рабочая программа по геометрии 8 класс
календарно-тематическое планирование по геометрии (8 класс) на тему

Субботина Наталья Евгеньевна

Рабочая программа по геометрии 8 класс, расчитанная на 3 часа в неделю.  Учебник Геометрия 7-9 Авторы: Л.С.Атанасян и д.р.

Скачать:

ВложениеРазмер
Файл rabochaya_programma_8_klass_geometriya_3_chasa.docx261.09 КБ

Предварительный просмотр:

Пояснительная записка

Статус документа

Настоящая программа по геометрии для основной общеобразовательной школы 8  класса составлена на основе Федерального компонента государственного стандарта основного  общего образования (приказ МО и Н РФ от 05.03.2004г. № 1089);  Программы общеобразовательных учреждений по геометрии 7–9 классы,  к учебному комплексу для 7-9 классов (авторы Л.С. Атанасян,   В.Ф. Бутузов, С.В. Кадомцев и др., составитель Т.А. Бурмистрова – М: «Просвещение», 2009. – с. 19-21); Программы для общеобразовательных школ, гимназий, лицеев математика 5-11 классы,  по геометрии (углубленное изучение) 8–9 классы,  к учебному комплексу для 8 - 9 классов (авторы Л.С. Атанасян,   В.Ф. Бутузов, С.В. Кадомцев и др., составители Г.М. Кузнецова, Н.Г. Миндюк– М: «Дрофа», 2004 – с. 279)

Цель изучения:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;
  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;
  • приобретение конкретных знаний о пространстве и практически значимых умений, формирование языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания обучающихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

Общая характеристика учебного предмета

Геометрия— один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания обучающихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.
В курсе геометрии 8 класса  изучаются наиболее важные виды четырехугольников: параллелограмм, прямоугольник, ромб, квадрат, трапеция;  даётся представление о фигурах, обладающих осевой или центральной симметрией; расширяются и углубляются полученные в 5—6 классах представления об измерении и вычислении площадей; выводятся формулы площадей прямоугольника, параллелограмма, треугольника, трапеции; доказывается одна из главных теорем геометрии — теорема Пифагора; вводится понятие подобных треугольников; рассматриваются признаки подобия треугольников и их применения; делается первый шаг в освоении учащимися тригонометрического аппарата геометрии; расширяются сведения об окружности, полученные учащимися в 7 классе; изучаются новые факты, связанные с окружностью; знакомятся с четырьмя замечательными точками треугольника; вводится понятие вектора; происходит знакомство  с выполнением действий над векторами как направленными отрезками, что важно для применения векторов в физике.

Количество учебных часов:

В год – 102 часа (3 часа в неделю, всего 102 часа)
В том числе:
Контрольных работ – 6.
Резервное время - 6 ч.

Формы промежуточной и итоговой аттестации: Промежуточная аттестация проводится в форме тестов, контрольных, самостоятельных, работ и математических диктантов (по 10 - 15 минут) в конце логически законченных блоков учебного материала. Итоговая аттестация предусмотрена в виде административной контрольной работы.

Срок реализации рабочей учебной программы – один учебный год.

В данном классе ведущими методами обучения предмету являются: объяснительно-иллюстративный и репродуктивный,  используется  частично-поисковый. На уроках используются элементы следующих технологий: личностно ориентированное обучение, обучение с применением опорных схем, ИКТ.

Основное содержание

Повторение курса 7 класса(2 часа)

Четырехугольники (18 часов)

Многоугольник, выпуклый многоугольник, четырехугольник. Параллелограмм, его свойства и признаки. Трапеция, виды и свойства трапеции. Прямоугольник, ромб, квадрат, их свойства. Теоремы о средней линии треугольника и трапеции. Теоремы Фалеса и Вариньона. Симметрия четырехугольников и других фигур.

Цель: изучить наиболее важные виды четырехугольников — параллелограмм, прямоугольник, ромб, квадрат, трапецию; дать представление о фигурах, обладающих осевой или центральной симметрией.
Доказательства большинства теорем данной темы и решения многих задач проводятся с помощью признаков равенства треугольников, поэтому полезно их повторить, в начале изучения темы.

Осевая и центральная симметрии вводятся не как преобразование плоскости, а как свойства геометрических фигур, в частности четырехугольников. Рассмотрение этих понятий как движений плоскости состоится в 9 классе.

Площадь. Теорема Пифагора. (18часов)

Равносоставленные многоугольники. Понятие площади многоугольника. Площади квадрата, прямоугольника, параллелограмма, треугольника и трапеции. Теорема об отношении двух треугольников, имеющих по равному углу. Теорема Пифагора. Теорема обратная теореме Пифагора. Приложения теоремы Пифагора. Формула Герона.

Цель: расширить и углубить полученные в 5—6 классах представления обучающихся об измерении и вычислении площадей; вывести формулы площадей прямоугольника, параллелограмма, треугольника, трапеции; доказать одну из главных теорем геометрии — теорему Пифагора.

Вывод формул для вычисления площадей прямоугольника, параллелограмма, треугольника, трапеции основывается на двух основных свойствах площадей, которые принимаются исходя из наглядных представлений, а также на формуле площади квадрата. Нетрадиционной для школьного курса является теорема об отношении площадей треугольников, имеющих по равному углу. Она позволяет в дальнейшем дать простое доказательство признаков подобия треугольников. В этом состоит одно из преимуществ, обусловленных ранним введением понятия площади. Доказательство теоремы Пифагора основывается на свойствах площадей и формулах для площадей квадрата и прямоугольника. Доказывается также теорема, обратная теореме Пифагора.

Подобные треугольники (24 часа)

Пропорциональные отрезки. Определение подобных треугольников.  Отношение площадей подобных треугольников. Признаки подобия треугольников. Применение подобия к доказательству теорем: обобщение теоремы Фалеса, теоремы Чевы и Менелая.
Замечательные точки треугольника и их свойства.
Метод подобия в задачах на построение.
Понятие о подобии произвольных фигур.
Соотношения между сторонами и углами прямоугольного треугольника. Значения  синуса, косинуса   и тангенса  острого угла прямоугольного треугольника. Решение прямоугольных треугольников.

Цель: ввести понятие подобных треугольников; рассмотреть признаки подобия треугольников и их применения; сделать первый шаг в освоении учащимися тригонометрического аппарата геометрии.
Определение подобных треугольников дается не на основе преобразования подобия, а через равенство углов и пропорциональность сходственных сторон.
Признаки подобия треугольников доказываются с помощью теоремы об отношении площадей треугольников, имеющих по равному углу.
Утверждения о точке пересечения биссектрис треугольника и точке пересечения серединных перпендикуляров к сторонам треугольника выводятся как следствия из теорем о свойствах биссектрисы угла и серединного перпендикуляра к отрезку. Теорема о точке пересечения высот треугольника (или их продолжений) доказывается с помощью утверждения о точке пересечения серединных перпендикуляров.

На основе признаков подобия доказывается теорема о средней линии треугольника, утверждение о точке пересечения медиан треугольника, а также два утверждения о пропорциональных отрезках  в  прямоугольном  треугольнике.   Дается  представление о методе подобия в задачах на построение.
В заключение темы вводятся элементы тригонометрии — синус, косинус и тангенс острого угла прямоугольного треугольника.

Окружность (17 часов)

Взаимное расположение прямой и окружности. Касательная к окружности. Касательная к кривой линии. Взаимное расположение окружности.
Углы, связанные с окружностью: центральные и вписанные углы, углы между хордами и секущими. Теорема о квадрате касательной.
Вписанная и описанная окружности. Формула Эйлера. Теорема Птолемея. Вневписанные окружности.

Цель: расширить сведения об окружности, полученные учащимися в 7 классе; изучить новые факты, связанные с окружностью; познакомить обучающихся с четырьмя замечательными точками треугольника.
В данной теме вводится много новых понятий и рассматривается много утверждений, связанных с окружностью. Для их усвоения следует уделить большое внимание решению задач. Наряду с теоремами об окружностях, вписанной в треугольник и описанной около него, рассматриваются свойство сторон описанного четырехугольника и свойство углов вписанного четырехугольника.  Формула Эйлера. Теорема Птолемея. Вневписанные окружности.

Векторы (15 часов)

Понятие вектора. Равенство векторов. Сложение и вычитание векторов. Умножение вектора на число.
Разложение вектора по двум неколлинеарным векторам. Деление отрезка в данном отношении. Центр масс системы точек  Применение векторов к решению задач и доказательству теорем.

Цель: научить учащихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; познакомить с использованием векторов и метода координат при решении геометрических задач.
Вектор определяется как направленный отрезок и действия над векторами вводятся так, как это принято в физике, т. е. как действия с направленными отрезками. Основное внимание должно быть уделено выработке умений выполнять операции над векторами (складывать векторы по правилам треугольника и параллелограмма, строить вектор, равный разности двух данных векторов, а также вектор, равный произведению данного вектора на данное число).
На примерах показывается, как векторы могут применяться к решению геометрических задач.

Повторение. Решение задач. (4 часов)

Цель: повторение, обобщение и систематизация знаний, умений и навыков за курс геометрии 8 класса.

Требования к уровню подготовки по геометрии  учащихся   в 8 классе

В ходе преподавания геометрии в 8 классе, работы над формированием у обучающихся перечисленных в программе знаний и умений следует обращать внимание на то, чтобы они овладевали   умениями обще учебного характера, разнообразными способами деятельности, приобретали опыт: планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;
решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;
исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;
проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования; поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.

В результате изучения курса геометрии 8 класса обучающиеся должны:

знать/понимать

  • существо понятия математического доказательства; примеры доказательств;
  • существо понятия алгоритма; примеры алгоритмов;
  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
  • как потребности практики привели математическую науку к необходимости расширения понятия числа;
  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
  • каким образом геометрия возникла из практических задач землемерия;  примеры геометрических объектов и утверждений о них, важных для практики;
  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

Геометрия

уметь

  • пользоваться языком геометрии для описания предметов окружающего мира;
  • распознавать геометрические фигуры, различать их взаимное расположение;
  • изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;
  • распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;
  • в простейших случаях строить сечения и развертки пространственных тел;
  • проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;
  • вычислять значения геометрических величин (длин, углов, площадей, объемов);  в том числе: для углов от 0° до 180° определять значения тригонометрических функций; находить значения тригонометрических функций по значению одной из них;  находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;
  • решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, идеи симметрии;
  • проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
  • решать простейшие планиметрические задачи в пространстве;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • описания реальных ситуаций на языке геометрии;
  • расчетов, включающих простейшие тригонометрические формулы;
  • решения геометрических задач с использованием тригонометрии
  • решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);
  • построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).

Литература

  1. Федеральный компонент государственных образовательных стандартов  основного общего  образования (приказ Минобрнауки от 05.03.2004г. № 1089).
  2. Примерная программа по математике (письмо Департамента государственной политики в образовании Минобрнауки России от 07.07.2005г № 03-1263)
  3. Программа общеобразовательных учреждений по геометрии 7–9 классы,  к учебному комплексу для 7-9 классов (авторы Л. С. Атанасян,   В. Ф. Бутузов, С. В. Кадомцев и др., составитель Т.А. Бурмистрова – М: «Просвещение», 2009 – М: «Просвещение», 2008. – с. 19-21).
  4. Геометрия:   учеб,   для   7—9 кл. / [Л. С. Атанасян,   В. Ф. Бутузов, С. В. Кадомцев и др.]. — М.: Просвещение, 2014.
  5. Изучение геометрии в 7, 8, 9 классах: метод, рекомендации: кн. для учителя / [Л. С. Атанасян, В. Ф. Бутузов, Ю. А. Глазков и др.]. -М.: Просвещение,  2013.
  6. Геометрия:   дидактические   материалы  для   8 кл. / Б. Г. Зив, В. М. Мейлер. — М.: Просвещение, 2010/.
  7. Л. С. Атанасян, В.Ф. Бутузов, Ю.А. Глазков и др. Рабочая тетрадь для 8 класса, - М.: Просвещение,  2014
  8. «Геометрия. Дополнительные главы к школьному учебнику 8 класса»; Л. С. Атанасян, В.Ф. Бутузов и др. М.: Вита – Пресс, 2005.
  9. http://www.netschools.ru/sch1567/metod/proggeom.htm 

Календарно-тематическое планирование по геометрии 8 класс

Дата урока

планируемая

Дата урока

фактическая

Тема урока

Контроль

Повторение 2 часа

1

Повторение

2

Повторение

тест

Четырехугольники 18 часов

3

Многоугольники

4

Многоугольники

5

Параллелограмм, признаки и свойства параллелограмма.

6

Параллелограмм, признаки и свойства параллелограмма.

Сам.р

7

Параллелограмм, признаки и свойства параллелограмма.

8

Трапеция, виды и свойства

9

Трапеция, виды и свойства

10

Трапеция, виды и свойства

тест

11

Прямоугольник. Ромб. Квадрат

12

Прямоугольник. Ромб. Квадрат

Пр.р

13

Средние линии треугольника и трапеции

14

Средние линии треугольника и трапеции

15

Теорема Фалеса

16

Теорема Фалеса

17

Теорема Фалеса

Сам.р

18

Симметрия четырёхугольников и других фигур.

19

Симметрия четырёхугольников и других фигур.

20

Контрольная работа №1 "Четырехугольники"

Площадь 18 часов

21

Понятие площади. Свойства площади. Равносоставленные и равновеликие фигуры.

22

Площадь квадрата, прямоугольника

23

Площадь квадрата, прямоугольника

24

Площадь параллелограмма, треугольника, трапеции.

25

Площадь параллелограмма, треугольника, трапеции.

тест

26

Отношение площадей двух треугольников, имеющих по равному углу.

27

Площадь ромба, многоугольника.

28

Площадь ромба, многоугольника.

Сам.р

29

Теорема Пифагора.

30

Теорема Пифагора.

31

Теорема Пифагора.

32

Приложение теоремы Пифагора.

33

Приложение теоремы Пифагора.

34

Приложение теоремы Пифагора.

Пр.р

35

Приложение теоремы Пифагора.

36

Формула Герона

37

Формула Герона

38

Контрольная работа №2 "Площади".

Подобные треугольники 24 часов

39

Пропорциональные отрезки. Определение подобных треугольников.

40

Пропорциональные отрезки. Определение подобных треугольников.

41

Три признака подобия треугольников

42

Три признака подобия треугольников

43

Применение подобия к доказательству теоремы

44

Применение подобия к доказательству теоремы

45

Применение подобия к доказательству теоремы

тест

46

Применение подобия к решению задач.

47

Применение подобия к решению задач.

Сам.р

48

Замечательные точки треугольника и их свойства

49

Метод подобия в задачах на построение

50

Метод подобия в задачах на построение

51

Метод подобия в задачах на построение

Пр.р

52

Понятие о подобии произвольных фигур.

53

Контрольная работа №3 "Признаки подобия треугольников".

54

Соотношение между сторонами и углами прямоугольного треугольника

55

Соотношение между сторонами и углами прямоугольного треугольника

Сам.р

56

Значение синуса, косинуса, тангенса некоторых углов.

57

Значение синуса, косинуса, тангенса некоторых углов.

58

Значение синуса, косинуса, тангенса некоторых углов.

Пр.р

59

Решение прямоугольных треугольников

60

Решение прямоугольных треугольников

61

Решение прямоугольных треугольников

62

Контрольная работа №4 "Соотношение между сторонами и углами прямоугольного треугольника".

Окружность 16 часов

63

Взаимное расположение прямой и окружности

64

Касательная к окружности

65

Касательная к кривой линии.

66

Взаимное расположение двух окружностей

67

Взаимное расположение двух окружностей

тест

68

Углы, связанные с окружностью: центральные и вписанные, между хордами и секущими.

69

Углы, связанные с окружностью: центральные и вписанные, между хордами и секущими.

70

Углы, связанные с окружностью: центральные и вписанные, между хордами и секущими.

71

Углы, связанные с окружностью: центральные и вписанные, между хордами и секущими.

Сам.р

72

Теорема о квадрате касательной

73

Вписанные и описанные окружности

74

Вписанные и описанные окружности

75

Вписанные и описанные окружности

76

Вписанные и описанные окружности

77

Вневписанные окружности

78

Вневписанные окружности

79

Решение задач по теме: «Окружность»

80

Решение задач по теме: «Окружность»

Пр.р

81

Решение задач по теме: «Окружность»

82

Контрольная работа №5 "Окружность".

83

Анализ контрольной работы. Решение задач.

Векторы 15 часов

84

Понятие вектора. Равенство векторов.

85

Понятие вектора. Равенство векторов.

86

Сложение и вычитание векторов.

87

Сложение и вычитание векторов.

88

Умножение векторов на число.

Пр.р

89

Разложение векторов по двум неколлинеарным векторам.

90

Разложение векторов по двум неколлинеарным векторам.

91

Разложение векторов по двум неколлинеарным векторам.

92

Деление отрезка в данном отношении.

93

Деление отрезка в данном отношении.

94

Деление отрезка в данном отношении.

Сам.р

95

Применение векторов к решению задач и доказательству теорем.

96

Применение векторов к решению задач и доказательству теорем.

97

Применение векторов к решению задач и доказательству теорем.

98

Контрольная работа №6 по теме: «Векторы».

99-102

Повторение. Решение задач. (4 часов)

Критерии и нормы оценки знаний, умений и навыков  учащихся по математике.

1. Оценка письменных контрольных работ обучающихся по математике.

Ответ оценивается отметкой «5», если:

  • работа выполнена полностью;
  • в рассуждениях и обоснованиях  решения нет пробелов и ошибок;
  • в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

  • работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
  • допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Отметка «3» ставится, если:

  •  допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но учащийся обладает обязательными умениями по проверяемой теме.

 Отметка «2» ставится, если:

  • допущены существенные ошибки, показавшие, что учащийся не обладает обязательными умениями по данной теме в полной мере.

Отметка «1» ставится, если:

  • работа показала полное отсутствие у учащегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии учащегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные дополнительно после выполнения им каких-либо других заданий.

2.Оценка устных ответов обучающихся по математике

Ответ оценивается отметкой «5», если ученик:

  • полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
  • изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;
  • правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
  • показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;
  • продемонстрировал знание теории ранее изученных сопутствующих тем,  сформированность  и устойчивость используемых при ответе умений и навыков;
  • отвечал самостоятельно, без наводящих вопросов учителя;
  • возможны одна – две  неточности в освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;
  • допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;
  • допущены ошибка или более двух недочетов  при освещении второстепенных вопросов или в выкладках,  легко исправленные после замечания учителя.

Отметка «3» ставится в следующих случаях:

  • неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке учащихся» в настоящей программе по математике);
  • имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
  • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
  • при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

 Отметка «2» ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;
  • обнаружено незнание учеником большей или наиболее важной части учебного материала;
  • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

Отметка «1» ставится, если:

  • ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изученному материалу.

Общая классификация ошибок.

При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.

3.1. Грубыми считаются ошибки:

  • незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;
  • незнание наименований единиц измерения;
  • неумение выделить в ответе главное;
  • неумение применять знания, алгоритмы для решения задач;
  • неумение делать выводы и обобщения;
  • неумение читать и строить графики;
  • неумение пользоваться первоисточниками, учебником и справочниками;
  • потеря корня или сохранение постороннего корня;
  • отбрасывание без объяснений одного из них;
  • равнозначные им ошибки;
  • вычислительные ошибки, если они не являются опиской;
  •  логические ошибки.

3.2. К негрубым ошибкам следует отнести:

  • неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;
  • неточность графика;
  • нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);
  • нерациональные методы работы со справочной и другой литературой;
  • неумение решать задачи, выполнять задания в общем виде.

3.3. Недочетами являются:

  • нерациональные приемы вычислений и преобразований;
  • небрежное выполнение записей, чертежей, схем, графиков.

КОНТРОЛЬНЫЕ  РАБОТЫ

Контрольная  работа  №1 Четырехугольники

Вариант 1

1. Периметр параллелограмма ABCD равен 80 см. А = 30о, а перпендикуляр ВН к прямой  АD равен 7,5 см. Найдите стороны параллелограмма

2. Докажите, что у равнобедренной трапеции углы при основании равны.

3. Постройте ромб по двум диагоналям. Сколько осей симметрии у ромба?

4. Точки  Р, К, L, M – середины  сторон ромба АВСD. Докажите, что четырехугольник РКLM – прямоугольник.

Вариант 2

1. Диагональ квадрата равна  4 см. Сторона его равна диагонали другого квадрата. Найдите сторону последнего.

2. Докажите, что середины сторон прямоугольника являются вершинами ромба.

3. Постройте квадрат по диагонали. Сколько осей симметрии имеет

квадрат?

4. В трапеции АВСD меньшее основание ВС равно 4 см. Через вершину

В проведена прямая, параллельная стороне СD. Периметр

образовавшегося треугольника равен 12 см. Найдите периметр трапеции.

Контрольная  работа  №2 Площади фигур

Вариант 1

1. В прямоугольнике ABCD  АВ = 24 см,  АС = 25 см. Найдите площадь прямоугольника.

2. Найдите площадь прямоугольного треугольника, если гипотенуза его равна 40 см, а острый угол равен 60о.

3. Найдите площадь ромба, если его диагонали равны  14 и 6 см.

4. Найдите площадь равнобедренной трапеции, у которой высота равна 16 см, а диагонали взаимно перпендикулярны.

5. Середины оснований трапеции соединены отрезком.

Докажите, что полученные две трапеции равновелики.

Вариант 2

1. В ромбе ABCD  АВ = 10 см,  меньшая диагональ АС = 12 см. Найдите площадь ромба.

2. Найдите площадь равнобедренного треугольника, если его боковая сторона равна 6 см, а угол при вершине равен 60о.

3. Найдите площадь прямоугольника, если его диагональ равна  13 см, а одна из сторон  5 см.

4. Найдите площадь равнобедренной трапеции, у которой высота равна 16 см, а диагонали взаимно перпендикулярны.

5. Докажите, что медиана треугольника разбивает его на два треугольника одинаковой площади.

Контрольная работа №3 Признаки подобия треугольников

Вариант 1

1. На рисунке  АВ || CD. k11

       а)         Докажите, что АО : ОС = ВО : OD.

       б) Найдите АВ, если OD = 15 см,  ОВ = 9 см,

           CD = 25 см.

2. Найдите отношение площадей треугольников ABC и  KMN, если АВ = 8 см,    ВС = 12 см, АС = 16 см, КМ = 10 см, MN = 15 см, NK = 20 см.

3. Докажите, что в подобных треугольниках отношение двух сходственных сторон равно отношению двух сходственных высот.

Вариант 2k1

1. На рисунке MN || АС.

      а)        Докажите, что .

      б)        Найдите MN, если AM = 6 см, ВМ = 8 см,

          АС = 21 см.

2. Даны стороны треугольников PКМ и ABC:

PК = 16 см, КМ = 20 см, РМ = 28 см и АВ = 12 см,

ВС = 15 см, АС = 21 см. Найдите отношение площадей этих треугольников.

3. Докажите, что в подобных треугольниках отношение двух сходственных сторон равно отношению двух сходственных биссектрис.

Контрольная работа №4 Подобные треугольники

Вариант 1

1. Отрезки  АВ  и  СМ  пересекаются в точке  О  так, что   АС || ВМ.  Найдите длину отрезка  СМ,  если   АО=12 см,  ОВ=3 см,  СО=8 см.

2. В треугольнике  АВС  точка  К  принадлежит стороне  АВ,  а точка  Р – стороне  АС. Отрезок  КР|| BC.  Найдите периметр треугольника  АКР, если  АВ=9 см,  ВС=12 см,  АС=15 см  и  АК : КВ=2:1.

3. В треугольнике  АВС  угол  С=900.  АС=15см,  ВС=8 см.  Найдите

4. Между пунктами А и В находится болото. Чтобы найти расстояние между А и В, отметили вне болота произвольную точку С, измерили расстояние АС = 600 м и ВС = 400 м, а также АСВ = 62°.

Начертите план в масштабе 1 : 10 000 и найдите по нему расстояние между пунктами А и В.  

Вариант 2

1. Отрезки  АВ  и  СМ  пересекаются в точке  О  так, что   АС || ВМ.    Найдите длину отрезка  СМ, если   АС=15 см,  ВМ=3 см,  СО=10 см.

2. В треугольнике  АВС  точка  К  принадлежит стороне  АВ,  а точка  Р – стороне  АС. Отрезок  КР|| BC.  Найдите периметр треугольника  АКР, если  АВ=16 см,  ВС=8 см,  АС=15 см  и  АК =4 см.

3. В треугольнике  АВС  угол  С=900.  АС=4 см,  АВ=5  см.  Найдите IMG_00021

4. На рисунке показано, как можно определить ширину реки АВ, построив на местности подобные треугольники. Обоснуйте: какие построения выполнены; чем мы пользуемся для определения ширины реки? Выполните необходимые измерения и определите ширину реки

(масштаб рисунка 1 : 1000).

Контрольная работа №5 Окружность

Вариант 1

1. Из точки данной окружности проведены диаметр и хорда, равная   радиусу. Найдите угол между ними.

2. Хорда АВ стягивает дугу, равную 125о, а хорда АС – дугу в 52о. Найдите угол ВАС

3. Постройте окружность, описанную около тупоугольного треугольника.

4. Основание равнобедренного треугольника равно 18 см, а боковая сторона равна 15 см. Найдите радиусы вписанной в треугольник и описанной около треугольника окружностей.

Вариант 2

1. Через точку данной окружности проведены касательная и хорда, равная радиусу окружности. Найдите угол между ними.

2. Хорда АВ стягивает дугу, равную 75о, а хорда АС – дугу в 112о. Найдите угол ВАС

 3. Постройте окружность, вписанную в данный треугольник.

4. Высота, проведенная к основанию равнобедренного треугольника, равна 9 см, а само основание равно 24 см. Найдите радиусы вписанной в треугольник и описанной около треугольника окружностей.

Контрольная работа №6 (Итоговая)

Вариант 1

1. В прямоугольном треугольнике найдите гипотенузу  с,  если его катеты равны: а=5 см,  b=12 см. 

2. В треугольнике АВС  . Найдите  .

3. В равнобедренном треугольнике боковая сторона равна 10 дм и основание равно 12 см. Найдите: а)высоту треугольника, проведенную к основанию треугольника; б) площадь треугольника.

4. Постройте равнобедренный треугольник по боковой стороне и углу при основании.

5. Около остроугольного треугольника АВС описана окружность с центром О. Расстояние от точки О до прямой АВ равно 6 см, .

      Найдите: а) угол АВО;  б) радиус окружности.

Вариант 2

1. В прямоугольном треугольнике гипотенуза  с=25 см,  один из его катетов: а=24 см. Найдите другой катет  b. 

2. В прямоугольном треугольнике АВС   . Найдите  .

3. В равнобедренном треугольнике боковая сторона равна 13 дм и основание равно 10 см. Найдите: а)высоту этого треугольника, проведенную к основанию треугольника; б) площадь треугольника.

4. Постройте окружность данного радиуса, проходящую через две данные точки.

5. В треугольник АВС с прямым углом С вписана окружность с центром О, касающаяся сторон АВ, ВС и СА в точках DE и F соответственно. Известно, что .

   Найдите: а) радиус окружности;  б) углы EOF и EDF.


По теме: методические разработки, презентации и конспекты

Рабочая программа по геометрии 7 класс по учебнику Атанасян Л. С. Бутузов В. Ф. и др. Геометрия 7-9 классы

Рабочая программа по геометрии 7 класс по учебнику Атанасян Л. С. Бутузов В. Ф. и др. Геометрия 7-9 классы (2 часа в неделю)...

Рабочая программа по геометрии 11 класс (2 часа в неделю, всего 68 часов) Учебник Геометрия 10-11 класс. Погорелов А.В.

Рабочая программа по геометрии 11 класс (2 часа в неделю, всего 68 часов) Учебник Геометрия 10-11 класс. Погорелов А.В. Базовый уровень...

Рабочая программа по геометрии 10 класс (2 часа в неделю, всего 68 часов) Учебник Геометрия 10-11 класс. Погорелов А.В.

Рабочая программа по геометрии 10 класс (2 часа в неделю, всего 68 часов) Учебник Геометрия 10-11 класс. Погорелов А.В. Базовый уровень...

Рабочая программа по математике (алгебре) 5-9 классы и рабочая программа по геометрии 7-9 класс

Рабочая программа составлена на основе примерных программ основного общего образования по математике 2004 года по учебным комплектам: математика 5-6 класс - Н. Я. Виленкин и др., алгебра - Ю. Н. Макар...

Рабочие программы по математике для 5 класса, по алгебре для 8 класса. УМК А. Г. Мордкович. Рабочие программы по геометрии для 7 и 8 класса. Программа соответствует учебнику Погорелова А.В. Геометрия: Учебник для 7-9 классов средней школы.

Рабочая программа содержит пояснительную записку, содержание учебного материала, учебно - тематическое планирование , требования к математической подготовке, список рекомендованной литературы, календа...

Аннотация к рабочей программе по геометрии, 11 класс + рабочая программа по геометрии для 11 класса

Аннотация к рабочей программе по МАТЕМАТИКЕ (геометрии). Класс: 11.Программа по геометрии для 11 класса составлена на основе Федерального компонента государственного образовательного стандарта среднег...

РАБОЧАЯ ПРОГРАММА Предмет геометрия Класс 9 Учитель Асессорова Е.М.

РАБОЧАЯ ПРОГРАММА        Предмет    геометрия      Класс         9 Учитель      Асессорова Е.М....