Рабочая программа по геометрии 11 класс
рабочая программа (геометрия, 11 класс) по теме

Дмитриева Ольга Николаевна

Рабочая программа по геометрии составлена к учебнику Атанасян

Скачать:

ВложениеРазмер
Файл geometriya_11.docx78.45 КБ

Предварительный просмотр:

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

         Рабочая программа учебного курса геометрии для 11 класса составлена на основе Примерной программы среднего (полного) общего образования по математике и программы для общеобразовательных учреждений по геометрии 10 - 11 классы составитель Бурмистрова Т.А.-М.: Просвещение, 2009.

    Цель изучения:

овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;

формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;

приобретение конкретных знаний о пространстве и практически значимых умений, формирование языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания обучающихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

   Задачи изучения:

развить пространственные представления и изобразительные умения; освоить основные факты и методы стереометрии, познакомиться с простейшими пространственными телами и их свойствами;

овладеть символическим языком математики, выработать формально-оперативные  математические умения и научиться применять их к решению геометрических задач;

    сформировать представления об изучаемых понятиях и методах как  

    важнейших средствах математического моделирования реальных

    процессов и явлений.

        Формы организации учебного процесса:

           индивидуальные, групповые, индивидуально-групповые, фронтальные, классные

            и внеклассные.

         Формы контроля:

          Самостоятельная работа, контрольная работа, зачёт, работа по карточке.

      Программа рассчитана на 68 ч (2 часа в неделю).

      Промежуточная аттестация проводится в форме тестов, контрольных и  самостоятельных работ.

       Для реализации рабочей программы используется

учебно-методический комплект учителя:

Геометрия: учеб, для 10—11 кл. / [Л.С. Атанасян, В.Ф. Бутузов, С.В. Кадомцев и др.]. — М.: Просвещение, 2004-2009.

Зив Б.Г. Геометрия: дидакт. материалы для 11 кл. / Б.Г. Зив, В.М. Мейлер. — М.: Просвещение, 2004—2009.

Изучение геометрии в 10, 11 классах: метод, рекомендации: кн. для учителя / [Л.С. Атанасян, В.Ф. Бутузов, Ю.А. Глазков и др.]. - М.: Просвещение, 2003 — 2009

        

учебно-методический комплект ученика:

Геометрия: учеб, для 10—11 кл. / [Л. С. Атанасян, В. Ф. Бутузов, С. В. Кадомцев и др.]. — М.: Просвещение, 2004-2009.

ОСНОВНОЕ СОДЕРЖАНИЕ

Глава V. Метод координат в пространстве(15 часов).

Прямоугольная система координат в пространстве. Координаты вектора. Связь между координатами вектора и координатами точек. Простейшие задачи в координатах. Угол между векторами. Вычисление углов между прямыми и плоскостями. Центральная симметрия. Осевая симметрия. Зеркальная симметрия. Параллельный перенос.

Знать:

понятие прямоугольной системы координат в пространстве;

 понятие координат вектора в прямоугольной системе координат;

понятие радиус-вектора произвольной точки пространства;

формулы координат середины отрезка, длины вектора через его координаты, расстояние между двумя точками;

понятие угла между векторами;

 понятие скалярного произведения векторов;

формулу скалярного произведения в координатах;

свойства скалярного произведения;

понятие движения пространства и основные виды движения.

Уметь:

строить точки в прямоугольной системе координат по заданным её координатам и находить координаты точки в заданной системе координат;

выполнять действия над векторами с заданными координатами;

доказывать, что координаты точки равны соответствующим координатам её радиус-вектора, координаты любого вектора равны разностям соответствующих координат его конца и начала;

решать простейшие задачи в координатах;

вычислять скалярное произведение векторов и находить угол между векторами по их координатам;

вычислять углы между прямыми и плоскостям;

строить симметричные фигуры.

Глава VI. Цилиндр, конус и шар(16 часов).

Понятие цилиндра. Площадь поверхности цилиндра. Понятие конуса. Площадь поверхности конуса. Усечённый конус. Сфера и шар. Уравнение сферы. Взаимное расположение сферы и плоскости Касательная плоскость к сфере .Площадь сферы.

Знать:

 понятие цилиндрической поверхности, цилиндра и его элементов(боковая поверхность, основания, образующие, ось, высота, радиус;

формулы для вычисления площадей боковой и полной поверхностей цилиндра;

понятие конической поверхности, конуса и его элементов(боковая поверхность, основание, вершина, образующая, ось, высота), усечённого конуса;

формулы для вычисления площадей боковой и полной поверхностей конуса и усечённого конуса;

понятия сферы, шара и их элементов(центр, радиус, диаметр);

 уравнение сферы в заданной прямоугольной системе координат;

взаимное расположение сферы и плоскости;

теоремы о касательной плоскости к сфере;

формулу площади сферы.

Уметь:

решать задачи на вычисление боковой и полной поверхностей цилиндра;

решать задачи на вычисление боковой и полной поверхностей конуса и усечённого конуса;

решать задачи на вычисление площади сферы.

Глава VII. Объёмы тел (17 часов).

Понятие объёма. Объём прямоугольного параллелепипеда. Объём прямой призмы. Объём цилиндра. Вычисление объёмов тел с помощью определенного интеграла. Объём наклонной призмы. Объём пирамиды. Объём конуса. Объём шара. Объём шарового сегмента, шарового слоя и шарового сектора. Площадь сферы.

Знать:

понятие объёма, основные свойства объёма;

формулы нахождения объёмов призмы, в основании которой прямоугольный треугольник и прямоугольного параллелепипеда;

 правило нахождения прямой призмы;

 что такое призма, вписана и призма описана около цилиндра;

формулу для вычисления объёма цилиндра;

способ вычисления объёмов тел с помощью определённого интеграла, основную формулу для вычисления объёмов тел;

формулу нахождения объёма наклонной призмы;

формулы вычисления объёма пирамиды и усечённой пирамиды;

формулы вычисления объёмов конуса и усечённого конуса;

формулу объёма шара;

определения шарового слоя, шарового сегмента, шарового сектора, формулы для вычисления их объёмов;

формулу площади сферы.

Уметь:

Объяснять, что такое объём тела, перечислять его свойства и применять эти свойства в несложных ситуациях;

применять формулы нахождения объёмов призмы при решении задач;

решать задачи на вычисления объёма цилиндра;

воспроизводить способ вычисления объёмов тел с помощью определённого интеграла;

применять формулу нахождения объёма наклонной призмы при решении задач;

решать задачи на вычисление объёмов пирамиды и усечённой пирамиды;

применять формулы вычисления объёмов конуса и усечённого конуса при решении задач

применять формулу объёма шара при решении задач;

различать шаровой слой, сектор, сегмент и применять формулы для вычисления их объёмов в несложных задачах;

применять формулу площади сферы при решении задач.

Обобщающее повторение. Решение задач( 14 часов).

Параллельность прямых и плоскостей. Перпендикулярность прямых и плоскостей. Многогранники. Метод координат в пространстве.

Цилиндр, конус и шар. Объёмы тел.

Знать:

основные определения и формулы изученные в курсе геометрии.

Уметь:

 применять формулы при решении задач.

Требования к уровню подготовки обучающихся в 11 классе

В результате изучения курса геометрии 11 класса обучающиеся должны:

знать/понимать        

существо понятия математического доказательства; примеры доказательств;

как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

каким образом геометрия возникла из практических задач землемерия;  примеры геометрических объектов и утверждений о них, важных для практики;

смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

уметь

пользоваться языком геометрии для описания предметов окружающего мира;

распознавать геометрические фигуры, различать их взаимное расположение;

изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;

распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;

в простейших случаях строить сечения и развертки пространственных тел;

проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;

решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, идеи симметрии;

проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

решать простейшие планиметрические задачи в пространстве;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

описания реальных ситуаций на языке геометрии;

расчетов, включающих простейшие тригонометрические формулы;

решения геометрических задач с использованием тригонометрии

решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).

         

                              Учебно-тематический план

№ п/п

НАЗВАНИЕ РАЗДЕЛА

        

Кол-во часов

1

Повторение

2

2

Метод координат в пространстве.

15

3

Цилиндр, конус и шар.

16

4

Объёмы тел.

17

5

Обобщающее повторение. Решение задач.

18

Всего

68

Календарно-тематическое планирование

№ п\п

Наименование темы

Кол-во часов

Повторение

2

§1

Многогранники

1

§2

Векторы в пространстве

2

Глава V. Метод координат в пространстве

15

§1

Координаты точки и координаты вектора

6

§2

Скалярное произведение векторов

7

Контрольная работа  № 1 по теме «Метод координат в пространстве»

1

Зачёт №2

1

2

Глава VI. Цилиндр, конус, шар

16

§1

Цилиндр

3

§2

Конус. Усеченный конус

4

  §3

Сфера

7

Контрольная работа  № 2  по теме «Цилиндр, конус, шар»

1

Зачёт №3

1

Глава VII. Объемы тел

17

§1

Объем прямоугольного параллелепипеда

3

§2

Объем прямой призмы и цилиндра

2

  §3

Объем наклонной призмы, пирамиды, конуса.

5

§4

Объем шара и площадь сферы

5

Контрольная работа  № 3 по теме «Объемы тел»

1

Зачёт №4

1

Обобщающее повторение

18

1

Треугольники и четырехугольники

2

2

Параллельные прямые

2

3

Соотношения между сторонами и углами треугольника

2

4

Площади фигур

2

5

Подобные треугольники

1

6

Окружность

1

7

Векторы. Метод координат

1

8

Скалярное произведение векторов

1

9

Длина окружности и площадь круга

1

10

Многогранники

1

11

Цилиндр, конус, шар

2

12

Разные задачи на многогранники, цилиндр, конус и шар

2

 

                                             Итого часов

68

Контрольная работа № 1 «Метод координат в пространстве»

Вариант №1.

10. Найдите  координаты  вектора  , если А(5; -1; 3), В(2; -2; 4).

20. Даны  векторы  {3; 1; -2}, {1; 4; -3}.  Найдите .

3. Дан куб АВСDА1В1С1D1. Найдите угол между прямыми АD1 и ВМ, где М – середина ребра DD1.

4.  Вычислите  скалярное  произведение  векторов    и  , если  .

Вариант №2

10. Найдите  координаты  вектора  , если А(6; 3; -2), В(2; 4; -5).

20. Даны  векторы  {5; -1; 2}, {3; 2; -4}.  Найдите .

3. Дан куб АВСDА1В1С1D1. Найдите угол между прямыми АС и DС1.

4. Вычислите  скалярное  произведение  векторов    и  , если  .

Контрольная работа № 1 «Метод координат в пространстве»

Вариант №1.

10. Найдите  координаты  вектора  , если А(5; -1; 3), В(2; -2; 4).

20. Даны  векторы  {3; 1; -2}, {1; 4; -3}.  Найдите .

3. Дан куб АВСDА1В1С1D1. Найдите угол между прямыми АD1 и ВМ, где М – середина ребра DD1.

4.  Вычислите  скалярное  произведение  векторов    и  , если  .

Вариант №2

10. Найдите  координаты  вектора  , если А(6; 3; -2), В(2; 4; -5).

20. Даны  векторы  {5; -1; 2}, {3; 2; -4}.  Найдите .

3. Дан куб АВСDА1В1С1D1. Найдите угол между прямыми АС и DС1.

4. Вычислите  скалярное  произведение  векторов    и  , если  .

Контрольная работа №2  «Цилиндр, конус и шар»

Вариант №1.

10. Осевое сечение цилиндра – квадрат. Площадь основания цилиндра равна. Найдите  площадь  полной  поверхности  цилиндра.

20. Высота конуса равна 6см. Угол при вершине осевого сечения равен .

а) Найти площадь сечения конуса плоскостью, проходящей через две образующие, угол между которыми равен .

б) Найти площадь боковой поверхности конуса.

3. Диаметр шара равен 2р. Через конец диаметра проведена плоскость под углом  к нему. Найдите длину линии пересечения сферы этой плоскостью.

Вариант №2

10. Осевое сечение цилиндра – квадрат, диагональ которого равна 4см. Найдите  площадь  полной  поверхности  цилиндра.

20. Радиус основания конуса равен 6см, а образующая наклонена к плоскости основания под углом .

а) Найти площадь сечения конуса плоскостью, проходящей через две образующие, угол между которыми равен .

б) Найти площадь боковой поверхности конуса.

3. Диаметр шара равен 4р. Через конец диаметра проведена плоскость под углом  к нему. Найдите площадь сечения шара этой плоскостью.

Контрольная работа № 3 «Объёмы тел» 

Вариант №1.

10. Диаметр шара равен высоте конуса, образующая которого составляет с плоскостью основания угол . Найдите отношение объёмов конуса и шара.

20.  Объём цилиндра равен , площадь его осевого сечения . Найдите площадь сферы, описанной около цилиндра.

3. В конус вписана пирамида. Основанием пирамиды служит прямоугольный треугольник, катет которого равен 2р, а прилежащий угол равен . Боковая грань пирамиды, проходящая через данный катет, составляет с плоскостью основания угол . Найдите объём конуса.

Вариант №2.

10.В конус, осевое сечение которого есть правильный треугольник, вписан шар. Найдите отношение площади сферы к площади боковой поверхности конуса.

20. Диаметр шара равен высоте цилиндра, осевое сечение которого есть квадрат. Найдите отношение объёмов шара и цилиндра.

3. В цилиндр вписана призма. Основанием призмы служит прямоугольный треугольник, катет которого равен 2р, а прилежащий угол равен . Диагональ большей боковой грани призмы составляет с плоскостью её основания угол . Найдите объём цилиндра.

В каждой контрольной работе кружочком отмечены задания, соответствующие уровню обязательной подготовки.

Список литературы:

  1. Федеральный компонент государственных образовательных стандартов  среднего (полного) общего  образования (приказ Минобрнауки от 05.03.2004г. № 1089).
  2. Примерная программа общеобразовательных учреждений по геометрии 10–11 классы,  к учебному комплексу для 10-11 классов (авторы Л.С. Атанасян, В.Ф. Бутузов, С.В. Кадомцев и др., составитель Т.А. Бурмистрова – М: «Просвещение», 2008 – М: «Просвещение», 2008. – с. 19-21).
  3. Геометрия: учеб, для 10—11 кл. / [Л. С. Атанасян,   В. Ф. Бутузов, С. В. Кадомцев и др.]. — М.: Просвещение,  2009.
  4. Зив Б.Г. Геометрия: дидактические материалы для 11 кл. / Б.Г. Зив, В.М. Мейлер. — М.: Просвещение, 2009.
  5. О преподавании математики в 2010/2011 учебном году. Методическое письмо. Под ред. Ященко И.В., Семенова А.В. (2010, 240с.)

Дополнительная литература:

  1. Математика 5-11 классы: нетрадиционные формы организации контроля на уроках / авт.-сост. М.Е. Козина, О.М. Фадеева. - Волгоград, Учитель, 2007;
  2. Конструирование современного урока математики: кн. для учителя / С.Г. Манвелов. – М.: Просвещение,2009.

         


По теме: методические разработки, презентации и конспекты

Рабочая программа по геометрии 7 класс по учебнику Атанасян Л. С. Бутузов В. Ф. и др. Геометрия 7-9 классы

Рабочая программа по геометрии 7 класс по учебнику Атанасян Л. С. Бутузов В. Ф. и др. Геометрия 7-9 классы (2 часа в неделю)...

Рабочая программа по геометрии 11 класс (2 часа в неделю, всего 68 часов) Учебник Геометрия 10-11 класс. Погорелов А.В.

Рабочая программа по геометрии 11 класс (2 часа в неделю, всего 68 часов) Учебник Геометрия 10-11 класс. Погорелов А.В. Базовый уровень...

Рабочая программа по геометрии 10 класс (2 часа в неделю, всего 68 часов) Учебник Геометрия 10-11 класс. Погорелов А.В.

Рабочая программа по геометрии 10 класс (2 часа в неделю, всего 68 часов) Учебник Геометрия 10-11 класс. Погорелов А.В. Базовый уровень...

Рабочая программа по математике (алгебре) 5-9 классы и рабочая программа по геометрии 7-9 класс

Рабочая программа составлена на основе примерных программ основного общего образования по математике 2004 года по учебным комплектам: математика 5-6 класс - Н. Я. Виленкин и др., алгебра - Ю. Н. Макар...

Рабочие программы по математике для 5 класса, по алгебре для 8 класса. УМК А. Г. Мордкович. Рабочие программы по геометрии для 7 и 8 класса. Программа соответствует учебнику Погорелова А.В. Геометрия: Учебник для 7-9 классов средней школы.

Рабочая программа содержит пояснительную записку, содержание учебного материала, учебно - тематическое планирование , требования к математической подготовке, список рекомендованной литературы, календа...

Аннотация к рабочей программе по геометрии, 11 класс + рабочая программа по геометрии для 11 класса

Аннотация к рабочей программе по МАТЕМАТИКЕ (геометрии). Класс: 11.Программа по геометрии для 11 класса составлена на основе Федерального компонента государственного образовательного стандарта среднег...

РАБОЧАЯ ПРОГРАММА Предмет геометрия Класс 9 Учитель Асессорова Е.М.

РАБОЧАЯ ПРОГРАММА        Предмет    геометрия      Класс         9 Учитель      Асессорова Е.М....