Рабочая программа по геометрии 7 класс
рабочая программа по геометрии (7 класс) по теме

Рабочая программа по геометрии 7 класс по ФГОС к учебнику Л.С. Атанасян и др., 2 часа в неделю

Скачать:

ВложениеРазмер
Файл geometriya-7-2017.docx46.57 КБ

Предварительный просмотр:

Муниципальное общеобразовательное бюджетное учреждение

«Люльпанская средняя общеобразовательная школа»

Рассмотрено

 на заседании педсовета

Протокол № 1

от  28 августа 2017 г.

Согласовано

Зам. директора по УВР

_________ Г.А.Антонова

Утверждаю

Директор школы

________  Ю. В. Антонов

РАБОЧАЯ ПРОГРАММА

по учебному курсу «Геометрия»

 7 класс

базовый уровень

Н.А. Решоткина

учитель математики

2017-2018 учебный год


        Планируемые результаты освоения учебного предмета «Геометрия»

        Примерная программа конкретизирует содержание предметных тем образовательного стандарта и даёт примерное распределение учебных часов по разделам курса.

Цели изучения:

  • -овладеть системой математических знаний и умений, необходимых в практической деятельности, продолжения образования;
  • -приобрести опыт планирования и осуществления алгоритмической деятельности;
  • -освоить навыки и умения проведения доказательств, обоснования  выбора решений;
  • -приобрести умения ясного и точного изложения мыслей;
  • -развить пространственные представления и умения, помочь освоить основные факты и методы планиметрии;
  • -научить пользоваться геометрическим языком для описания предметов.

Задачи обучения:

  • -ввести основные геометрические понятия, научить различать их взаимное расположение;
  • -научить распознавать геометрические фигуры и изображать их;
  • -ввести понятия: теорема, доказательство, признак, свойство;
  • -изучить все о треугольниках (элементы, признаки равенства);
  • -изучить признаки параллельности прямых и научить применять их при решении задач и доказательстве теорем;
  • -научить решать геометрические задачи на доказательства и вычисления;
  • -подготовить к дальнейшему изучению геометрии в последующих классах.

Общая характеристика учебного предмета

                Геометрия — один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, фор мирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математи ческой культуры, для эстетического воспитания обучающихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

        В курсе геометрии 7 класса систематизируются знания обучающихся о простейших геометрических фигурах и их свойствах; вводится понятие равенства фигур; вводится понятие теоремы; вырабатывается умение доказывать равенство треугольников с помощью изученных признаков; вводится новый класс задач - на построение с помощью циркуля и линейки; вводится одно из важнейших понятий - понятие параллельных прямых; даётся первое представление об аксиомах и аксиоматическом методе в геометрии; вводится аксиома параллельных прямых; рассматриваются новые интересные и важные свойства треугольников (в данной теме доказывается одна из важнейших теорем геометрии — теорема о сумме углов треугольника. Она позволяет дать классификацию треугольников по углам (остроугольный, прямоугольный, тупоугольный), а также установить некоторые свойства и признаки равенства прямоугольных треугольников).

Программа обеспечивает достижения следующих результатов освоения образовательной программы основного общего образования:

Личностные:

  • формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учетом устойчивых познавательных интересов;
  • формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;
  • формирование коммуникативной компетентности и общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;
  • умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
  • критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
  • креативность мышления, инициативу, находчивость, активность при решении геометрических задач;
  • умение контролировать процесс и результат учебной математической деятельности;
  • способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

Метапредметные:

регулятивные УУД:

  • умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
  • умение осуществлять контроль по результату и способу действия на уровне произвольного внимания и вносить необходимые коррективы;
  • умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, ее объективную трудность и собственные возможности ее решения;
  • понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
  • умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
  • умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

познавательные УУД:

  • осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовидовых связей;
  • умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;
  • умение создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;
  • формирование и развитие учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);
  • формирование первоначальных представлений об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов;
  • умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
  • умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
  • умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
  • умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
  • умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

коммуникативные УУД:

  • умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, общие способы работы;
  • умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов;
  • слушать партнера;
  • формулировать, аргументировать и отстаивать свое мнение;

Предметные:

  • овладение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучаемых понятиях (геометрическая фигура, величина) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;
  • умение работать с геометрическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики, использовать различные языки математики, проводить классификации, логические обоснования, доказательства математических утверждений;
  • овладение навыками устных письменных, инструментальных вычислений;
  • овладение геометрическим языком, умение использовать его для описания предметов окружающего мира, развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;
  • усвоение систематических знаний о плоских фигурах и их свойствах, умение применять систематические знания о них для решения геометрических и практических задач;
  • умение измерять длины отрезков, величины углов;
  • умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочные материалы и технические средства.

Содержание программы

Глава 1. Начальные геометрические сведения

Простейшие геометрические фигуры: прямая, точка, отрезок, луч, угол. Понятие равенства геометрических фигур. Сравнение отрезков и углов. Измерение отрезков, длина отрезка. Измерение углов, градусная мера угла. Смежные и вертикальные углы, их свойства. Перпендикулярные прямые.

Цель: систематизировать знания обучающихся о простейших геометрических фигурах и их свойствах; ввести понятие равенства фигур.

В данной теме вводятся основные геометрические понятия и свойства простейших геометрических фигур на основе наглядных представлений обучающихся путем обобщения очевидных или известных из курса математики I— 6 классов геометрических фактов. Понятие аксиомы на начальном этапе обучения не вводится, и сами аксиомы не формулируются в явном виде. Необходимые исходные положения, на основе которых изучаются свойства геометрических фигур, приводятся в описательной форме. Принципиальным моментом данной темы является введение понятия равенства геометрических фигур на основе наглядного понятия наложения. Определенное внимание должно уделяться практическим приложениям геометрических понятий.

Глава 2. Треугольники

Треугольник. Признаки равенства треугольников. Перпендикуляр к прямой. Медианы, биссектрисы и высоты треугольника. Равнобедренный треугольник и его свойства. Задачи на построение с помощью циркуля и линейки.

Цель: ввести понятие теоремы; выработать умение доказывать равенство треугольников с помощью изучен ных признаков; ввести новый класс задач — на построение с помощью циркуля и линейки.

Признаки равенства треугольников являются основным рабочим аппаратом всего курса геометрии. Доказательство большей части теорем курса и также решение многих задач проводится по следующей схеме: поиск равных треугольников — обоснование их равенства с помощью какого-то признака — следствия, вытекающие из равенства треугольников.

 Применение признаков равенства треугольников при решении задач дает возможность постепенно накапливать опыт проведения доказательных рассуждений. На начальном этапе изучения и применения признаков равенства треугольников целесообразно использовать задачи с готовыми чертежами. 

Глава 3. Параллельные прямые

Признаки параллельности прямых. Аксиома параллельных прямых. Свойства параллельных прямых.

Цель: ввести одно из важнейших понятий - понятие параллельных прямых; дать первое представление об аксиомах и аксиоматическом методе в геометрии; ввести аксиому параллельных прямых.

Признаки и свойства параллельных прямых, связанные с углами, образованными при пересечении двух прямых секущей (накрест лежащими, односторонними, соответственными), широ ко используются в дальнейшем при изучении четырехугольников, подобных треугольников, при решении задач, а также в курсе стереометрии.

Глава 4. Соотношения между сторонами и углами треугольника

Сумма углов треугольника. Соотношение между сторонами и углами треугольника. Неравенство треугольника. Прямоугольные треугольники, их свойства и признаки равенства. Расстояние от точки до прямой. Расстояние между параллельными прямыми. Построение треугольника по трем элементам.

Цель: рассмотреть новые интересные и важные свойства треугольников.

В данной теме доказывается одна из важнейших теорем геометрии — теорема о сумме углов треугольника. Она позволяет дать классификацию треугольников по углам (остроугольный, прямоугольный, тупоугольный), а также установить некоторые свойства и признаки равенства прямоугольных треугольников.

Понятие расстояния между параллельными прямыми вводится на основе доказанной предварительно теоремы о том, что все точки каждой из двух параллельных прямых равноудалены от другой прямой. Это понятие играет важную роль, и частности используется в задачах на построение.

При решении задач на построение в 7 классе следует ограничиться только выполнением и описанием построения искомой фигуры. В отдельных случаях можно провести устно анализ и доказательство, а элементы исследования должны присутствовать лишь тогда, когда это оговорено условием задачи.

Повторение. Решение задач.

Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс геометрии 7 класса.

Требования к уровню подготовки обучающихся в 7 классе

        В ходе преподавания геометрии в 7 классе, работы над формированием у обучающихся перечисленных в программе знаний и умений следует обращать внимание на то, чтобы они овладевали умениями общеучебного характераразнообразными способами деятельности, приобретали опыт:

  • планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;
  • решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;
  • исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;
  • ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;
  • проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;
  • поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.

В результате изучения курса геометрии 7 класса обучающиеся должны:

        знать/понимать

  • существо понятия математического доказательства; примеры доказательств;
  • существо понятия алгоритма; примеры алгоритмов;
  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
  • как потребности практики привели математическую науку к необходимости расширения понятия числа;
  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
  • каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;
  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

        

уметь

  • пользоваться языком геометрии для описания предметов окружающего мира;
  • распознавать геометрические фигуры, различать их взаимное расположение;
  • изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;
  • вычислять значения геометрических величин (длин, углов, площадей, объемов), находить стороны, углы  треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;
  • решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический аппарат, идеи симметрии;
  • проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • описания реальных ситуаций на языке геометрии;
  • расчетов, включающих простейшие формулы;
  • решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);
  • построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).

Литература

  1. Атанасян, Л. С. Геометрия, 7–9 : учеб. для общеобразоват. учреждений / Л. С. Атанасян [и др.]. – М. : Просвещение, 2010-2013.
  2. Зив, Б. Г. Дидактические материалы по геометрии для 7 кл. / Б. Г. Зив, В. М. Мейлер. – М.: Просвещение, 2005.
  3. Изучение геометрии в 7, 8, 9 классах: метод, рекомендации: кн. для учителя / [Л.С. Атанасян, В.Ф. Бутузов, Ю.А. Глазков и др.]. - М.: Просвещение, 2009.
  4. Гусев В. А. Геометрия: дидакт. материалы для 7 кл. / В.А. Гу сев, А.И. Медяник. — М.: Просвещение, 2003.
  5. Гаврилова Н.Ф. Поурочные разработки по геометрии. 7 класс. М.: ВАКО, 2004 – (В помощь школьному учителю)


Календарно-тематическое планирование по геометрии 7 класс

Количество часов в неделю – 2 часа, всего 68 часов

Дата по плану

Дата факти-

ческая

п/п

Тема урока

Знания, умения, навыки

Контроль

ГЛАВА I. НАЧАЛЬНЫЕ ГЕОМЕТРИЧЕСКИЕ СВЕДЕНИЯ, (10 часов)

1

2

Прямая и отрезок. Луч и угол, п.1-4.

Знать, сколько прямых можно провести через две точки, сколько общих точек могут иметь две прямые, какая фигура называется отрезком; какая геометрическая фигура называется углом, что такое стороны и вершина угла.

Уметь обозначать точки и прямые на рисунке, изображать возможные случаи взаимного расположения точек и прямых, двух прямых, объяснить, что такое отрезок, изображать и обозначать отрезки на рисунке.

 обозначать неразвернутые и развернутые углы, показать на рисунке внутреннюю область угла, проводить луч, разделяющий угол на два угла.

ФО

3

Сравнение отрезков и углов, п.5,6

Знать, какие геометрические фигуры называются равными, какая точка называется серединой отрезка, какой луч называется биссектрисой угла.

Уметь сравнивать отрезки и углы и записывать результат сравнения, отмечать с помощью масштабной линейки середину отрезка, с помощью транспортира проводить биссектрису угла.

ИДР

4

Измерение отрезков, п.7,8

Знать, что при выбранной единице измерения длина любого данного отрезка выражается положительным числом; 

Уметь измерять данный отрезок с помощью линейки и выразить его длину в сантиметрах, миллиметрах, метрах, находить длину отрезка в тех случаях, когда точка делит данный отрезок на два отрезка, длины которых известны,

5

6

Измерение углов, п. 9,10

Знать, что такое градусная мера угла, чему равны минута и секунда;

Уметь находить градусные меры данных углов, используя транспортир, Изображать прямой, острый, тупой, развернутый углы

ПР

7

8

Перпендикулярные прямые, п. 11-13

Знать, какие углы называются смежными и чему равна сумма смежных углов, какие углы называются вертикальными и каким свойством обладают вертикальные углы, какие прямые называются перпендикулярными.

Уметь строить угол, смежный с данным углом, изображать вертикальные углы, объяснять, почему две прямые, перпендикулярные к третьей, не пересекаются

ФО

9

Решение задач

Закрепить в процессе решения задач, полученные ЗУН, подготовиться к контрольной работе.

СР

10

Контрольная работа №1, «Начальные геометрические сведения», п.1-13.

Уметь применять все изученные формулы и теоремы при решении задач

ГЛАВА II. ТРЕУГОЛЬНИКИ, (17 часов)

11

Треугольник, п.14.

Знать, что такое периметр треугольника, какие треугольники называются равными, формулировку и доказательство первого признака равенства треугольников.

Уметь объяснить, какая фигура называется треугольником, и назвать его элементы, решать задачи типа 90, 92 – 95, 97.

Знать, что такое периметр треугольника, какие треугольники называются равными, формулировку и доказательство первого признака равенства треугольников.

ДРЗ

12

Первый признак равенства треугольников, п.15.

ФО

13

Решение задач.

ПР

14

Перпендикуляр к прямой. Медианы, биссектрисы и высоты треугольника, п.16, 17.

Уметь объяснить, какой отрезок называется перпендикуляром, проведенным из данной точки к данной прямой, какие отрезки называются медианой, биссектрисой, высотой треугольника, какой треугольник называется равнобедренным, равносторонним; знать формулировку теоремы о перпендикуляре к прямой; знать и  уметь доказывать теоремы о свойствах равнобедренного треугольника; уметь выполнять практические задания типа 100 – 104 и решать задачи типа 105, 107, 108, 112, 115, 117, 119.

ФО

15

Свойства равнобедренного треугольника, п.18.

ФО

  16

Решение задач.

ПР

17

Второй признак равенства треугольников, п.19.

Знать формулировки и доказательства второго и третьего признаков равенства треугольников; уметь решать задачи типа 121 – 123, 125, 129, 132, 136, 137 – 139.

ИРК

18

Решение задач.

ОСР

19

Третий признак равенства треугольников, п.20.

ФО

20

Решение задач.

ПР

21

22

23

Задачи на построение, п.21-23

Знать определение окружности.

Уметь объяснить, что такое центр, радиус, диаметр, хорда, дуга окружности, выполнять с помощью циркуля и линейки простейшие построения: отрезка, равного данному; биссектрисы данного угла; прямой, проходящей через данную точку и перпендикулярной к данной прямой; середины данного отрезка; применять простейшие построения при решении задач типа 148 – 151, 154, 155.

ТЗ

24

25

26

Признаки равенства треугольников. Решение задач

ПР

27

Контрольная работа №2, «Треугольники», п.14-23.

Уметь применять весь изученный материал при решении задач.

ГЛАВА III. ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ, (13 часов)

28

Определение параллельных прямых, п.24.

Знать определение параллельных прямых, названия углов, образующихся при пересечении двух прямых секущей, формулировки признаков параллельности прямых; понимать какие отрезки и лучи являются параллельными;

Уметь показать на рисунке пары накрест лежащих, соответственных, односторонних углов, доказывать признаки параллельности двух прямых и использовать их при решении задач типа 186 – 189, 191, 194.; уметь строить параллельные прямые при помощи чертежного угольника и линейки.

ФО

29

Признаки параллельности двух прямых, п.25,26.

30

31

32

Признаки параллельности двух прямых. Решение задач.

Уметь строить параллельные прямые при помощи чертежного угольника и линейки, использовать теоретический материал при решении задач.

ПР

33

Об аксиомах геометрии. Аксиома параллельных прямых, п.27,28.

Знать аксиому параллельных прямых и следствия из нее, знать и  уметь доказывать свойства параллельных прямых и применять их при  решении задач типа 196, 198, 199, 203 – 205, 209.

34

35

Теоремы об углах, образованных двумя параллельными прямыми и секущей, п.29.

ФО

36

Решение задач.

СР

37

38

39

Параллельные прямые. Решение задач

ПР

40

Контрольная работа №3, «Параллельные прямые», п.24-29.

ГЛАВА IV.  СООТНОШЕНИЯ МЕЖДУ СТОРОНАМИ И УГЛАМИ ТРЕУГОЛЬНИКА, (18 часов)

41

42

Теорема о сумме углов треугольника, п.30

Знать,   какой угол называется внешним углом треугольника, какой треугольник называется остроугольным, тупоугольным, прямоугольным; Уметь доказывать теорему о сумме углов треугольника и ее следствия, решать задачи типа 223 – 226, 228, 229, 234.

ФО

43

Остроугольный, прямоугольный и тупоугольный треугольники, п. 31.

ИДР

44

45

Теорема о соотношениях между сторонами и углами треугольника, п.32.

Уметь доказывать теорему о соотношениях между сторонами и углами треугольника и следствия из нее, теорему о неравенстве треугольника, применять их при решении задач типа 236 – 240, 243, 244, 248, 249, 250.

ПР

46

Неравенство треугольника, п.33.

47

Контрольная работа №4 «Сумма углов треугольника», п.30-33.

Уметь применять все изученные теоремы при решении задач.

48

49

Некоторые свойства прямоугольных треугольников, п.34.

Уметь доказывать свойства 10 – 30 прямоугольных треугольников; знать формулировки признаков равенства прямоугольных треугольников уметь их доказывать; уметь применять свойства и признаки при решении задач типа 254 – 256, 258, 260, 263, 265.

СР

50

51

Признаки равенства прямоугольных треугольников. п.35, 36.

ПР

52

Расстояние от точки до прямой. Расстояние между параллельными прямыми, п.37.

Знать, какой отрезок называется наклонной, проведенной из данной точки к данной прямой, что называется расстоянием от точки до прямой и расстоянием между двумя параллельными прямыми;

Уметь доказывать, что перпендикуляр, проведенный из точки к прямой, меньше любой наклонной, проведенной из той же точки к этой прямой; теорему о том, что все точки каждой из двух параллельных прямых равноудалены от другой прямой; уметь  строить треугольник по двум сторонам и углу между ними, по стороне и двум прилежащим к ней углам, по трем сторонам; уметь решать задачи типа 271, 273, 277, 278(а), 283, 284, 288, 290, 291.

ИДР

53

54

Построение треугольника по трем элементам., п.38.

ОСР

55

56

57

 Решение задач

ПР

58

Контрольная работа №5 «Прямоугольный треугольник», п.34-38.

Уметь применять все изученные теоремы при решении задач.

ИТОГОВОЕ ПОВТОРЕНИЕ, (10 часов)

59

60

Измерение отрезков и углов. Перпендикулярные прямые.

Закрепление знаний, умений и навыков, полученных на уроках по данным темам (курс геометрии 7класса).

Т

61

62

Признаки равенства треугольников.

Т

63

64

Параллельные прямые.

Т

65

66

Прямоугольные треугольники

67

68

Решение задач

ОСР – обучающая самостоятельная работа                          Т – тестовая работа

ДРЗ – дифференцированное решение задач                         ПР – проверочная работа

ФО- фронтальный опрос                                                 СР – самостоятельная работа

ИДР – индивидуальная работа у доски                                 ИРК – индивидуальная работа по карточкам

ТЗ – творческое задание



По теме: методические разработки, презентации и конспекты

Рабочая программа по геометрии 7 класс по учебнику Атанасян Л. С. Бутузов В. Ф. и др. Геометрия 7-9 классы

Рабочая программа по геометрии 7 класс по учебнику Атанасян Л. С. Бутузов В. Ф. и др. Геометрия 7-9 классы (2 часа в неделю)...

Рабочая программа по геометрии 11 класс (2 часа в неделю, всего 68 часов) Учебник Геометрия 10-11 класс. Погорелов А.В.

Рабочая программа по геометрии 11 класс (2 часа в неделю, всего 68 часов) Учебник Геометрия 10-11 класс. Погорелов А.В. Базовый уровень...

Рабочая программа по геометрии 10 класс (2 часа в неделю, всего 68 часов) Учебник Геометрия 10-11 класс. Погорелов А.В.

Рабочая программа по геометрии 10 класс (2 часа в неделю, всего 68 часов) Учебник Геометрия 10-11 класс. Погорелов А.В. Базовый уровень...

Рабочая программа по математике (алгебре) 5-9 классы и рабочая программа по геометрии 7-9 класс

Рабочая программа составлена на основе примерных программ основного общего образования по математике 2004 года по учебным комплектам: математика 5-6 класс - Н. Я. Виленкин и др., алгебра - Ю. Н. Макар...

Рабочие программы по математике для 5 класса, по алгебре для 8 класса. УМК А. Г. Мордкович. Рабочие программы по геометрии для 7 и 8 класса. Программа соответствует учебнику Погорелова А.В. Геометрия: Учебник для 7-9 классов средней школы.

Рабочая программа содержит пояснительную записку, содержание учебного материала, учебно - тематическое планирование , требования к математической подготовке, список рекомендованной литературы, календа...

Аннотация к рабочей программе по геометрии, 11 класс + рабочая программа по геометрии для 11 класса

Аннотация к рабочей программе по МАТЕМАТИКЕ (геометрии). Класс: 11.Программа по геометрии для 11 класса составлена на основе Федерального компонента государственного образовательного стандарта среднег...

РАБОЧАЯ ПРОГРАММА Предмет геометрия Класс 9 Учитель Асессорова Е.М.

РАБОЧАЯ ПРОГРАММА        Предмет    геометрия      Класс         9 Учитель      Асессорова Е.М....