Рабочая программа по геометрии 11 класс
рабочая программа (геометрия, 11 класс) по теме
Рабочая программа по геометрии составлена к учебнику Атанасян
Скачать:
Вложение | Размер |
---|---|
geometriya_11.docx | 78.45 КБ |
Предварительный просмотр:
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Рабочая программа учебного курса геометрии для 11 класса составлена на основе Примерной программы среднего (полного) общего образования по математике и программы для общеобразовательных учреждений по геометрии 10 - 11 классы составитель Бурмистрова Т.А.-М.: Просвещение, 2009.
Цель изучения:
овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;
формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;
приобретение конкретных знаний о пространстве и практически значимых умений, формирование языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания обучающихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.
Задачи изучения:
развить пространственные представления и изобразительные умения; освоить основные факты и методы стереометрии, познакомиться с простейшими пространственными телами и их свойствами;
овладеть символическим языком математики, выработать формально-оперативные математические умения и научиться применять их к решению геометрических задач;
сформировать представления об изучаемых понятиях и методах как
важнейших средствах математического моделирования реальных
процессов и явлений.
Формы организации учебного процесса:
индивидуальные, групповые, индивидуально-групповые, фронтальные, классные
и внеклассные.
Формы контроля:
Самостоятельная работа, контрольная работа, зачёт, работа по карточке.
Программа рассчитана на 68 ч (2 часа в неделю).
Промежуточная аттестация проводится в форме тестов, контрольных и самостоятельных работ.
Для реализации рабочей программы используется
учебно-методический комплект учителя:
Геометрия: учеб, для 10—11 кл. / [Л.С. Атанасян, В.Ф. Бутузов, С.В. Кадомцев и др.]. — М.: Просвещение, 2004-2009.
Зив Б.Г. Геометрия: дидакт. материалы для 11 кл. / Б.Г. Зив, В.М. Мейлер. — М.: Просвещение, 2004—2009.
Изучение геометрии в 10, 11 классах: метод, рекомендации: кн. для учителя / [Л.С. Атанасян, В.Ф. Бутузов, Ю.А. Глазков и др.]. - М.: Просвещение, 2003 — 2009
учебно-методический комплект ученика:
Геометрия: учеб, для 10—11 кл. / [Л. С. Атанасян, В. Ф. Бутузов, С. В. Кадомцев и др.]. — М.: Просвещение, 2004-2009.
ОСНОВНОЕ СОДЕРЖАНИЕ
Глава V. Метод координат в пространстве(15 часов).
Прямоугольная система координат в пространстве. Координаты вектора. Связь между координатами вектора и координатами точек. Простейшие задачи в координатах. Угол между векторами. Вычисление углов между прямыми и плоскостями. Центральная симметрия. Осевая симметрия. Зеркальная симметрия. Параллельный перенос.
Знать:
понятие прямоугольной системы координат в пространстве;
понятие координат вектора в прямоугольной системе координат;
понятие радиус-вектора произвольной точки пространства;
формулы координат середины отрезка, длины вектора через его координаты, расстояние между двумя точками;
понятие угла между векторами;
понятие скалярного произведения векторов;
формулу скалярного произведения в координатах;
свойства скалярного произведения;
понятие движения пространства и основные виды движения.
Уметь:
строить точки в прямоугольной системе координат по заданным её координатам и находить координаты точки в заданной системе координат;
выполнять действия над векторами с заданными координатами;
доказывать, что координаты точки равны соответствующим координатам её радиус-вектора, координаты любого вектора равны разностям соответствующих координат его конца и начала;
решать простейшие задачи в координатах;
вычислять скалярное произведение векторов и находить угол между векторами по их координатам;
вычислять углы между прямыми и плоскостям;
строить симметричные фигуры.
Глава VI. Цилиндр, конус и шар(16 часов).
Понятие цилиндра. Площадь поверхности цилиндра. Понятие конуса. Площадь поверхности конуса. Усечённый конус. Сфера и шар. Уравнение сферы. Взаимное расположение сферы и плоскости Касательная плоскость к сфере .Площадь сферы.
Знать:
понятие цилиндрической поверхности, цилиндра и его элементов(боковая поверхность, основания, образующие, ось, высота, радиус;
формулы для вычисления площадей боковой и полной поверхностей цилиндра;
понятие конической поверхности, конуса и его элементов(боковая поверхность, основание, вершина, образующая, ось, высота), усечённого конуса;
формулы для вычисления площадей боковой и полной поверхностей конуса и усечённого конуса;
понятия сферы, шара и их элементов(центр, радиус, диаметр);
уравнение сферы в заданной прямоугольной системе координат;
взаимное расположение сферы и плоскости;
теоремы о касательной плоскости к сфере;
формулу площади сферы.
Уметь:
решать задачи на вычисление боковой и полной поверхностей цилиндра;
решать задачи на вычисление боковой и полной поверхностей конуса и усечённого конуса;
решать задачи на вычисление площади сферы.
Глава VII. Объёмы тел (17 часов).
Понятие объёма. Объём прямоугольного параллелепипеда. Объём прямой призмы. Объём цилиндра. Вычисление объёмов тел с помощью определенного интеграла. Объём наклонной призмы. Объём пирамиды. Объём конуса. Объём шара. Объём шарового сегмента, шарового слоя и шарового сектора. Площадь сферы.
Знать:
понятие объёма, основные свойства объёма;
формулы нахождения объёмов призмы, в основании которой прямоугольный треугольник и прямоугольного параллелепипеда;
правило нахождения прямой призмы;
что такое призма, вписана и призма описана около цилиндра;
формулу для вычисления объёма цилиндра;
способ вычисления объёмов тел с помощью определённого интеграла, основную формулу для вычисления объёмов тел;
формулу нахождения объёма наклонной призмы;
формулы вычисления объёма пирамиды и усечённой пирамиды;
формулы вычисления объёмов конуса и усечённого конуса;
формулу объёма шара;
определения шарового слоя, шарового сегмента, шарового сектора, формулы для вычисления их объёмов;
формулу площади сферы.
Уметь:
Объяснять, что такое объём тела, перечислять его свойства и применять эти свойства в несложных ситуациях;
применять формулы нахождения объёмов призмы при решении задач;
решать задачи на вычисления объёма цилиндра;
воспроизводить способ вычисления объёмов тел с помощью определённого интеграла;
применять формулу нахождения объёма наклонной призмы при решении задач;
решать задачи на вычисление объёмов пирамиды и усечённой пирамиды;
применять формулы вычисления объёмов конуса и усечённого конуса при решении задач
применять формулу объёма шара при решении задач;
различать шаровой слой, сектор, сегмент и применять формулы для вычисления их объёмов в несложных задачах;
применять формулу площади сферы при решении задач.
Обобщающее повторение. Решение задач( 14 часов).
Параллельность прямых и плоскостей. Перпендикулярность прямых и плоскостей. Многогранники. Метод координат в пространстве.
Цилиндр, конус и шар. Объёмы тел.
Знать:
основные определения и формулы изученные в курсе геометрии.
Уметь:
применять формулы при решении задач.
Требования к уровню подготовки обучающихся в 11 классе
В результате изучения курса геометрии 11 класса обучающиеся должны:
знать/понимать
существо понятия математического доказательства; примеры доказательств;
как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;
смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;
уметь
пользоваться языком геометрии для описания предметов окружающего мира;
распознавать геометрические фигуры, различать их взаимное расположение;
изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;
распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;
в простейших случаях строить сечения и развертки пространственных тел;
проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;
решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, идеи симметрии;
проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
решать простейшие планиметрические задачи в пространстве;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
описания реальных ситуаций на языке геометрии;
расчетов, включающих простейшие тригонометрические формулы;
решения геометрических задач с использованием тригонометрии
решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);
построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).
Учебно-тематический план
№ п/п | НАЗВАНИЕ РАЗДЕЛА
| Кол-во часов |
1 | Повторение | 2 |
2 | Метод координат в пространстве. | 15 |
3 | Цилиндр, конус и шар. | 16 |
4 | Объёмы тел. | 17 |
5 | Обобщающее повторение. Решение задач. | 18 |
Всего | 68 |
Календарно-тематическое планирование
№ п\п | Наименование темы | Кол-во часов |
Повторение | 2 | |
§1 | Многогранники | 1 |
§2 | Векторы в пространстве | 2 |
Глава V. Метод координат в пространстве | 15 | |
§1 | Координаты точки и координаты вектора | 6 |
§2 | Скалярное произведение векторов | 7 |
Контрольная работа № 1 по теме «Метод координат в пространстве» | 1 | |
Зачёт №2 | 1 | |
2 | Глава VI. Цилиндр, конус, шар | 16 |
§1 | Цилиндр | 3 |
§2 | Конус. Усеченный конус | 4 |
§3 | Сфера | 7 |
Контрольная работа № 2 по теме «Цилиндр, конус, шар» | 1 | |
Зачёт №3 | 1 | |
Глава VII. Объемы тел | 17 | |
§1 | Объем прямоугольного параллелепипеда | 3 |
§2 | Объем прямой призмы и цилиндра | 2 |
§3 | Объем наклонной призмы, пирамиды, конуса. | 5 |
§4 | Объем шара и площадь сферы | 5 |
Контрольная работа № 3 по теме «Объемы тел» | 1 | |
Зачёт №4 | 1 | |
Обобщающее повторение | 18 | |
1 | Треугольники и четырехугольники | 2 |
2 | Параллельные прямые | 2 |
3 | Соотношения между сторонами и углами треугольника | 2 |
4 | Площади фигур | 2 |
5 | Подобные треугольники | 1 |
6 | Окружность | 1 |
7 | Векторы. Метод координат | 1 |
8 | Скалярное произведение векторов | 1 |
9 | Длина окружности и площадь круга | 1 |
10 | Многогранники | 1 |
11 | Цилиндр, конус, шар | 2 |
12 | Разные задачи на многогранники, цилиндр, конус и шар | 2 |
| Итого часов | 68 |
Контрольная работа № 1 «Метод координат в пространстве»
Вариант №1.
10. Найдите координаты вектора , если А(5; -1; 3), В(2; -2; 4).
20. Даны векторы {3; 1; -2}, {1; 4; -3}. Найдите .
3. Дан куб АВСDА1В1С1D1. Найдите угол между прямыми АD1 и ВМ, где М – середина ребра DD1.
4. Вычислите скалярное произведение векторов и , если .
Вариант №2
10. Найдите координаты вектора , если А(6; 3; -2), В(2; 4; -5).
20. Даны векторы {5; -1; 2}, {3; 2; -4}. Найдите .
3. Дан куб АВСDА1В1С1D1. Найдите угол между прямыми АС и DС1.
4. Вычислите скалярное произведение векторов и , если .
Контрольная работа № 1 «Метод координат в пространстве»
Вариант №1.
10. Найдите координаты вектора , если А(5; -1; 3), В(2; -2; 4).
20. Даны векторы {3; 1; -2}, {1; 4; -3}. Найдите .
3. Дан куб АВСDА1В1С1D1. Найдите угол между прямыми АD1 и ВМ, где М – середина ребра DD1.
4. Вычислите скалярное произведение векторов и , если .
Вариант №2
10. Найдите координаты вектора , если А(6; 3; -2), В(2; 4; -5).
20. Даны векторы {5; -1; 2}, {3; 2; -4}. Найдите .
3. Дан куб АВСDА1В1С1D1. Найдите угол между прямыми АС и DС1.
4. Вычислите скалярное произведение векторов и , если .
Контрольная работа №2 «Цилиндр, конус и шар»
Вариант №1.
10. Осевое сечение цилиндра – квадрат. Площадь основания цилиндра равна. Найдите площадь полной поверхности цилиндра.
20. Высота конуса равна 6см. Угол при вершине осевого сечения равен .
а) Найти площадь сечения конуса плоскостью, проходящей через две образующие, угол между которыми равен .
б) Найти площадь боковой поверхности конуса.
3. Диаметр шара равен 2р. Через конец диаметра проведена плоскость под углом к нему. Найдите длину линии пересечения сферы этой плоскостью.
Вариант №2
10. Осевое сечение цилиндра – квадрат, диагональ которого равна 4см. Найдите площадь полной поверхности цилиндра.
20. Радиус основания конуса равен 6см, а образующая наклонена к плоскости основания под углом .
а) Найти площадь сечения конуса плоскостью, проходящей через две образующие, угол между которыми равен .
б) Найти площадь боковой поверхности конуса.
3. Диаметр шара равен 4р. Через конец диаметра проведена плоскость под углом к нему. Найдите площадь сечения шара этой плоскостью.
Контрольная работа № 3 «Объёмы тел»
Вариант №1.
10. Диаметр шара равен высоте конуса, образующая которого составляет с плоскостью основания угол . Найдите отношение объёмов конуса и шара.
20. Объём цилиндра равен , площадь его осевого сечения . Найдите площадь сферы, описанной около цилиндра.
3. В конус вписана пирамида. Основанием пирамиды служит прямоугольный треугольник, катет которого равен 2р, а прилежащий угол равен . Боковая грань пирамиды, проходящая через данный катет, составляет с плоскостью основания угол . Найдите объём конуса.
Вариант №2.
10.В конус, осевое сечение которого есть правильный треугольник, вписан шар. Найдите отношение площади сферы к площади боковой поверхности конуса.
20. Диаметр шара равен высоте цилиндра, осевое сечение которого есть квадрат. Найдите отношение объёмов шара и цилиндра.
3. В цилиндр вписана призма. Основанием призмы служит прямоугольный треугольник, катет которого равен 2р, а прилежащий угол равен . Диагональ большей боковой грани призмы составляет с плоскостью её основания угол . Найдите объём цилиндра.
В каждой контрольной работе кружочком отмечены задания, соответствующие уровню обязательной подготовки.
Список литературы:
- Федеральный компонент государственных образовательных стандартов среднего (полного) общего образования (приказ Минобрнауки от 05.03.2004г. № 1089).
- Примерная программа общеобразовательных учреждений по геометрии 10–11 классы, к учебному комплексу для 10-11 классов (авторы Л.С. Атанасян, В.Ф. Бутузов, С.В. Кадомцев и др., составитель Т.А. Бурмистрова – М: «Просвещение», 2008 – М: «Просвещение», 2008. – с. 19-21).
- Геометрия: учеб, для 10—11 кл. / [Л. С. Атанасян, В. Ф. Бутузов, С. В. Кадомцев и др.]. — М.: Просвещение, 2009.
- Зив Б.Г. Геометрия: дидактические материалы для 11 кл. / Б.Г. Зив, В.М. Мейлер. — М.: Просвещение, 2009.
- О преподавании математики в 2010/2011 учебном году. Методическое письмо. Под ред. Ященко И.В., Семенова А.В. (2010, 240с.)
Дополнительная литература:
- Математика 5-11 классы: нетрадиционные формы организации контроля на уроках / авт.-сост. М.Е. Козина, О.М. Фадеева. - Волгоград, Учитель, 2007;
- Конструирование современного урока математики: кн. для учителя / С.Г. Манвелов. – М.: Просвещение,2009.
По теме: методические разработки, презентации и конспекты
Рабочая программа по геометрии 7 класс по учебнику Атанасян Л. С. Бутузов В. Ф. и др. Геометрия 7-9 классы
Рабочая программа по геометрии 7 класс по учебнику Атанасян Л. С. Бутузов В. Ф. и др. Геометрия 7-9 классы (2 часа в неделю)...
Рабочая программа по геометрии 11 класс (2 часа в неделю, всего 68 часов) Учебник Геометрия 10-11 класс. Погорелов А.В.
Рабочая программа по геометрии 11 класс (2 часа в неделю, всего 68 часов) Учебник Геометрия 10-11 класс. Погорелов А.В. Базовый уровень...
Рабочая программа по геометрии 10 класс (2 часа в неделю, всего 68 часов) Учебник Геометрия 10-11 класс. Погорелов А.В.
Рабочая программа по геометрии 10 класс (2 часа в неделю, всего 68 часов) Учебник Геометрия 10-11 класс. Погорелов А.В. Базовый уровень...
Рабочая программа по математике (алгебре) 5-9 классы и рабочая программа по геометрии 7-9 класс
Рабочая программа составлена на основе примерных программ основного общего образования по математике 2004 года по учебным комплектам: математика 5-6 класс - Н. Я. Виленкин и др., алгебра - Ю. Н. Макар...
Рабочие программы по математике для 5 класса, по алгебре для 8 класса. УМК А. Г. Мордкович. Рабочие программы по геометрии для 7 и 8 класса. Программа соответствует учебнику Погорелова А.В. Геометрия: Учебник для 7-9 классов средней школы.
Рабочая программа содержит пояснительную записку, содержание учебного материала, учебно - тематическое планирование , требования к математической подготовке, список рекомендованной литературы, календа...
Аннотация к рабочей программе по геометрии, 11 класс + рабочая программа по геометрии для 11 класса
Аннотация к рабочей программе по МАТЕМАТИКЕ (геометрии). Класс: 11.Программа по геометрии для 11 класса составлена на основе Федерального компонента государственного образовательного стандарта среднег...
РАБОЧАЯ ПРОГРАММА Предмет геометрия Класс 9 Учитель Асессорова Е.М.
РАБОЧАЯ ПРОГРАММА Предмет геометрия Класс 9 Учитель Асессорова Е.М....