. Площадь ее поверхности равна 288. Найдите высоту призмы. | Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 3 и 4. Площадь ее поверхности равна 132. Найдите высоту призмы. |
14. | Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Площадь боковой поверхности отсеченной треугольной призмы равна 8. Найдите площадь боковой поверхности исходной призмы. | Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Площадь боковой поверхности отсеченной треугольной призмы равна 22. Найдите площадь боковой поверхности исходной призмы. |
15. | Объём куба равен 12. Найдите объём треугольной призмы, отсекаемой от куба плос-костью, проходящей через середины двух рёбер, выходящих из одной вершины, и парал-лельной третьему ребру, выходящему из этой же вершины. | Объем куба равен 52. Найдите объем треугольной призмы, отсекаемой от него плоскостью, проходящей через середины двух ребер, выходящих из одной вершины и параллельной третьему ребру, выходящему из этой же вершины. |
16. | Найдите объем многогранника, вершинами которого являются точки A, B, C, A1 правильной треугольной призмы ABCA1B1C1, площадь основания которой равна 2, а боковое ребро равно 3. | Найдите объем многогранника, вершинами которого являются точки A, B, C, B1 правильной треугольной призмы ABCA1B1C1, площадь основания которой равна 6, а боковое ребро равно 8. |
17. | Найдите объем многогранника, вершинами которого являются точки , , , , правильной треугольной призмы , площадь основания которой равна 3, а боковое ребро равно 2. | Найдите объем многогранника, вершинами которого являются точки , , , , правильной треугольной призмы , площадь основания которой равна 3, а боковое ребро равно 5. |
По теме: методические разработки, презентации и конспекты
Повторение курса геометрии в 8 классе
Кроссворды для итогового повторения курса Данный материал направлен для организации повторения за курс геометрии 8 класс. Может использоваться как в обычном классе, так и в коррекц...
Подготовка к ГИА . Уроки повторения. Модуль «Геометрия». Часть 2. Задание №24.Демоверсия 2012г.
Задание №24. Модуль «Геометрия» часть 2. В прямоугольном треугольнике ABC с прямым углом C известны катеты:AC = 6 , BC =8 . Найдите медиану CK этого треугольника. Кодификатор Учащийся д...
Уроки повторения-обобщения геометрии в 10 классе
Подборка задач по стереометрии для 10-го класса позволяет иметь учителю достаточный материал для уроков. Заучивание теорем и их доказательств не приносит желаемого результата в обучении геометрии, а с...
Четырехугольники. Площади. Урок-повторение по геометрии в 8 классе.
Вспомнить основные свойства фигур и формулы, необходимые для решения задач.Создать "шпаргалку" по видам и свойствам четырехугольниковСоздать "шпаргалку" по формулам площадей основных фигурРешить...
Презентация по геометрии на тему" Итоговое повторение курса геометрии 8 класс"
Презентация содержит основные теоремы и задачи рассматриваемые в курсе геометрии 8 класса....
11кл.геометрия-2019 год
Рабочая программа по геометрии 11 класс, прфильный уровень....
презентация к уроку геометрии по теме: "Повторение курса геометрии 7-9 класса"
Данная презентация может быть использована для проведения уроков повторения в 9 классе.Материал презентации состоит из типовых заданий банка огэ по геометрии....