Рабочая программа 8 класс по геометрии
календарно-тематическое планирование по геометрии (8 класс) на тему

Рабочая программа 8 класс по геометрии

Скачать:


Предварительный просмотр:

Рассмотрено:                                      Согласовано:                                    Утверждаю:

Руководитель МО                       Зам. директора по УВР                    Директор школы

_Петренко В. А.______./           _________                    /../             _________                /Дятлова. В. ./

Протокол № _1__ от                                                                                          Приказ № ____  от      

«__29.  08_____ 2014г.                «____»________ 2014г.                    «___30_»__08______ 2014г

Рабочая программа

по математике

8 класс

Составлена учителем математики МКОУ Филиппенковская ООШ Петренко В. А.

5 часов в неделю

(всего 175 часов)

2014 – 2015 учебный год.

Геометрия

                                                             Пояснительная записка         

Рабочая программа разработана на основе федерального компонента государственного стандарта среднего (полного) общего образования на базовом уровне. Она конкретизирует содержание предметных тем образовательного стандарта и дает примерное распределение учебных часов по разделам курса.

Геометрия – один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства. Преобразование геометрических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству.

   Образовательные и воспитательные задачи обучения геометрии должны решаться комплексно с учетом возрастных особенностей обучающихся, специфики геометрии как учебного предмета, определяющего её роль и место в общей системе школьного обучения и воспитания. При планировании уроков следует иметь в виду, что теоретический материал осознается и усваивается преимущественно в процессе решения задач. Организуя решение задач, целесообразно шире использовать дифференцированный подход к учащимся. Важным условием правильной организации учебно-воспитательного процесса является выбор учителем рациональной системы методов и приемов обучения, сбалансированное сочетание традиционных и новых методов обучения, оптимизированное применение объяснительно-иллюстрированных и эвристических методов, использование технических средств, ИКТ -компонента. Учебный процесс необходимо ориентировать на рациональное сочетание устных и письменных видов работы, как при изучении теории, так и при решении задач. Внимание учителя должно быть направлено на развитие речи учащихся, формирование у них навыков умственного труда – планирование своей работы, поиск рациональных путей её выполнения, критическую оценку результатов.

   Основные цели курса:

-овладение системой математических знаний и умений, необходимых в практической деятельности, продолжения образования;

-приобретение опыта планирования и осуществления алгоритмической деятельности;

-освоение навыков и умений проведения доказательств, обоснования  выбора решений;

-приобретение умений ясного и точного изложения мыслей;

-развить пространственные представления и умения, помочь освоить основные факты и методы планиметрии;

-научить пользоваться геометрическим языком для описания предметов.

Задачи обучения:

- изучить наиболее важные виды четырехугольников – параллелограмм, прямоугольник, ромб, квадрат, трапецию;

-дать представление о фигурах, обладающих осевой и центральной симметрией;

- расширить и углубить представления учащихся об измерении и вычислении площадей;

- доказать одну из главных теорем геометрии – теорему Пифагора;

- ввести понятие подобных треугольников, рассмотреть признаки подобия треугольников и их применение;

- расширить сведения об окружности;

- познакомить учащихся с четырьмя замечательными точками треугольника.

Контрольные работы направлены на проверку уровня базовой подготовки учащихся, а также на дифференцированную проверку владения формально-оперативным математическим аппаратом, способность к интеграции знаний по основным темам курса.  

Промежуточный контроль знаний осуществляется с помощью проверочных самостоятельных работ, электронного тестирования, практических работ.

Тематическое и поурочное планирование составлено на основе программы министерства образования РФ по геометрии: авторы Атанасян Л.С., В. Ф. Бутузов, С. Б. Кадомцев и др. (Составитель сборника программ: Т. А .Бурмистрова. «Просвещение», 2008 г.) и в соответствии с  учебником «Геометрия, 8-9», авторы Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др., - М.: Просвещение, 2008

Количество часов: 2ч в неделю,  всего  68 часов;

        Плановых контрольных работ: 5.

№ п/п

Наименование разделов и тем

Всего часов

Контрольные работы

1

Повторение

5

-

2

Четырехугольники

14

1

3

Площадь

  14

1

4

Подобные треугольники

16

2

5

Окружность

15

1

6

Повторение. Решение задач

4

-

7

Резерв

2

Итого:

70

5

Содержание курса

Повторение курса геометрии 7 класса (5 часов)

Четырехугольники (15 часов, из них 1 контрольная работа)

Многоугольник, четырехугольник. Параллелограмм, его свойства и признаки. Трапеция. Прямоугольник, ромб, квадрат, их свойства. Осевая и центральная симметрии.

Площадь (14 часов,  них 1 контрольная работа)       

   Понятие площади многоугольника. Площади прямоугольника, параллелограмма, треугольника, трапеции. Теорема Пифагора.

Подобные треугольники  (17 часов, из них 2 контрольных работы)       

    Подобные треугольники. Признаки подобия треугольников. Применение подобия к доказательству теорем и решению задач. Синус, косинус и тангенс острого угла прямоугольного треугольника.

 Окружность (15 часов, из них 1 контрольная работа)       

Взаимное расположение прямой и окружности. Касательная к окружности, её свойство и признак. Центральные и вписанные углы. Четыре замечательные точки треугольника. Вписанная и описанная окружности

Повторение. Решение задач (4 часа)

Повторение курса геометрии 7 класса – 5 часов.

Глава 5.  Четырехугольники (15 часов)

        Многоугольник, выпуклый многоугольник, четырехугольник. Параллелограмм, его свойства и признаки. Трапеция. Прямоугольник, ромб, квадрат, их свойства. Осевая и центральная симметрии.

Контрольная работа № 1 по теме «Четырехугольники»

Цель: изучить наиболее важные виды четырехугольников — параллелограмм, прямоугольник, ромб, квадрат, трапецию; дать представление о фигурах, обладающих осе вой или центральной симметрией.

Доказательства большинства теорем данной темы и решения многих задач проводятся с помощью признаков равенства треугольников, поэтому полезно их повторить, в начале изучения темы.

Осевая и центральная симметрии вводятся не как преобразование плоскости, а как свойства геометрических фигур, в частности четырехугольников. Рассмотрение этих понятий как движений плоскости состоится в 9 классе.

Глава 6.  Площадь (14 часов)

      Понятие площади многоугольника. Площади прямоугольника, параллелограмма, треугольника, трапеции. Теорема Пифагора.

Контрольная работа  № 2 по теме «Площади фигур»

Цель: расширить и углубить полученные в 5—6 классах представления обучающихся об измерении и вычислении площадей; вывести формулы площадей прямоугольника, па р

параллелограмма, треугольника, трапеции; доказать одну из главных теорем геометрии — теорему Пифагора.

Вывод формул для вычисления площадей прямоугольника, параллелограмма, треугольника, трапеции основывается на двух основных свойствах площадей, которые принимаются исходя из наглядных представлений, а также на формуле площади квадрата, обоснование которой не является обязательным для обучающихся.

Нетрадиционной для школьного курса является теорема об отношении площадей треугольников, имеющих по равному углу. Она позволяет в дальнейшем дать простое доказательство признаков подобия треугольников. В этом состоит одно из преимуществ, обусловленных ранним введением понятия площади. Доказательство теоремы Пифагора основывается на свойствах площадей и формулах для площадей квадрата и прямоугольника. Доказывается также теорема, обратная теореме Пифагора.

Глава 7. Подобные треугольники (17 часов)

      Подобные треугольники. Признаки подобия треугольников. Применение подобия к доказательству теорем и решению задач. Синус, косинус и тангенс острого угла прямоугольного треугольника.

Контрольная работа № 3 по теме «Признаки подобия треугольников».

Контрольная работа № 4  по теме «Подобные треугольники».

Цель: ввести понятие подобных треугольников; рассмотреть признаки подобия треугольников и их применения; сделать первый шаг в освоении учащимися тригонометрического аппарата геометрии.

Определение подобных треугольников дается не на основе преобразования подобия, а через равенство углов и пропорциональность сходственных сторон.

Признаки подобия треугольников доказываются с помощью теоремы об отношении площадей треугольников, имеющих по равному углу.

На основе признаков подобия доказывается теорема о средней линии треугольника, утверждение о точке пересечения медиан треугольника, а также два утверждения о пропорциональных отрезках  в  прямоугольном  треугольнике.   Дается  представление о методе подобия в задачах на построение.

        В заключение темы вводятся элементы тригонометрии — синус, косинус и тангенс острого угла прямоугольного треугольника.

Глава 8. Окружность (15 часов)

       Взаимное расположение прямой и окружности. Касательная к окружности, ее свойство и признак. Центральные и вписанные углы. Четыре замечательные точки треугольника. Вписанная  и описанная окружности.

Контрольная работа № 5 по теме «Окружность».

Цель: расширить сведения об окружности, полученные учащимися в 7 классе; изучить новые факты, связанные с окружностью; познакомить обучающихся с четырьмя замечательными точками треугольника.

В данной теме вводится много новых понятий и рассматривается много утверждений, связанных с окружностью. Для их усвоения следует уделить большое внимание решению задач.

Утверждения о точке пересечения биссектрис треугольника и точке пересечения серединных перпендикуляров к сторонам треугольника выводятся как следствия из теорем о свойствах биссектрисы угла и серединного перпендикуляра к отрезку. Теорема о точке пересечения высот треугольника (или их продолжений) доказывается с помощью утверждения о точке пересечения серединных перпендикуляров.

Наряду с теоремами об окружностях, вписанной в треугольник и описанной около него, рассматриваются свойство сторон описанного четырехугольника и свойство углов вписанного четырехугольника.

9. Повторение. Решение задач. (4 часа)

Итоговая контрольная работа. 

Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс геометрии 8 класса.

Требования к уровню подготовки обучающихся в 8 классе

В результате изучения курса геометрии 8 класса обучающиеся должны:

знать/понимать

существо понятия математического доказательства; примеры доказательств;

существо понятия алгоритма; примеры алгоритмов;

как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

как потребности практики привели математическую науку к необходимости расширения понятия числа;

вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

каким образом геометрия возникла из практических задач землемерия;  примеры геометрических объектов и утверждений о них, важных для практики;

смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

уметь

пользоваться языком геометрии для описания предметов окружающего мира;

распознавать геометрические фигуры, различать их взаимное расположение;

изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;

распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;

проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;

вычислять значения геометрических величин;

проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

описания реальных ситуаций на языке геометрии;

расчетов, включающих простейшие тригонометрические формулы;

решения геометрических задач с использованием тригонометрии

решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).

Календарно-тематическое планирование

п/п

Раздел, название урока

Количество часов

Дата

по плану

Дата фактически

1

Углы

5

03.09

2

Треугольники

06.09

3

Параллельные прямые

10.09

4

Соотношения между сторонами и углами треугольника

13.09

5

Задачи на построение

17.09

6

§1. МНОГОУГОЛЬНИКИ 

Многоугольник. Выпуклый многоугольник, п.39, 40.

 Четырехугольник, п.41.

1

20.09

7

§2. ПАРАЛЛЕЛОГРАММ И ТРАПЕЦИЯ Параллелограмм, п.42.

1

24.09

8

Свойства и признаки параллелограмма, п.43.

1

27.09

9

Решение задач на свойства и признаки параллелограмма.

1

01.10

10

Трапеция, п.44.

1

04.10

11

Трапеция, п.44.

1

08.10

13

§3. ПРЯМОУГОЛЬНИК. РОМБ. КВАДРАТ Прямоугольник, п.45.

1

11.10

14

Ромб и квадрат, п.46.

1

15.10

15

Решение задач.

1

18.10

16

Осевая и центральная симметрии, 47.

1

22.10

17

Решение задач.

1

25.10

18

Зачет Четырехугольники

1

29.10

19

КОНТРОЛЬНАЯ РАБОТА №1 «Четырехугольники», п.39-46.

1

01.11

20

§1. ПЛОЩАДЬ МНОГОУГОЛЬНИКА Понятие площади многоугольника. Площадь квадрата, п.48, 49.

1

12.11

21

Площадь прямоугольника, п.50.

1

15.11

22

§2. ПЛОЩАДИ ПАРАЛЛЕЛОГРАММА, ТРЕУГОЛЬНИКА И ТРАПЕЦИИ

 Площадь параллелограмма, п.51.

1  

19.11

23

Площадь треугольника, п.52.

1

22.11

24

Площадь треугольника. п.52

1

26.11

25

Площадь трапеции, п.53.

1

29.11

26

Решение задач.

1

03.12

27

Решение задач.

1

06.12

28

§3. ТЕОРЕМА ПИФАГОРА 

Теорема Пифагора, п.54.

1

10.12

29

Теорема, обратная теореме Пифагора, п.55.

1

13.12

30

Решение задач на применение теоремы Пифагора и обратной ей теоремы.

1

17.12

31

Решение задач.

1

20.12

32

Решение задач.

1

24.12

33

КОНТРОЛЬНАЯ РАБОТА №2 «Площадь», п.48-55.

1

27.12

34

§1. ОПРЕДЕЛЕНИЕ ПОДОБНЫХ ТРЕУГОЛЬНИКОВ Пропорциональные отрезки. Определение подобных треугольников, п.56, 57.

1

14.01

35

Отношение площадей подобных треугольников, п.58.

1

17.01

36

§2. ПРИЗНАКИ ПОДОБИЯ ТРЕУГОЛЬНИКОВ Первый признак подобия треугольников, п.59.

1

21.01

37

Второй и третий признаки подобия треугольников, п.60, 61.

1

24.01

38

Второй и третий признаки подобия треугольников.

1

28.01

38

Решение задач

1

31.01

39

Решение задач

1

04.02

40

КОНТРОЛЬНАЯ РАБОТА №3 «Признаки подобия треугольников», п. 56-61.

1

05.02

41

§3. ПРИМЕНЕНИЕ ПОДОБИЯ К ДОКАЗАТЕЛЬСТВУ ТЕОРЕМ И РЕШЕНИЮ ЗАДАЧ Средняя линия треугольника, п.62. Решение задач.

1

07.02

42

Пропорциональные отрезки в прямоугольном треугольнике, п.63. Решение задач.

1

11.02

43

Практические приложения подобия треугольников. О подобии произвольных фигур, п.64, 65.

1

14.02

44

§4. СООТНОШЕНИЯ МЕЖДУ СТОРОНАМИ И УГЛАМИ ПРЯМОУГОЛЬ

НОГО ТРЕУГОЛЬНИКА Синус, косинус и тангенс острого угла прямоугольного треугольника, п.66.

1

18.02

45

Значения синуса, косинуса и тангенса для углов 30°, 45° и 60°, п.67.

1

21.02

46

Решение задач

1

25.02

47

Решение задач

1

28.02

48

КОНТРОЛЬНАЯ РАБОТА №4 «Применение подобия к решению задач», п.62-67.

1

04.03

49

§1. КАСАТЕЛЬНАЯ К ОКРУЖНОСТИ Взаимное расположение прямой и окружности, п.68.

1

07.03

50

Касательная к окружности, п.69.

1

11.03

51

Решение задач

1

14.03

§2. ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 

Градусная мера дуги окружности, п.70.

1

18.03

52

Теорема о вписанном угле, п.71.

1

21.03

53

Решение задач

1

01.04

54

§3. ЧЕТЫРЕ ЗАМЕЧАТЕЛЬНЫЕ ТОЧКИ ТРЕУГОЛЬНИКА Свойства биссектрисы угла и серединного перпендикуляра к отрезку, п.72.

1

04.04

55

Теорема о пересечении высот треугольника, п.73.

1

08.04

56

Решение задач

1

11.04

57

§4. ВПИСАННАЯ И ОПИСАННАЯ ОКРУЖНОСТИ Вписанная окружность, п.74.

1

15.04

58

Описанная окружность, п.75.

1

18.04

59

Решение задач.

1

22.04

60

Решение задач

1

25.04

61

КОНТРОЛЬНАЯ РАБОТА №5 «Окружность», п.68-75.

1

29.04

62-63

Четырехугольники.

10

02.05

06.05

64 - 65

Площадь.

13.05

16.05

20.05

66 -68

Подобные треугольники.

23.05

27.05

69 - 70

Окружность.

30.05

 

                                                            Литература  

1. Программы по геометрии к учебнику 7-9. Автор Атанасян Л.С., В. Ф. Бутузов, С. Б. Кадомцев и др. (Составитель сборника  программ: Т. А .Бурмистрова. «Просвещение», 2008)

2. Геометрия, учеб. для 7-9 кл./ [Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др.] – 16-е изд. – М.: Просвещение, 2010

3. Геометрия: рабочая тетрадь для 8 кл. /Л. С. Атанасян, В.Ф. Бутузов, Ю.А. Глазков, И.И. Юдина. – М.: Просвещение, 2009

4. Зив Б.Г. Геометрия: Дидактические материалы для 8 класса/ Б.Г. Зив, В.М. Мейлер. – М.: Просвещение, 2007

5. Изучение геометрии в 7-9 классах: методические рекомендации: кн. для учителя/ Л. С. Атанасян, В.Ф. Бутузов, Ю.А. Глазков и др.]- М.: Просвещение, 2007

                                                     Контрольные работы

Контрольная работа №1

Четырехугольники

Вариант 1

1. Диагонали прямоугольника ABCD  пересекаются в точке О.  Найдите угол между диагоналями, если

2. В параллелограмме KMNP проведена биссектриса угла MKP, которая пересекает сторону MN в точке Е.

а) Докажите, что треугольник КМЕ равнобедренный.

б) Найдите сторону КР, если МЕ = 10 см, а периметр параллелограмма равен 52 см.

Контрольная работа №1

Четырехугольники

Вариант 1

1. Диагонали ромба КМNP  пересекаются в точке О. Найдите углы треугольника КМО, если

2. На стороне ВС  параллелограмма ABCD взята точка M так, что АВ = ВМ.

а) Докажите, что АМ – биссектриса угла ВАD.

б) Найдите периметр параллелограмма, если CD = 8 см, СМ = 4 см.

Контрольная работа №2

Площадь

Вариант 1

1.  Смежные углы параллелограмма равны 32 см и 26 см, а один из его углов равен 150о. Найдите площадь параллелограмма.

2. Площадь прямоугольной трапеции равна 120 см2, а её высота равна 8 см. Найдите все стороны трапеции, если одно из оснований больше другого на 6 см.

3. На стороне АС данного треугольника АВС постройте точку D так, чтобы площадь треугольника АВD составила одну треть площади треугольника АВС.

Контрольная работа №2

Площадь

Вариант 2

1.  Одна из диагоналей параллелограмма является его высотой и равна 9 см. Найдите стороны этого параллелограмма, если его площадь равна 108 см2.

 2. Найдите площадь  трапеции АВСD с основаниями АD и ВС, если известно, что АВ = 12 см, ВС = 14 см, АD = 30 см,

3. На продолжении стороны KN данного треугольника KMN  постройте точку Р так, чтобы площадь треугольника NMР была в два раза меньше площади треугольника KMN.

Контрольная работа №3

Подобные треугольники

Вариант 1

1. На рисунке АВ║СD.

а) Докажите, что АО : ОС = ВО : ОD.

б) Найдите АВ, если ОD = 15 см, ОВ = 9 см, СD = 25 см.

2. Найдите отношение площадей треугольников АВС и KMN, если АВ = 8 см, ВС = 12 см,               АС = 16 см, КМ = 10 см, МN = 15 см, NK = 20 см.

Контрольная работа №3

Подобные треугольники

Вариант 2

1. На рисунке MN║АС.

а) Докажите, что АВ . BN = CВ . BM.

б) Найдите MN, если AM = 6 см, ВM = 8 см, AС = 21 см.

2. Даны стороны треугольников PQR  и АВС: PQ = 16 см, QR = 20 см, PR = 28 см, АВ = 12 см,   ВС = 15 см,  АС = 21 см. Найдите отношение площадей этих треугольников.

Контрольная работа №4

Соотношения между сторонами и углами в прямоугольном треугольнике

Вариант 1

1.  В прямоугольном треугольнике АВС  высота АD равна 12 см.  Найдите АС и cos C.

2. Диагональ ВD параллелограмма АВСD перпендикулярна к стороне АD. Найдите площадь параллелограмма  АВСD, если АВ = 12 см,  

Контрольная работа №4

Соотношения между сторонами и углами в прямоугольном треугольнике

Вариант 2

1. Высота ВD прямоугольного треугольника АВС равна 24 см и отсекает от гипотенузы АС отрезок DC, равный 18 см. Найдите АВ и cos A.

2. Диагональ АС прямоугольника АВСD равна 3 см и составляет со стороной АD угол 37о. Найдите площадь прямоугольника АВСD.

Контрольная работа № 5

Окружность

Вариант 1

1.  Через точку А окружности проведены диаметр АС и две хорды АВ и АD, равные радиусу этой окружности. Найдите углы четырехугольника АВСD и градусные меры дуг АВ, ВС, СD, АD.

2. Основание равнобедренного треугольника равно 18 см, а боковая сторона равна 15 см. Найдите радиусы вписанной в треугольник и описанной около треугольника окружностей.

Контрольная работа № 5

Окружность

Вариант 2

1.  Отрезок ВD – диаметр окружности с центром О. Хорда АС делит пополам радиус ОВ и перпендикулярна к нему. Найдите углы четырехугольника АВСD и градусные меры дуг АВ, ВС, СD, АD.

2. Высота, проведенная к основанию равнобедренного треугольника, равна 9 см, а само основание равно 24 см. Найдите радиусы вписанной в треугольник и описанной около треугольника окружностей.

Итоговая контрольная работа

Вариант 1

1.  В трапеции АВСD  точка М – середина большего основания АD, МD = ВС,  Найдите углы АМС и ВСМ.

2. На стороне АD параллелограмма АВСD отмечена точка К так, что АК = 4 см, КD = 5 см,                   ВК = 12 см. Диагональ ВD равна 13 см.

а) Докажите, что треугольник ВКD прямоугольный.

б) Найдите площади треугольника АВК и параллелограмма АВСD.

3. Отрезки АС и ВD пересекаются в точке О, причем АО = 15 см, ВО = 6 см, СО = 5 см, DO = 18 см.

а) Докажите, что четырехугольник АВСD – трапеция.

б) Найдите отношение площадей треугольников АОD  и ВОС.

4. Около остроугольного треугольника АВС описана окружность с центром О. Расстояние от точки О до прямой АВ равно 6 см,  Найдите: а) угол АВО; б) радиус окружности.

Итоговая контрольная работа

Вариант 1

1.  В трапеции АВСD  на большем основании АD отмечена точка М так, что АМ = 3 см, СМ =- 2 см, ,   Найдите длины сторон АВ и ВС.

2. В трапеции АВСD  FD = 8 см, DC = 4 см,  CD = 10 см. Найдите:

а) найдите площадь треугольника АСD;

б) площадь трапеции АВСD.

 3. Через точку М  стороны АВ треугольника АВС проведена прямая, перпендикулярная высоте ВD треугольника и пересекающая сторону ВС в точке К.  Известно, что ВМ = 7 см, ВК = 9 см, ВС = 27 см. Найдите:

а) длину стороны АВ;

 б) отношение площадей треугольников АВС и МВК.

4.  В треугольник АВС  с прямым углом С вписана окружность с центром О, касающаяся сторон АВ, ВC и СА в точках D, Е и F соответственно. Известно, что  .  Найдите: а) радиус окружности; б) углы ЕОF и ЕDF.

Литература

1. Программы по геометрии к учебнику 7-9. Автор Атанасян Л.С., В. Ф. Бутузов, С. Б. Кадомцев и др. (Составитель сборника  программ: Т. А .Бурмистрова. «Просвещение», 2008)

2. Геометрия, учеб. для 7-9 кл./ [Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др.] – 16-е изд. – М.: Просвещение, 2010

3. Геометрия: рабочая тетрадь для 8 кл. /Л. С. Атанасян, В.Ф. Бутузов, Ю.А. Глазков, И.И. Юдина. – М.: Просвещение, 2009

4. Зив Б.Г. Геометрия: Дидактические материалы для 8 класса/ Б.Г. Зив, В.М. Мейлер. – М.: Просвещение, 2007

5. Изучение геометрии в 7-9 классах: методические рекомендации: кн. для учителя/ Л. С. Атанасян, В.Ф. Бутузов, Ю.А. Глазков и др.]- М.: Просвещение, 2007


По теме: методические разработки, презентации и конспекты

Рабочая программа по предмету "Геометрия" в 9 классе на 2011-2012 учебный год

Вид реализуемой рабочей программы по геометрии в 9 классе–  основная общеобразовательная. По данной программе  обучение осуществляется учителем на всех уроках и обеспечивает усвоение учебно...

Рабочая программа по наглядной геометрии в 5 классе

Рабочая программа по наглядной геометрии  предназначена для работы в 5-х классах общеобразовательной школы . Основой  данной программы является авторская программа Т.Г.Ходот и А.Ю. Ход...

Рабочая программа по наглядной геометрии в 6 классе по учебнику "Наглядная геометрия 6", авт. Т.Г.Ходот, А.Ю.Ходот (1час в неделю. всего 35ч)

Рабочая программа содержит пояснительную записку, темаичекое планирование, краткое содержание и цели изучения курса....

рабочая программа по наглядной геометрии 6 классрабочая программа по наглядной геометрии

рабочая программа по наглядной геометрии 6 класс к пособию Шарыгина "Наглядная геометрия"...

Рабочая программа по курсу «Геометрия» для 7 класса к учебнику Л.С. Атанасяна «Геометрия 7-9»

Рабочая программа содержит пояснительную записку. календарно- тематическое планирование....

Рабочая программа учебного предмета геометрия УМК «_Атанасян_Ш.А. Геометрия 7-9 » 7 класс, базовый уровень

Рабочая программа учебного предмета УМК «_Атанасян_Ш.А.  Геометрия 7-9 »...

Рабочая программа факультатива по геометрии «Геометрия вокруг нас» 9 класс

Настоящая рабочая программа разработана в соответствии с основными положениями Федерального государственного образовательного стандарта основного общего образования, на основе основной образовательной...