РАБОЧАЯ ПРОГРАММА ПО ГЕОМЕТРИИ 8 класс
рабочая программа по геометрии (8 класс) по теме

БУРМИСТРОВА ЕЛЕНА ЮРЬЕВНА

 

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

          Рабочая программа для 8 класса составлена на основе Примерной программы среднего (полного) общего образования по геометрии (базовый уровень), соответствующей федеральному компоненту государственного стандарта общего образования и ориентирована на использование учебно-методического комплекта:

1.                Геометрия. Программы общеобразовательных учреждений. 7-9 классы / сост. Т. А. Бурмистрова. – М.: Просвещение, 2010.

2.                Примерные программы по учебным предметам. Математика. 5-9 классы. Просвещение, 2011.- 64 с.

3.                Геометрия. Рабочая программа к учебнику Л.С. Атанасяна и других. 7-9 классы: пособие для учителей общеобразов. Учреждений/ Н.Г. Миндюк.-М.: Просвещение, 2011.-31 с.

5.      Геометрия. 7–9 классы: учеб. для общеобразоват. учреждений / Л. С. Атанасян [и др.]. – М.: Просвещение, 2011.

6.      Геометрия: дидактические материалы: 8 кл. / Б. Г. Зив, В. М. Мейлер. – М.: Просвещение, 2011.

 

МЕСТО ПРЕДМЕТА В ФЕДЕРАЛЬНОМ БАЗИСНОМ УЧЕБНОМ ПЛАНЕ    Базисный учебный (образовательный) план на изучение геометрии в основной школе отводит 2 учебных часа в неделю (68 часов в год), в том числе 5 контрольных работ.

ФОРМЫ ПРОМЕЖУТОЧНОЙ И ИТОГОВОЙ АТТЕСТАЦИИ

          Промежуточная аттестация проводится в форме математических диктантов, контрольных, самостоятельных работ.

УРОВЕНЬ ОБУЧЕНИЯ – базовый.  

СРОК РЕАЛИЗАЦИИ РАБОЧЕЙ УЧЕБНОЙ ПРОГРАММЫ – один учебный год.

Тематическое планирование курса 8 класса

 

ТЕМА

ЧАСЫ

УРОКИ №

в т.ч. контрольные работы

1

Четырехугольники

16

1-16

1

2

Площадь

14

17-30

1-зачет

3

Подобные треугольники

17

31-47

1

4

Окружность

16

48-63

1

5

Повторение. Решение задач

5

64-68

1

ИТОГО

68

68

5

 

Скачать:

ВложениеРазмер
Файл geometriya_8_klass_2012-2013.docx141.41 КБ

Предварительный просмотр:

МУНИЦИПАЛЬНОЕ АВТОНОМНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ              УЧРЕЖДЕНИЕ                                                                                                                                Абатская средняя общеобразовательная школа № 1

«Утверждаю»                  директор МАОУ Абатская СОШ №1

____________Куликова Н.В. «___»____________2012 г.

«Согласовано»                       заместитель директора по УВР МАОУ Абатская СОШ №1

______________Талалаева Л.В. «___»_____________2012 г.

«Рассмотрено»                                    на заседании ШМО учителей математики, физики и информатики МАОУ Абатская СОШ №1 _____________Бурмистрова Е.Ю.  протокол  № _______________ «___»_______________2012 г.

РАБОЧАЯ      ПРОГРАММА   ПО ГЕОМЕТРИИ на 2012-2013         учебный год

Класс:  8 «а»                                                                                Учитель: Бурмистрова Елена Юрьевна

с. Абатское                                                                                                                                            2012

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

         Рабочая программа для 8 класса составлена на основе Примерной программы среднего (полного) общего образования по геометрии (базовый уровень), соответствующей федеральному компоненту государственного стандарта общего образования и ориентирована на использование учебно-методического комплекта:

  1. Геометрия. Программы общеобразовательных учреждений. 7-9 классы / сост. Т. А. Бурмистрова. – М.: Просвещение, 2010.
  2. Примерные программы по учебным предметам. Математика. 5-9 классы. Просвещение, 2011.- 64 с.
  3. Геометрия. Рабочая программа к учебнику Л.С. Атанасяна и других. 7-9 классы: пособие для учителей общеобразов. Учреждений/ Н.Г. Миндюк.-М.: Просвещение, 2011.-31 с.

5.         Геометрия. 7–9 классы: учеб. для общеобразоват. учреждений / Л. С. Атанасян [и др.]. – М.: Просвещение, 2011.

6.         Геометрия: дидактические материалы: 8 кл. / Б. Г. Зив, В. М. Мейлер. – М.: Просвещение, 2011.

МЕСТО ПРЕДМЕТА В ФЕДЕРАЛЬНОМ БАЗИСНОМ УЧЕБНОМ ПЛАНЕ    Базисный учебный (образовательный) план на изучение геометрии в основной школе отводит 2 учебных часа в неделю, всего 68 часов в год.

ФОРМЫ ПРОМЕЖУТОЧНОЙ И ИТОГОВОЙ АТТЕСТАЦИИ

        Промежуточная аттестация проводится в форме математических диктантов, контрольных, самостоятельных работ.

УРОВЕНЬ ОБУЧЕНИЯ – базовый.   

СРОК РЕАЛИЗАЦИИ РАБОЧЕЙ УЧЕБНОЙ ПРОГРАММЫ – один учебный год.

Тематическое планирование курса 8 класса

ТЕМА

ЧАСЫ

УРОКИ №

в т.ч. контрольные работы

1

Четырехугольники

16

1-16

1

2

Площадь

14

17-30

1-зачет

3

Подобные треугольники

18

31-48

1

4

Окружность

15

49-63

1

5

Повторение. Решение задач

5

64-68

ИТОГО

68

68

4

СРАВНЕНИЕ С АВТОРСКОЙ ПРОГРАММОЙ

Номер параграфа

Содержание материала

Количество часов по авторской

Количество часов по рабочей программе

Корректировка

Глава V. Четырехугольники

14

16

+2

важная тема для ГИА

1

2

3

Многоугольники

Параллелограмм и трапеция

Прямоугольник, ромб, квадрат

Решение задач

Контрольная работа № 1

2

6

4

1

1

2

4

3

5

1

-2

-1

+4

Глава VI. Площадь

14

14

1

2

3

Площадь многоугольника

Площадь параллелограмма, треугольника и трапеции

Теорема Пифагора

Решение задач

Контрольная работа № 2

2

6

3

2

1

1

4

3

5

1

-1

-2

+3

замена зачетом

Глава VII. Подобные треугольники

19

18

-1

на повторение

1

2

3

4

Определение подобных треугольников

Признаки подобия треугольников

Контрольная работа № 3

Применение подобия к доказательству теорем и решению задач

Соотношения между сторонами и углами прямоугольного треугольника

 Контрольная работа № 4

2

5

1

7

3

1

2

5

-

5

5

1

-1

-2

+2

ГлаваVIII. Окружность

17

15

-2

на главу V

1

2

3

4

Касательная к окружности

Центральные и вписанные углы

Четыре замечательные точки треугольника

Вписанная и описанная окружности

Решение задач

Контрольная работа № 5

3

4

3

4

2

1

2

4

3

3

2

1

-1

-1

Повторение. Решение задач

4

5

+1

Важно для экз. в новой форме

СОДЕРЖАНИЕ ОБУЧЕНИЯ

1.  Четырехугольники

        Многоугольник, выпуклый многоугольник, четырехугольник. Параллелограмм, его свойства и признаки. Трапеция. Прямоугольник, ромб, квадрат, их свойства. Осевая и центральная симметрии.

Цель: изучить наиболее важные виды четырехугольников — параллелограмм, прямоугольник, ромб, квадрат, трапецию; дать представление о фигурах, обладающих осевой или центральной симметрией.

2.  Площадь

              Понятие площади многоугольника. Площади прямоугольника, параллелограмма, треугольника, трапеции. Теорема Пифагора.

Цель: расширить и углубить полученные в 5—6 классах представления обучающихся об измерении и вычислении площадей; вывести формулы площадей прямоугольника, параллелограмма, треугольника, трапеции; доказать одну из главных теорем геометрии — теорему Пифагора.

3. Подобные треугольники

      Подобные треугольники. Признаки подобия треугольников. Применение подобия к доказательству теорем и решению задач. Синус, косинус и тангенс острого угла прямоугольного треугольника.

Цель: ввести понятие подобных треугольников; рассмотреть признаки подобия треугольников и их применения; сделать первый шаг в освоении учащимися тригонометрического аппарата геометрии.

4. Окружность

       Взаимное расположение прямой и окружности. Касательная к окружности, ее свойство и признак. Центральные и вписанные углы. Четыре замечательные точки треугольника. Вписанная  и описанная окружности.

Цель: расширить сведения об окружности, полученные учащимися в 7 классе; изучить новые факты, связанные с окружностью; познакомить обучающихся с четырьмя замечательными точками треугольника.

ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ОБУЧАЮЩИХСЯ В 8 КЛАССЕ (БАЗОВЫЙ УРОВЕНЬ)

ДОЛЖНЫ ЗНАТЬ:

Начальные понятия и теоремы геометрии.

Многоугольники.

Окружность и круг.

Наглядные представления о пространственных телах: кубе, параллелепипеде, призме, пирамиде, шаре, сфере, конусе, цилиндре. Примеры сечений. Примеры разверток.

Треугольник.

Теорема Фалеса. Подобие треугольников; коэффициент подобия. Признаки подобия треугольников.

Теорема Пифагора. Признаки равенства прямоугольных треугольников. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0° до 180°; приведение к острому углу.

Замечательные точки треугольника: точки пересечения серединных перпендикуляров, биссектрис, медиан.

Четырехугольник. Параллелограмм, его свойства и признаки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, равнобедренная трапеция.

Многоугольники. Выпуклые многоугольники. Сумма углов выпуклого многоугольника. Вписанные и описанные многоугольники. Правильные многоугольники.

Окружность и круг. Центр, радиус, диаметр. Дуга, хорда. Центральный, вписанный угол; величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности, равенство касательных, проведенных из одной точки. Метрические соотношения в окружности: свойства секущих, касательных, хорд.

Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Вписанные и описанные четырехугольники. Вписанные и описанные окружности правильного многоугольника.

Измерение геометрических величин. Длина ломаной, периметр многоугольника.

Понятие о площади плоских фигур. Равносоставленные и равновеликие фигуры.

Площадь прямоугольника. Площадь параллелограмма, треугольника и трапеции (основные формулы).

Связь между площадями подобных фигур.

Геометрические преобразования.

Симметрия фигур. Осевая симметрия и центральная симметрия.

ДОЛЖНЫ УМЕТЬ:

 пользоваться геометрическим языком для описания предметов окружающего мира;

 распознавать геометрические фигуры, различать их взаимное расположение;

 изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;

 вычислять значения геометрических величин (длин, углов, площадей), в том числе для углов от 0 до 180; определять значения тригонометрических функций по заданным значениям углов; находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;

 решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический аппарат, соображения симметрии;

 проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

 решать простейшие планиметрические задачи в пространстве.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

 для описания реальных ситуаций на языке геометрии;

 расчетов, включающих простейшие тригонометрические формулы;

 решения геометрических задач с использованием тригонометрии;

 решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

 построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).

Владеть компетенциями:

учебно-познавательной, ценностно-ориентационной, рефлексивной, коммуникативной, информационной, социально-трудовой.

РАБОТА С ОДАРЕННЫМИ ДЕТЬМИ

На уроках проводится работа с одаренными детьми (дифференциация и индивидуализация в обучении):

-  разноуровневые задания (задания более высокого уровня сложности);

- обучение самостоятельной работе (работа самостоятельно с учебником, с дополнительной литературой);

- творческие задания (составить задачу, выражение, кроссворд, ребус, анаграмму и т. д.)

КРИТЕРИИ И НОРМЫ ОЦЕНКИ ЗНАНИЙ, УМЕНИЙ И НАВЫКОВ ОБУЧАЮЩИХСЯ ПО ГЕОМЕТРИИ.

1.  Оценка письменных контрольных работ обучающихся по геометрии.

Ответ оценивается отметкой «5», если:

  • работа выполнена полностью;
  • в логических рассуждениях и обосновании решения нет пробелов и ошибок;
  • в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Отметка «4» ставится в следующих случаях:

  • работа выполнена полностью, но обоснования шагов решения недостаточны;
  • допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах.

Отметка «3» ставится, если:

  •  допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах, но обучающийся обладает обязательными умениями по проверяемой теме.

Отметка «2» ставится, если:

  • допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.

2.  Оценка устных ответов обучающихся по геометрии.

Ответ оценивается отметкой «5», если ученик:

  • полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
  • изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;
  • правильно выполнил рисунки, чертежи, сопутствующие ответу;
  • показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;
  • продемонстрировал знание теории ранее изученных сопутствующих тем,  сформированность  и устойчивость используемых при ответе умений и навыков;
  • отвечал самостоятельно, без наводящих вопросов учителя;
  • возможны одна – две  неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.

Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;
  • допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;
  • допущены ошибка или более двух недочетов  при освещении второстепенных вопросов или в выкладках,  легко исправленные после замечания учителя.

Отметка «3» ставится в следующих случаях:

  • неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала;
  • имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
  • ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
  • при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

 Отметка «2» ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;
  • обнаружено незнание учеником большей или наиболее важной части учебного материала;
  • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.


КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ (8 КЛАСС)

Раздел 1. Четырехугольники (16 часов)

Модуль 1. Параллелограмм и трапеция

Цели ученика:

изучение модуля «Параллелограмм и трапеция» и получение последовательной системы математических знаний, необходимых для изучения школьных естественно-научных дисциплин на базовом уровне.

Для этого необходимо:

 иметь представления о многоугольнике, выпуклом многоугольнике, параллелограмме, трапеции, о свойствах и признаках параллелограмма и равнобедренной трапеции;

 овладеть умениями:

– использования свойств и признаков параллелограмма и равнобедренной трапеции при решении задач;

– доказательства свойств и признаков параллелограмма, свойств и признаков равнобедренной трапеции;

– применения полученных знаний при решении задач

Цели педагога:

создание условий учащимся:

 для формирования представлений о многоугольнике, выпуклом многоугольнике, параллелограмме, трапеции, о свойствах и признаках параллелограмма и равнобедренной трапеции;

 формирования умений применять свойства и признаки параллелограмма и равнобедренной трапеции при решении задач;

 овладения умением доказывать свойства и признаки параллелограмма, свойства и признаки равнобедренной трапеции;

 усвоения навыков применения полученных знаний при решении задач

п/п

Тема и тип

урока

Вид

педагогической деятельности.

Дидактическая модель педагогического процесса

Педагогические средства

Ведущая

деятельность, осваиваемая
в системе занятости
(на уроке).

Формы организации совзаимодействия

на уроке

Универсальные учебные

действия (УУД)

Планируемые
образовательные

результаты в предметном

направлении

Оборудование
для демонстраций

Работа с одаренными детьми

Календарные
сроки

план

факт

1

Многоугольники
(изучение нового материала)

Объяснительно-иллюстративная

Беседа, работа с книгой, демонстрация плакатов

Учебная. Познавательная. Индивидуальная

по уровню развития интеллекта

Регулятивные: учитывать правило в планировании и контроле способа решения.

Познавательные: использовать поиск необходимой информации для выполнения заданий с использованием учебной литературы.

Коммуникативные: учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве

Знание: многоугольника, периметра многоугольника, какой многоугольник называется выпуклым; формулы

суммы углов выпуклого многоугольника.

Умение: называть элементы многоугольника, распознавать выпуклые многоугольники; осуществлять проверку выводов, положений, закономерностей, теорем; предметная компетенция

Демонстрационные плакаты

04.09

2

Формула суммы углов выпуклого много-угольника (применение и совершенствование знаний)

Репродуктивная

Упражнения, практикум, работа с книгой

Познавательная. Индивидуальная.
Пары сменного состава

Регулятивные: оценивать правильность выполнения действия на уровне адекватной ретроспективной оценки.

Познавательные: проводить сравнение, сериацию и классификацию по заданным критериям.

Коммуникативные: контролировать действия партнера

Знание: способов решения задач на нахождение периметра многоугольника, применения формулы суммы углов выпуклого многоугольника.

Умение: выводить формулу суммы углов выпуклого многоугольника; решать задачи повышенного уровня сложности; аргументирован-

но отвечать на поставленные вопросы, осмысливать ошибки и их устранять; целостная компетенция

Демонстрационные плакаты

Задания более сложного уровня

07.09

3

Параллелограмм

(изучение нового материала)

Объяснительно-иллюстративная

Беседа, работа с книгой, демонстрация плакатов

Учебная, познавательная.

Индивидуальная по уровню развития интеллекта

Регулятивные: осуществлять итоговый и пошаговый контроль по результату.

Познавательные: проводить сравнение, сериацию и классификацию по заданным критериям.

Коммуникативные: договариваться и приходить к общему решению в совместной деятельности, в том числе в ситуации столкновения интересов

Знание: определения параллелограмма, свойств параллелограмма.

Умение: доказывать свойства параллелограмма, применять их при решении задач

по готовым чертежам; решать задачи на применение свойств параллелограмма; проводить сравнительный анализ, сопоставлять, рассуждать; предметная компетенция

Демонстрационные плакаты

11.09

4

Признаки параллелограмма

 (применение и совершенствование знаний)

Репродуктивная

Упражнения, практикум, работа с книгой

Познавательная. Индивидуальная.
Пары сменного состава

Регулятивные: оценивать правильность выполнения действия на уровне адекватной ретроспективной оценки.

Познавательные: ориентироваться на разнообразие способов решения задач.

Коммуникативные:

учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве

Знание: признаков параллелограмма.

Умение: доказывать признаки параллелограмма и применять их при решении задач по готовым чертежам; решать задачи на применение признаков параллелограмма; определять понятия, приводить доказательства; целостная компетенция

Презентация «Параллелограмм и трапеция»

14.09

5

Трапеция (комбинированный)

Проблемное изложение

Проблемные задания

Учебная, познавательная.

Коллективная.
Пары смешанного состава (сильный учит слабого)

Регулятивные: различать способ и результат действия.

Познавательные: владеть общим приемом решения задач.

Коммуникативные: договариваться и приходить к общему решению в совместной деятельности, в том числе в ситуации столкновения интересов

Знание: определения трапеции, свойств и признаков равнобедренной трапеции.

Умение: применять свойства и признаки равнобедренной трапеции при решении задач по готовым чертежам; доказывать свойства и признаки равнобедренной трапеции, решать задачи на применение свойств параллельных прямых; оформлять решения или сокращать их в зависимости от ситуации

Демонстрационные плакаты

18.09

6

Параллелограмм

и трапеция (комбинированный)

Поисковая

Организация совместной учебной

деятельности

Познавательная, рефлексивная.

Групповая по психофизическим особенностям
(координатор,
исполнитель, скептик,
рационализатор)

Регулятивные: различать способ и результат действия.

Познавательные: владеть общим приемом решения задач.

Коммуникативные: договариваться и приходить к общему решению в совместной деятельности, в том числе в ситуации столкновения интересов

Знание: способов решения задач на применение свойств и признаков параллелограмма и равнобедренной трапеции.

Умение: решать задачи на применение свойств и признаков параллелограмма и равнобедренной трапеции; проводить сравнительный анализ, сопоставлять, рассуждать; предметная компетенция

Демонстрационные плакаты

Задания более сложного уровня

21.09

Модуль 2. Прямоугольник. Ромб. Квадрат

Цели ученика:

изучение модуля «Прямоугольник. Ромб. Квадрат» и получение последовательной системы математических знаний, необходимых для изучения школьных естественно-научных дисциплин на базовом уровне.

Для этого необходимо:

 иметь представления о прямоугольнике, ромбе, квадрате как о частных видах параллелограмма;

 овладеть умениями:

– применения свойств и признаков прямоугольника, ромба и квадрата при решении задач;

– доказательства свойств и признаков прямоугольника, ромба и квадрата;

– использования полученных знаний при решении различных задач с геометрическим содержанием.

Показ владения теоретическими и практическими знаниями по теме раздела «Прямоугольник. Ромб. Квадрат» – через контрольный урок

Цели педагога:

создание условий учащимся:

 для формирования представлений о прямоугольнике, ромбе, квадрате как о частных видах параллелограмма;

 формирования умений применения свойств и признаков прямоугольника, ромба и квадрата при решении задач;

 овладения умением доказывать свойства и признаки прямоугольника, ромба и квадрата;

 усвоения навыков применения полученных знаний при решении различных задач с геометрическим содержанием

п/п

Тема и тип

урока

Вид

педагогической

деятельности.

Дидактическая модель педагогического процесса

Педагогические средства

Ведущая

деятельность, осваиваемая

в системе занятости
(на уроке).

Формы организации совзаимодействия

на уроке

Универсальные учебные

действия (УУД)

Планируемые
образовательные

результаты в предметном

направлении

Оборудование
для демонстраций

Работа с одаренными детьми

Календарные
сроки

7

Прямоугольник. (изучение нового материала)

Объяснительно-иллюстративная

Беседа, работа с книгой, демонстрация плакатов

Учебная, познавательная. Индивидуальная по уровню развития интеллекта

Регулятивные: вносить необходимые коррективы в действие после его завершения на основе учета характера сделанных

ошибок.

Познавательные: владеть общим приемом решения задач.

Коммуникативные:

оговариваться и приходить к общему решению в совместной деятельности, в том числе в ситуации столкновения интересов

Знание: определения прямоугольника, свойств и признаков.

Умение: доказывать свойства и признаки прямоугольника,осуществлять проверку выводов, положений, закономерностей, теорем; предметная компетенция

Демонстрационные плакаты

25.09

8

 Ромб. Квадрат»
(изучение нового материала)

Репродуктивная

Упражнения, практикум, работа с книгой

Познавательная. Индивидуальная.
Пары сменного состава

Регулятивные: учитывать правило в планировании и контроле способа решения.

Познавательные: строить речевое высказывание в устной
и письменной форме.

Коммуникативные: договариваться и приходить к общему решению в совместной деятельности, в том числе в ситуации столкновения интересов

Знание: определения ромба, квадрата, свойств и признаков.

Умение: доказывать свойства и признаки ромба, квадрата,осуществлять проверку выводов, положений, закономерностей, теорем; предметная компетенция

Демонстрационные плакаты

Задания более сложного уровня

28.09

9

Решение задач по теме: «Прямоугольник. Ромб. Квадрат»
(применение и совершенствование знаний)

Проблемное изложение

Проблемные задания

Учебная, познавательная. Коллективная.
Пары смешанного состава (сильный учит слабого)

Регулятивные: различать способ и результат действия.

Познавательные: владеть общим приемом решения задач.

Коммуникативные: договариваться и приходить к общему решению в совместной деятельности, в том числе в ситуации столкновения интересов

Умение: решать задачи на применение свойств и признаков прямоугольника, квадрата и ромба; проводить сравнительный анализ, сопоставлять, рассуждать; предметная компетенция

Демонстрационные плакаты

2.10

10

Решение задач по теме: «Прямоугольник. Ромб. Квадрат»
(применение и совершенствование знаний)

Проблемное изложение

Проблемные задания

Учебная, познавательная. Коллективная.
Пары смешанного состава (сильный учит слабого)

Регулятивные: различать способ и результат действия.

Познавательные: владеть общим приемом решения задач.

Коммуникативные: договариваться и приходить к общему решению в совместной деятельности, в том числе в ситуации столкновения интересов

Умение: решать задачи на применение свойств и признаков прямоугольника, квадрата и ромба; проводить сравнительный анализ, сопоставлять, рассуждать; предметная компетенция

Демонстрационные плакаты

5.10

11

Осевая и центральная симметрия
(комбинированный)

Поисковая

Организация совместной учебной деятельности

Познавательная, рефлексивная. Групповая
по психофизическим особенностям
(координатор, исполнитель, скептик,
рационализатор)

Регулятивные: учитывать правило в планировании и контроле способа решения.

Познавательные: ориентироваться на разнообразие способов решения задач.

Коммуникативные: учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве

Знание: сведений о фигурах, обладающих осевой симметрией, центральной симметрией.

Умение: распознавать симметричные фигуры, строить точку, симметричную данной, решать задачи на применение свойств симметричных фигур; определять понятия, приводить доказательства; целостная компетенция

Слайд-лекция «Прямоугольник. Ромб. Квадрат»

9.10

12-15

Решение

задач по теме: «Четырехугольники»
(комбинированный)

Проблемное изложение

Проблемные задания

Учебная, познавательная. Индивидуальная по уровню развития интеллекта

Регулятивные: вносить необходимые коррективы в действие после его завершения на основе учета характера сделанных ошибок.

Познавательные: использовать поиск необходимой информации для выполнения заданий с использованием учебной литературы.

Коммуникативные: контролировать действия партнера

Умение: решать задачи на применение свойств симметричных фигур; вступать
в речевое общение, участвовать в диалоге; предметная компетенция

Задания более сложного уровня

12.10

16.10

19.10

23.10

16

Контрольная работа № 1 по теме «Четырехугольники»
(контроль, оценка и коррекция знаний учащихся)

Урок проверки знаний

Самостоятельное планирование и проведение исследования решения

Освоение практического навыка решения контрольных заданий.

Индивидуальная

Регулятивные: осуществлять итоговый и пошаговый контроль по результату.

Познавательные: проводить сравнение, сериацию и классификацию по заданным критериям.

Коммуникативные: договариваться и приходить к общему решению в совместной деятельности, в том числе в ситуации столкновения интересов

Знание: сведений о прямоугольнике, ромбе, квадрате как частных видах параллелограмма.

Умение: свободно пользоваться этими понятиями при решении простейших задач в геометрии; оформлять решения, выполнять перенос ранее усвоенных способов действий; предметная компетенция

 

26.10

Раздел 2. Площадь (14 часов)

Модуль 1. Площади параллелограмма, треугольника и трапеции

Цели ученика:

изучение модуля «Площади параллелограмма, треугольника и трапеции» и получение последовательной системы математических знаний, необходимых для изучения школьных естественно-научных дисциплин на базовом уровне.

Для этого необходимо:

 иметь представления об измерении площадей многоугольников, о формулах для нахождения площадей параллелограмма, треугольника и трапеции;

 овладеть умениями:

– применения теоремы об отношении площадей треугольников, имеющих по равному углу;

– использования формул для вычисления площадей параллелограмма, треугольника, трапеции;

– обобщения и систематизации имеющихся знаний о площадях плоских фигур

Цели педагога:

создание условий учащимся:

 для формирования представлений об измерении площадей многоугольников, о формулах для нахождения площадей параллелограмма, треугольника и трапеции;

 формирования умений применять теорему об отношении площадей треугольников, имеющих по равному углу;

 овладения умением применять формулы для вычисления площадей параллелограмма, треугольника, трапеции;

 усвоения навыков обобщения и систематизации имеющихся знаний о площадях плоских фигур

п/п

Тема и тип

урока

Вид

педагогической

деятельности.

Дидактическая модель педагогического процесса

Педагогические средства

Ведущая

деятельность, осваиваемая

в системе занятости
(на уроке).

Формы организации совзаимодействия

на уроке

Универсальные учебные

действия (УУД)

Планируемые
образовательные

результаты в предметном

направлении

Оборудование
для демонстраций

Работа с одаренными детьми

Самостоятельная работа
(д/з)

Календарные
сроки

1

2

3

4

5

6

7

8

9

10

11

17

Площадь многоугольника. Площадь прямоугольника, квадрата
(изучение нового материала)

Объяснительно-иллюстративная

Беседа, работа с книгой, демонстрация плакатов

Учебная, познавательная. Индивидуальная по уровню развития интеллекта

Регулятивные: различать способ и результат действия.

Познавательные: проводить сравнение, сериацию и классификацию по заданным критериям.

Коммуникативные: договариваться и приходить к общему решению в совместной деятельности, в том числе в ситуации столкновения интересов

Знание: основных свойств площадей, формулы для вычисления площади прямоугольника.

Умение: вывести формулу для вычисления площади прямоугольника, решать задачи на применение свойств площадей и формулы площади прямоугольника; аргументированно отвечать на поставленные вопросы, осмысливать ошибки и их устранять; целостная компетенция

Демонстрационные плакаты

30.10

18

Площадь параллелограмма (изучение нового материала)

Объяснительно-иллюстративная

Беседа, работа с книгой, демонстрация

плакатов

Учебная. Индивидуальная по уровню развития интеллекта. Познавательная

Регулятивные: учитывать правило в планировании и контроле способа решения.

Познавательные: ориентироваться на раз-

нообразие способов решения задач.

Коммуникативные: контролировать действия партнера

Знание: формулы для вычисления площади параллелограмма.

Умение: выводить формулу для вычисления площади параллело-

грамма, решать задачи на применение формулы площади параллелограмма; решать задачи повышенного уровня сложности; оформлять решения или сокращать их в зависимости от ситуации

2.11

19

Площадь  треугольника
(применение и совершенствование знаний)

Репродуктивная

Упражнения, практикум

Познавательная. Индивидуальная по уровню развития интеллекта

Коммуникативные: контролировать действия партнера.

Регулятивные: различать способ и результат действия.

Познавательные: использовать поиск необходимой информации для выполнения заданий с использованием учебной литературы

Знание: формулы для вычисления площади треугольника, теоремы об отношении площадей треугольников, имеющих по равному углу.

Умение: выводить формулу для вычисления площади параллелограмма, решать задачи на применение формулы площади параллелограмма, теоремы об отношении площадей треугольников, имеющих по равному углу; работать по заданному алгоритму, доказывать правильность решения с помощью аргументов; предметная компетенция

Слайд-лекция

«Площади параллелограмма, треугольника и трапеции»

13.11

20

Площадь  треугольника (комбинированный) 

Проблемное изложение

Проблемные задания

Учебная, познавательная. Коллективная.
Пары смешанного состава (сильный учит слабого)

Регулятивные: оценивать правильность выполнения действия на уровне адекватной ретроспективной оценки.

Познавательные: владеть общим приемом решения задач.

Коммуникативные: договариваться и приходить к общему решению в совместной деятельности, в том числе в ситуации столкновения интересов

Умение: доказывать теорему об отношении площадей треугольников, имеющих по равному углу, решать задачи на применение формулы площади параллелограмма, теоремы об отношении площадей треугольников, имеющих по равному углу;

объяснять изученные положения на самостоятельно подобранных конкретных примерах; целостная компетенция

Задания более сложного уровня

16.11

21

Площадь трапеции
(комбинированный)

Поисковая

Организация совместной учебной деятельности

Познавательная, рефлексивная.

Групповая
по психофизическим особенностям
(координатор,
исполнитель,
скептик,
рационализатор)

Регулятивные: оценивать правильность выполнения действия на уровне адекватной ретроспективной оценки.

Познавательные: использовать поиск необходимой информации для выполнения заданий с использованием учебной литературы.

Коммуникативные: учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве

Знание: формулы для вычисления площади трапеции. Умение: выводить формулу для вычисления площади трапеции, решать задачи на применение формулы площади трапеции, на применение изученных формул повышенного уровня сложности; определять понятия, приводить доказательства; целостная компетенция

Слайд-

лекция «Площади параллелограмма, треугольника и трапеции»

20.11

Модуль 2. Теорема Пифагора

Цели ученика:

изучение модуля «Теорема Пифагора» и получение последовательной системы математических знаний, необходимых для изучения школьных естественно-научных дисциплин на базовом уровне.

Для этого необходимо:

 иметь представление о теореме Пифагора и об обратной теореме Пифагора;

 овладеть умениями: доказывать теорему Пифагора и обратную теорему Пифагора; определять пифагоровы треугольники; применять при решении задач теорему Пифагора.

Показ владения теоретическими и практическими знаниями по теме раздела «Теорема Пифагора» – через контрольный урок

Цели педагога:

создание условий учащимся:

 для формирования представлений о теореме Пифагора и об обратной теореме Пифагора;

 формирования умений доказывать теорему Пифагора и обратную теорему Пифагора;

 овладения умением определять пифагоровы треугольники;

 овладения навыками применять при решении задач теорему Пифагора

п/п

Тема и тип

урока

Вид

педагогической

деятельности.

Дидактическая модель педагогического процесса

Педагогические средства

Ведущая

деятельность, осваиваемая

в системе занятости
(на уроке).

Формы организации совзаимодействия

на уроке

Универсальные учебные

действия (УУД)

Планируемые образовательные

результаты в предметном

направлении

Оборудование
для демонстраций

Работа с одаренными детьми

Календарные
сроки

1

2

3

4

5

6

7

8

9

10

11

22

Теорема Пифагора (изучение нового материала)

Объяснительно-иллюстративная

Беседа, работа с книгой.

Демонстрация плакатов

Учебная, познавательная.

Индивидуальная по уровню развития интеллекта

Регулятивные: вносить необходимые коррективы в действие после его завершения на основе учета характера сделанных ошибок.

Познавательные: проводить сравнение, сериацию и классификацию по заданным критериям.

Коммуникативные: учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве

Знание: теоремы Пифагора.

Умение: доказывать теорему Пифагора и находить ее применение при решении задач; объяснить изученные положения на самостоятельно подобранных конкретных примерах; целостная компетенция

Демонстрационные плакаты

23.11

23

Теорема, обратная теореме Пифагора (применение и совершенствование знаний)

Репродуктивная

Упражнения, практикум, работа с книгой

Познавательная. Индивидуальная.
Пары сменного состава

Регулятивные: учитывать правило в планировании и контроле способа решения.

Познавательные: ориентироваться на разнообразие способов решения задач.

Коммуникативные: учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве

Знание: теоремы, обратной теореме Пифагора.

Умение: доказывать теорему, обратную теореме Пифагора, применять ее при решении задач; участвовать в диалоге, понимать точку зрения собеседника, признавать право на иное мнение; предметная компетенция

Слайд-

лекция «Теорема Пифагора»

27.11

24

Решение зада по теме : «Теорема Пифагора» (комбинированный)

Проблемное изложение

Прохождение материала быстрым темпом

Учебная, познавательная. Коллективная.
Пары смешанного состава (сильный учит слабого)

Регулятивные: оценивать правильность выполнения действия на уровне адекватной ретроспективной оценки.

Познавательные: строить речевое высказывание в устной
и письменной форме.

Коммуникативные: контролировать действия партнера

Знание: способов решения задач на применение изученных теорем.

Умение: решать задачи на применение изученных теорем, доказывать формулу Герона; свободно работать с текстами научного стиля, использовать компьютерные технологии для создания базы данных

Демонстрационные плакаты

Задания более сложного уровня

30.11

25-28

Решение зада по теме : «Площадь»
(комбинированный)

Проблемное изложение

Прохождение материала быстрым темпом

Учебная, познавательная. Индивидуальная.
Пары сменного состава

Регулятивные: вносить необходимые коррективы в действие после его завершения на основе учета характера сделанных ошибок.

Познавательные: использовать поиск необходимой информации для выполнения заданий с использованием учебной литературы.

Коммуникативные: контролировать действия партнера

Знание: способов решения задач на применение изученных формул и теорем.

Умение: решать задачи на применение изученных формул и теорем повышенного уровня сложности; привести примеры, подобрать аргументы, сформулировать выводы; предметная компетенция

Слайд-лекция «Теорема Пифагора»

4.12

7.12

11.12

14.12

29

Итоговый урок по теме : «Площадь»
(комбинированный)

Урок повторения и коррекции знаний

Прохождение материала быстрым темпом

Учебная, познавательная. Индивидуальная.
Пары сменного состава

Регулятивные: вносить необходимые коррективы в действие после его завершения на основе учета характера сделанных ошибок.

Познавательные: использовать поиск необходимой информации для выполнения заданий с использованием учебной литературы.

Коммуникативные: контролировать действия партнера

Знание: способов решения задач на применение изученных формул и теорем.

Умение: решать задачи на применение изученных формул и теорем повышенного уровня сложности; привести примеры, подобрать аргументы, сформулировать выводы; предметная компетенция

Прохождение материала быстрым темпом

18.12

30

ЗАЧЕТ по теме: «Площадь»
(контроль, оценка и коррекция

знаний учащихся)

Урок проверки знаний

Самостоятельное планирование и проведение

исследования решения

Освоение практического навыка решения

контрольных заданий. Индивидуальная

Регулятивные: вносить необходимые коррективы в действие после его завершения на основе учета характера сделанных ошибок.

Познавательные: владеть общим приемом решения задач.

Коммуникативные: договариваться и приходить к общему решению в совместной деятельности, в том числе в ситуации столкновения интересов

Знание: теоремы Пифагора и обратной теоремы Пифагора.

Умение: свободно применять теорему Пифагора, решая сложные геометрические задачи;

оформлять решения, выполнять перенос ранее усвоенных способов действий; предметная компетенция

Тестовые задания в форме ЕГЭ типа

B и C

21.12

Раздел 3. Подобные треугольники (18 часов)

Модуль 1. Признаки подобия треугольников

Цели ученика:

изучение модуля «Признаки подобия треугольников» и получение последовательной системы математических знаний, необходимых для изучения школьных естественно-научных дисциплин на базовом уровне.

Для этого необходимо:

 иметь представления о пропорциональных отрезках, о свойстве биссектрисы треугольника, подобных треугольниках, признаках подобия треугольников;

 овладеть умениями:

– доказательства признаков подобия треугольников;

– применения полученных знаний при решении задач;

– применения подобия треугольников для доказательства теорем и решения задач, в том числе измерительных задач на местности.

Показ владения теоретическими и практическими знаниями по теме модуля «Признаки подобия треугольников» – через контрольный урок

Цели педагога:

создание условий:

 для формирования представлений о пропорциональных отрезках, о свойстве биссектрисы треугольника, подобных треугольниках, признаках подобия треугольников;

 формирования умений доказательства признаков подобия треугольников;

 овладения умением применять полученные знания при решении задач;

 усвоения навыков применения подобия треугольников для доказательства теорем и решения задач, в том числе измерительных задач на местности

п/п

Тема и тип

урока

Вид

педагогической

деятельности.

Дидактическая модель педагогического процесса

Педагогические средства

Ведущая

деятельность, осваиваемая

в системе занятости
(на уроке).

Формы организации совзаимодействия

на уроке

Универсальные учебные

действия (УУД)

Планируемые образовательные

результаты в предметном

направлении

Оборудование
для демонстраций

Работа с одаренными детьми

Календарные
сроки

1

2

3

4

5

6

7

8

9

10

11

31

Определение подобных треугольников (изучение нового материала)

Объяснительно-иллюстративная

Беседа, работа с книгой, демонстрация плакатов

Учебная, познавательная. Индивидуальная по уровню развития интеллекта

Регулятивные: учитывать правило в планировании и контроле способа решения.

Познавательные: строить речевое высказывание в уст-

ной и письменной форме.

Коммуникативные: договариваться и приходить к общему решению в совместной деятельности, в том числе в ситуации столкновения интересов

Знание: определения пропорциональных отрезков, свойства биссектрисы треугольника.

Умение: применять определение пропорциональных отрезков и свойство биссектрисы треугольника при решении задач; доказывать свойство биссектрисы треугольника; оформлять решения или сокращать их в зависимости от ситуации; участвовать в диалоге, доказывать пропорциональность отрезков

25.12

32

Отношение площадей подобных треугольников (применение и совершенствование знаний)

Репродуктивная

Упражнения, практикум, работа с книгой

Познавательная. Индивидуальная.
Пары сменного состава

Регулятивные: различать способ и результат действия.

Познавательные: ориентироваться на разнообразие способов решения задач.

Коммуникативные: контролировать действия партнера

Знание: определения подобных треугольников, теоремы об отношении площадей подобных треугольников.

Умение: доказывать теорему об отношении площадей подобных треугольников, применять ее при решении задач; участвовать в диалоге, доказывать правильность решения; аргументированно отвечать на вопросы собеседников; предметная компетенция

Слайд-лекция «Признаки подобия треугольников»

28.12

33

Признаки подобия треугольников
(изучение нового материала)

Объяснительно-иллюстративная

Беседа, работа с книгой, демонстрация плакатов

Учебная, познавательная. Коллективная. Пары смешанного состава (сильный учит слабого)

Регулятивные: осуществлять итоговый
и пошаговый контроль по результату.

Познавательные: строить речевое высказывание в устной и письменной форме.

Коммуникативные: учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве

Знание: первого признака подобия треугольников.

Умение: доказывать первый признак подобия треугольников, применять его при решении задач по готовым чертежам; решать задачи повышенной сложности; оформлять решения, выполнять перенос ранее усвоенных способов действий

Задания более сложного уровня

15.01

34

Признаки подобия треугольников (применение и совершенствование знаний)

Репродуктивная

Упражнения, практикум, работа с книгой

Познавательная. Групповая
по психофизическим особенностям
(координатор,
исполнитель,
скептик,
рационализатор)

Регулятивные: учитывать правило в планировании и контроле способа решения.

Познавательные: использовать поиск необходимой информации для выполнения заданий с использованием учебной литературы.

Коммуникативные: учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве

Знание: способов решения задач на применение первого признака подобия треугольников.

Умение: решать задачи на применение первого признака подобия треугольников повышенного уровня сложности; аргументированно отвечать на поставленные вопросы, осмысливать ошибки и их устранять; целостная компетенция

Тестовые задания в форме ЕГЭ типа
B и C

35

Признаки подобия треугольников (применение и совершенствование знаний)

Учебный практикум

Построение алгоритма действия, решение упражнений

Учебная. Индивидуальная.
Пары сменного состава

Регулятивные: оценивать правильность выполнения действия на уровне адекватной ретроспективной оценки.

Познавательные: проводить сравнение, сериацию и классификацию по заданным критериям.

Коммуникативные: контролировать действия партнера

Знание: второго и третьего признаков подобия треугольников, применения данных признаков в решении задач.

Умение: доказывать второй и третий признаки подобия треугольников, применять их при решении задач по готовым чертежам; решать задачи повышенной сложности; воспроизводить теорию с заданной степенью свернутости; целостная компетенция

Демонстрационные плакаты

36

Решение задач по теме: «Признаки подобия треугольников»
(применение и совершенствование знаний)

Урок-семинар

Усвоение знаний в системе.

Обобщение единичных знаний в систему

Рефлексивная. Индивидуальная

Регулятивные: осуществлять итоговый и пошаговый контроль по результату.

Познавательные: проводить сравнение, сериацию и классификацию по заданным критериям.

Коммуникативные: договариваться и приходить к общему решению в совместной деятельности, в том числе в ситуации столкновения интересов

Знание: способов решения задач на применение изученных признаков.

Умение: решать задачи повышенного уровня сложности на применение изученных признаков; на основе комбинирования ранее изученных алгоритмов и способов действия решать нетиповые задачи, выполняя продуктивные действия эвристического типа

Слайд-лекция

«Признаки подобия треугольников»

37

Решение задач по теме: «Признаки подобия треугольников»
(применение и совершенствование знаний)

Урок проверки знаний

Самостоятельное планирование и проведение исследования решения

Освоение практического навыка решения контрольных заданий. Индивидуальная

Регулятивные: оценивать правильность выполнения действия на уровне адекватной ретроспективной оценки.

Познавательные: ориентироваться на разнообразие способов решения задач.

Коммуникативные: учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве

Знание: пропорциональных отрезков, свойств биссектрисы треугольника, подобных треугольников, признаков подобия треугольников.

Умение: свободно решать сложные задачи на применение подобия треугольников; оформлять решения, выполнять перенос ранее усвоенных способов действий; предметная компетенция

Модуль 2. Применение подобия к доказательству теорем и решению задач

Цели ученика:

изучение модуля «Применение подобия к доказательству теорем и решению задач» и получение последовательной системы математических знаний, необходимых для изучения школьных естественно-научных дисциплин на базовом уровне.

Цели педагога:

создание условий учащимся:

 для формирования представлений о методе подобия, синусе, косинусе, тангенсе острого угла прямоугольного треугольника, об основном тригонометрическом тождестве;

Для этого необходимо:

 иметь представления о методе подобия, синусе, косинусе, тангенсе острого угла прямоугольного треугольника, об основном тригонометрическом тождестве;

 овладеть умениями:

– выполнения измерительных работ на местности, используя подобие треугольников;

– доказательства теоремы о средней линии треугольника, свойстве медиан треугольника, теоремы о пропорциональных отрезках в прямоугольном треугольнике;

– нахождения значений синуса, косинуса, тангенса острого угла прямоугольного треугольника, пользования таблицей значений синуса, косинуса, тангенса для углов 30°, 45°, 60°.

Показ владения теоретическими и практическими знаниями по теме модуля «Применение подобия к доказательству теорем и решению задач» – через контрольный урок

 формирования умений выполнять измерительные работы на местности, используя подобие треугольников;

 овладения умением доказывать теорему о средней линии треугольника, свойство медиан треугольника, теорему о пропорциональных отрезках в прямоугольном треугольнике;

 усвоения навыков нахождения значений синуса, косинуса, тангенса острого угла прямоугольного треугольника, пользования таблицей значений синуса, косинуса, тангенса для углов 30°, 45°, 60°

п/п

Тема и тип

урока

Вид

педагогической

деятельности.

Дидактическая модель педагогического процесса

Педагогические средства

Ведущая

деятельность, осваиваемая

в системе занятости
(на уроке).

Формы организации совзаимодействия

на уроке

Универсальные учебные

действия (УУД)

Планируемые
образовательные

результаты в предметном

направлении

Оборудование
для демонстраций

Работа с одаренными детьми

Календарные
сроки

1

2

3

4

5

6

7

8

9

10

11

38

Средняя линия треугольника. (изучение нового материала)

Объяснительно-иллюстративная

Беседа, работа с книгой, демонстрация плакатов

Учебная, познавательная. Индивидуальная по уровню развития интеллекта

Регулятивные: различать способ и результат действия.

Познавательные: владеть общим приемом решения задач.

Коммуникативные: договариваться и приходить к общему решению в совместной деятельности, в том числе в ситуации столкновения интересов

Знание: определений средней линии треугольника, теоремы о средней линии треугольника, свойства медиан треугольника.

Умение: доказывать теорему о средней линии треугольника, свойство медиан треугольника; решать задачи на применение теоремы о средней линии треугольника, свойства медиан треугольника при решении задач по готовым чертежам; воспроизвести теорию с заданной степенью свернутости; целостная компетенция

Демонстрационные плакаты

39

Пропорциональные отрезки в прямоугольном треугольнике  (комбинированный)

Проблемное изложение

Обучение на высоком уровне

трудности

Учебная, познавательная.

Коллективная.
Пары смешанного состава (сильный учит слабого)

Регулятивные: учитывать правило в планировании и контроле способа решения.

Познавательные: ориентироваться на разнообразие способов решения задач.

Коммуникативные: контролировать действия партнера

Знание: теорем о пропорциональных отрезках в прямоугольном треугольнике.

Умение: доказывать теоремы о пропорциональных отрезках в прямоугольном треугольнике, применять их при решении задач; решать задачи на применение теоремы о средней линии треугольника, свойства медиан треугольника; уверенно действовать в нетиповой, незнакомой ситуации, самостоятельно исправляя допущенные при этом ошибки или неточности; целостная компетенция

Демонстрационные плакаты

40

Применение подобия к доказательству теорем и решению задач (применение и совер-

шенствование знаний)

Учебный практикум

Построение алгоритма действия, решение упражнений

Учебная. Индивидуальная.

Пары сменного состава

Регулятивные: оценивать правильность выполнения действия на уровне адекватной ретроспективной оценки.

Познавательные: строить речевое высказывание в устной
и письменной форме.

Коммуникативные: контролировать действия партнера

Знание: об области применения подобия треугольников.

Умение: решать простейшие задачи на построение методом подобия, выполнять измерительные работы на местности, используя подобие треугольников; правильно оформлять работу;

выступать в диалоге
с собственным решением определенной проблемы; предметная компетенция

Слайд-лекция

«Признаки подобия треугольников»

Задания более сложного уровня

41

Синус, косинус, тангенс острого угла прямоугольного треугольника (изучение нового материала)

Объяснительно-иллюстративная

Беседа, работа с книгой, демонстрация плакатов

Учебная, познавательная. Индивидуальная (по уровню развития интеллекта)

Регулятивные: учитывать правило в планировании и контроле способа решения.

Познавательные: ориентироваться на разнообразие способов решения задач.

Коммуникативные: учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве

Знание: определения синуса, косинуса, тангенса острого угла прямоугольного треугольника.

Умение: находить значения синуса, косинуса, тангенса острого угла прямоугольного треугольника, доказывать основное тригонометрическое тождество, применять его при решении простейших и сложных задач; принимать участие в диалоге, подбирать аргументы для объяснения ошибки; предметная компетенция

Слайд-лекция «Соотношение между сторонами и углами прямоугольного

треугольника»

42

Значения  синуса, косинуса, тангенса для углов 30°, 45°, 60°. (применение и совершенствование знаний)

Репродуктивная

Упражнения, практикум, работа с книгой

Познавательная. Индивидуальная.
Пары сменного состава

Регулятивные: различать способ и результат действия.

Познавательные: владеть общим приемом решения задач.

Коммуникативные: договариваться и приходить к общему решению в совместной деятельности, в том числе в ситуации столкновения интересов

Знание: значений синуса, косинуса, тангенса для углов 30°, 45°, 60°.

Умение: применять таблицу значений синуса, косинуса, тангенса для углов 30°, 45°, 60° при решении задач; выводить табличные значения тригонометрических функций; воспроизвести теорию с заданной степенью свернутости; целостная компетенция

43-45

Соотношение между сторонами и углами

прямоугольного треугольника (комбинированный)

Учебный практикум

Построение алгоритма действия,

решение упражнений

Учебная. Индивидуальная.

Пары сменного состава

Регулятивные: осуществлять итоговый и пошаговый контроль по результату.

Познавательные: проводить сравнение, сериацию и классификацию по заданным критериям.

Коммуникативные: договариваться и приходить к общему решению в совместной деятельности, в том числе в ситуации столкновения интересов

Знание: способов решения задач на нахождение значений синуса, косинуса, тангенса острого угла прямо-

угольного треугольника, применения таблицы значений тригонометрических функций.

Умение: решать задачи повышенного уровня сложности по теме; работать с чертежными инструментами; предметная компетенция

Слайд-лекция

«Соотношение между

сторонами и углами прямоугольного треугольника»

Задания более сложного уровня

46

Обобщающий урок по теме: «Соотношение между сторонами и углами

прямоугольного треугольника»

(применение и совершенствование знаний)

Учебный практикум

Построение алгоритма действия,

решение упражнений

Учебная. Индивидуальная.

Пары сменного состава

Регулятивные: осуществлять итоговый и пошаговый контроль по результату.

Познавательные: проводить сравнение, сериацию и классификацию по заданным критериям.

Коммуникативные: договариваться и приходить к общему решению в совместной деятельности, в том числе в ситуации столкновения интересов

Знание: способов решения задач на нахождение значений синуса, косинуса, тангенса острого угла прямо-

угольного треугольника, применения таблицы значений тригонометрических функций.

Умение: решать задачи повышенного уровня сложности по теме; работать с чертежными инструментами; предметная компетенция

Слайд-лекция

«Соотношение между

сторонами и углами прямоугольного треугольника»

Задания более сложного уровня

47

Решение задач по теме: «Соотношение между сторонами и углами

прямоугольного треугольника»

(применение и совершенствование знаний)

Учебный практикум

Построение алгоритма действия,

решение упражнений

Учебная. Индивидуальная.

Пары сменного состава

Регулятивные: осуществлять итоговый и пошаговый контроль по результату.

Познавательные: проводить сравнение, сериацию и классификацию по заданным критериям.

Коммуникативные: договариваться и приходить к общему решению в совместной деятельности, в том числе в ситуации столкновения интересов

Знание: способов решения задач на нахождение значений синуса, косинуса, тангенса острого угла прямо-

угольного треугольника, применения таблицы значений тригонометрических функций.

Умение: решать задачи повышенного уровня сложности по теме; работать с чертежными инструментами; предметная компетенция

Слайд-лекция

«Соотношение между

сторонами и углами прямоугольного треугольника»

Задания более сложного уровня

48

Контрольная работа по теме: «Соотношение между сторонами и углами прямоугольного треугольника»
(контроль, оценка и коррекция знаний)

Урок проверки знаний

Самостоятельное планирование и проведение исследования, решения

Освоение практического навыка решения контрольных заданий. Индивидуальная

Регулятивные: вносить необходимые коррективы в действие после его завершения на основе сделанных ошибок. Познавательные: использовать поиск необходимой информации для выполнения учебных заданий с использованием учебной литератры. Коммуникативные: контролировать действия партнера

Знание: метода подобия, синуса, косинуса, тангенса острого угла прямоугольного треугольника, основного тригонометрического тождества.

Умение: свободно применять подобие к доказательству теорем и решать сложные задачи; оформлять решения, выполнять перенос ранее усвоенных способов действий; предметная компетенция

Раздел 4. Окружность (16 часов)

Модуль 1. Центральные и вписанные углы

Цели ученика:

изучение модуля «Центральные и вписанные углы» и получение последовательной системы математических знаний, необходимых для изучения школьных естественно-научных дисциплин на базовом уровне.

Для этого необходимо:

 иметь представления о взаимном расположении прямой и окружности,
о касательной к окружности, свойстве и признаке касательной, центральном и вписанном угле окружности;

 овладеть умениями:

– определения градусной меры дуги окружности;

– доказательства теоремы о вписанном угле, следствия из нее, теоремы о произведении отрезков пересекающихся хорд;

– применения полученных знаний при решении задач

Цели педагога:

создать условия:

 для формирования представлений о взаимном расположении прямой и окружности, о касательной к окружности, центральном и вписанном угле окружности, освоения свойства и признака касательной;

 формирования умений определять градусную меру дуги окружности;

 усвоения навыков доказательства теоремы о вписанном угле, следствия из нее, теоремы о произведении отрезков пересекающихся хорд, применения полученных знаний при решении задач

п/п

Тема и тип

урока

Вид

педагогической

деятельности.

Дидактическая модель педагогического процесса

Педагогические средства

Ведущая

деятельность, осваиваемая

в системе занятости
(на уроке).

Формы организации совзаимодействия

на уроке

Универсальные учебные

действия (УУД)

Планируемые
образовательные

результаты в предметном

направлении

Оборудование
для демонстраций

Работа с одаренными детьми

Календарные
сроки

49

Взаимное расположение прямой и окружности (изучение нового материала)

Объяснительно-иллюстративная

Беседа, работа с книгой.

Демонстрация плакатов

Учебная, познавательная. Индивидуальная по уровню развития интеллекта

Регулятивные: оценивать правильность выполнения действия на уровне адекватной ретроспективной оценки. Познавательные: строить речевое высказывание в устной и письменной форме.

Коммуникативные: контролировать действия партнера

Знание: возможных случаев взаимного расположения прямой
и окружности.

Умение: решать задачи на определение взаимного расположения прямой и окружности; воспроизвести теорию с заданной степенью свернутости; целостная компетенция

Демонстрационные плакаты

50

Касательная к окружности (применение
и совершенствование знаний)

Репродуктивная

Упражнения, практикум, работа с книгой

Познавательная. Индивидуальная.
Пары сменного состава

Коммуникативные: контролировать действия партнера.

Регулятивные: различать способ и результат действия.

Познавательные: использовать поиск необходимой информации для выполнения заданий с использованием учебной литературы

Знание: определения касательной, свойства и признака касательной.

Умение: доказывать свойство и признак касательной, применять их при решении задач; работать с чертежными инструментами; предметная компетенция

51

Центральный угол

(изучение  

нового материала)

Объяснительно-иллюстратив-

ная

Беседа, работа с книгой, демон-

страция плакатов

Учебная, познавательная.

Индивидуальная по уровню развития интеллекта

Регулятивные: различать способ и результат действия.

Познавательные: ориентироваться на разнообразие способов решения задач.

Коммуникативные: контролировать действия партнера

Знание: определения центрального угла.

Умение: определять градусную меру дуги окружности; доказы-

вать, что сумма градусных мер двух дуг окружностей с общими концами равна 360°; правильно оформлять работу, выступать с решением проблемы; предметная компетенция

Слайд-лекция «Тела вращения»

52

Вписанный угол (применение и совершенствование знаний)

Комбинированная

Фронтальный опрос. Работа с демонстрационным материалом

Информационно-коммуникационная. Индивидуальная по уровню развития интеллекта

Регулятивные: учитывать правило в планировании и контроле способа решения.

Познавательные: строить речевое высказывание в устной
и письменной форме.

Коммуникативные: договариваться и приходить к общему решению в совместной деятельности, в том числе в ситуации столкновения интересов

Знание: определения вписанного угла, теоремы о вписанном угле, следствия из нее.

Умение: доказывать теорему о вписанном угле, следствия из нее, применять их при решении задач; предметная компетенция

Демонстрационные плакаты

53

Теорема о произведении отрезков пересекающихся хорд. (комбиниро-

ванный)

Поисковая

Проблемные задания

Информационно-коммуникацион-

ная.

Индивидуальная.
Пары сменного состава

Регулятивные: различать способ и результат действия.

Познавательные: владеть общим приемом

решения задач.

Коммуникативные: договариваться и приходить к общему решению в совместной деятельности, в том числе в ситуации столкновения интересов

Знание: теоремы о произведении отрезков пересекающихся хорд.

Умение: доказывать теорему о произведении

отрезков пересекающихся хорд; решать задачи на применение теоремы о произведении отрезков пересекающихся хорд; принять участие в диалоге, подбирать аргументы для объяснения ошибки; предметная компетенция

Слайд-лекция

«Тела вращения»

54

Решение задач на применение теоремы о произведении отрезков пересекающихся хорд. (комбинированный)

Учебный практикум

Построение алгоритма действия, решение упражнений

Учебная. Индивидуальная.
Пары сменного состава

Регулятивные: учитывать правило в планировании и контроле способа решения.Познавательные: ориентироваться на разнообразие способов решения задач.

Коммуникативные: учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве

Умение: решать задачи на применение теоремы о вписанном угле, следствий из нее, теоремы о произведении отрезков пересекающихся хорд; работать с чертежными инструментами; предметная компетенция

Задания более сложного уровня

Модуль 2. Вписанная и описанная окружности

Цели ученика:

изучение модуля «Вписанная и описанная окружности» и получение последовательной системы математических знаний, необходимых для изучения школьных естественно-научных дисциплин на базовом уровне.

Для этого необходимо:

 иметь представления о вписанной и описанной окружностях, точке пересечения высот, медиан, биссектрис и серединных перпендикуляров;

 овладеть умениями:

– доказательства теоремы о биссектрисе угла и следствия из нее, теоремы о серединном перпендикуляре к отрезку и следствия из нее, теоремы о пересечении высот треугольника;

– применения теоремы об окружности, вписанной в многоугольник, свойств описанного четырехугольника, теоремы об описанной окружности, свойств вписанного четырехугольника; полученных знаний при решении задач.

Показ владения теоретическими и практическими знаниями по теме модуля «Вписанная и описанная окружности» – через контрольный урок

Цели педагога: создание условий учащимся:

 для формирования представлений о вписанной и описанной окружностях, точке пересечения высот, медиан, биссектрис и серединных перпендикуляров;

 формирования умений применения полученных знаний при решении задач;

 овладения умением доказывать теорему о биссектрисе угла и следствия из нее, теорему о серединном перпендикуляре к отрезку и следствия из нее, теорему о пересечении высот треугольника;

 усвоения навыков применения теоремы об окружности, вписанной в многоугольник, свойства описанного четырехугольника, теоремы об описанной окружности, свойства вписанного четырехугольника

п/п

Тема и тип

урока

Вид

педагогической

деятельности.

Дидактическая модель педагогического процесса

Педагогические средства

Ведущая

деятельность, осваиваемая

в системе занятости
(на уроке).

Формы организации совзаимодействия

на уроке

Универсальные учебные

действия (УУД)

Планируемые
образовательные

результаты в предметном

направлении

Оборудование
для демонстраций

Работа с одаренными детьми

Календарные
сроки

55

Свойство биссектрисы угла
(изучение нового материала)

Объяснительно-иллюстративная

Беседа, работа с книгой, демонстрация плакатов

Учебная, познавательная. Индивидуальная по уровню развития интеллекта

Регулятивные: вносить необходимые коррективы в действие после его завершения на основе учета характера сделанных ошибок.

Познавательные: проводить сравнение, сериацию и классификацию по заданным критериям.

Коммуникативные: учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве

Знание: теоремы
о биссектрисе угла
и следствия из нее.

Умение: доказывать теорему о биссектрисе угла и следствие из нее, решать задачи на применение этих теорем; решать задачи

усложненного характера по данной теме; привести примеры, подобрать аргументы, сформулировать выводы; целостная компетенция

56

Серединный перпендикуляр
(применение и совершенствование знаний) 

Репродуктивная

Упражнения, практикум, работа с книгой

Познавательная. Индивидуальная.
Пары сменного состава

Регулятивные: оценивать правильность выполнения действия на уровне адекватной ретроспективной оценки.

Познавательные: использовать поиск необходимой информации для выполнения заданий с использованием учебной литературы.

Коммуникативные: учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве

Знание: определения серединного перпендикуляра, теоремы о серединном перпендикуляре к отрезку, следствия из нее.

Умение: доказывать теорему о серединном перпендикуляре к отрезку, следствие из нее, применять эти теоремы при решении задач по готовым чертежам; решать задачи усложненного характера по данной теме; работать с чертежными инструментами; предметная компетенция, целостная компетенция

Слайд-лекция «Четыре замечательные точки треугольника»

57

Теорема о пересечении высот треугольника (комбинированный)

Проблемное изложение

Обучение на высоком уровне

трудности

Учебная, познавательная.

Взаимопроверка
в парах.

Работа с текстом

Регулятивные: вносить необходимые коррективы в действие после его завершения на основе учета

характера сделанных ошибок.

Познавательные: строить речевое высказывание в устной
и письменной форме.

Коммуникативные: контролировать действия партнера

Знание: теоремы о пересечении высот треугольника. Умение: доказывать теорему о пересечении высот

треугольника; участвовать в диалоге; применять теорему о пересечении высот треугольника при решении задач повышенного уровня сложности; формировать вопросы, задачи, создавать проблемную ситуацию; предметная компетенция

Задания более сложного уровня

58

Вписанная окружность (изучение нового материала)

Объяснительно-иллюстративная

Беседа, работа с книгой, демонстрация плакатов

Учебная, познавательная. Индивидуальная по уровню развития интеллекта

Регулятивные: различать способ и результат действия.

Познавательные: проводить сравнение, сериацию и классификацию по заданным критериям.

Коммуникативные: договариваться и приходить к общему решению в совместной деятельности, в том числе в ситуации столкновения интересов

Знание: вписанной окружности в многоугольник, теоремы об окружности, вписанной в многоугольник, свойств описанного четырехугольника.

Умение: доказывать соответствующие теоремы; участвовать в диалоге; решать задачи на применение теоремы об окружности, вписанной в многоугольник, свойств описанного четырехугольника; осмысливать ошибки и их устранять; целостная компетенция

Слайд-

лекция «Вписанная и описанная окружности»

59

Описанная окружность (комбинированный)

Поисковая

Организация совместной учеб-

ной деятельности

Рефлексивная.

Регулятивные: учитывать правило в планировании и контроле способа решения.

Познавательные: ориентироваться на разнообразие способов решения задач.

Коммуникативные: контролировать действия партнера

Знание: окружности, описанной около многоугольника, теоремы об описанной окружности, свойств вписанного четырехугольника.

Умение: решать задачи на применение теоремы об описанной окружности, свойств вписанного четырехугольника; работать по заданному алгоритму, доказывать правильность решения с помощью аргументов; предметная компетенция

Слайд-лекция «Вписанная и описанная

окружности»

Творческое задание

60

Вписанная и описанная окружности (комбинированный)

Поисковая

Проблемные задания

Информационно-коммуникационная. Индивидуальная.
Пары сменного состава

Коммуникативные: контролировать действия партнера.

Регулятивные: различать способ и результат действия.

Познавательные: использовать поиск необходимой информации для выполнения заданий с использованием учебной литературы

Умение: применять изученные теоремы при решении задач; принять участие в диалоге, в подборе аргументов для объяснения ошибки; предметная компетенция

Слайд-лекция «Вписанная и описанная окружности»

61-62

Решение

задач по теме: «Вписанная и описанная окружности»
(комбинированны  й)

Учебный практикум

Построение алгоритма действия, решение упражнений

Учебная. Индивидуальная.
Пары сменного состава

Регулятивные: различать способ и результат действия.

Познавательные: владеть общим приемом решения задач.

Коммуникативные: договариваться и приходить к общему решению в совместной деятельности, в том числе в ситуации столкновения интересов

Знание: способов решения задач на применение изученных определений, свойств.

Умение: решать задачи на применение изученных определений, свойств, объяснять изученные положения на самостоятельно подобранных конкретных примерах; предметная компетенция

Слайд-лекция «Вписанная и описанная окружности»

Задания более сложного уровня

63

Контрольная работа № 4 по теме: «Окружность»

(контроль, оценка
и коррекция знаний)

Урок проверки знаний

Самостоятельное планирование и проведение исследования, решения

Освоение практического навыка решения контрольных заданий. Индивидуальная

Коммуникативные: контролировать действия партнера.

Регулятивные: различать способ и результат действия.

Познавательные: использовать поиск необходимой информации для выполнения заданий с использованием учебной литературы

Знание: о вписанной и описанной окружностях, точке пересечения высот, медиан, биссектрис.

Умение: свободно пользоваться теоремами о вписанной и описанной окружности при решении сложных задач; оформлять решения, выполнять перенос ранее усвоенных способов действий; предметная компетенция

Тестовые задания в форме ЕГЭ типа B и C

Раздел 5. Повторение. Решение задач (3 часа)

Цели ученика:

проведение самоанализа знаний, умений и навыков, полученных и приобретенных в курсе геометрии за 8 класс при обобщающем повторении пройденных тем.

Для этого необходимо:

 овладеть умениями использования приобретенных знаний и умений в практической деятельности и повседневной жизни для исследования несложных практических ситуаций на основе изученных формул и свойств тел; вычисления площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.

Показ владения теоретическими и практическими знаниями по теме раздела «Повторение. Решение задач» – через контрольный урок

Цели педагога:

создание условий учащимся:

 для обобщения и систематизация курса геометрии за 8 класс, решая задания повышенной сложности по всему курсу геометрии;

 формирования понимания возможности использования приобретенных знаний и умений в практической деятельности и повседневной жизни, для интегрирования в личный опыт новой, в том числе самостоятельно полученной информации

п/п

Тема и тип

урока

Вид

педагогической

деятельности.

Дидактическая модель педагогического процесса

Педагогические средства

Ведущая

деятельность, осваиваемая

в системе занятости
(на уроке).

Формы организации совзаимодействия

на уроке

Универсальные учебные

действия (УУД)

Планируемые
образовательные

результаты в предметном

направлении

Оборудование
для демонстраций

Работа с одаренными детьми

Календарные
сроки

64

Четырехугольники. Площадь (комбинированный)

Учебный практикум

Построение алгоритма действия, решение упражнений

Учебная. Индивидуальная.
Пары сменного состава

Регулятивные: различать способ и результат действия.

Познавательные: владеть общим приемом решения задач.

Коммуникативные: договариваться и приходить к общему решению в совместной деятельности, в том числе в ситуации столкновения интересов

Знание: определений, основных понятий, теорем курса.

Умение: применять полученные теоретические знания при решении задач; свободно работать с текстами научного стиля; целостная компетенция

Демонстрационные плакаты

Задания более сложного уровня

65

Подобные треугольники
(комбинированный)

Учебный практикум

Построение алгоритма действия, решение упражнений

Учебная. Индивидуальная.
Пары сменного состава

Регулятивные: учитывать правило в планировании и контроле способа решения.

Познавательные: ориентироваться на разнообразие способов решения задач.

Коммуникативные: учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве

Знание: определений, основных понятий, теорем курса.

Умение: применять полученные теоретические знания при решении задач; участвовать в диалоге, понимать точку зрения собеседника, признавать право на иное мнение

Слайд-лекция

«Подобные треугольники»

66

Окружность
(комбинированный)

Учебный практикум

Построение алгоритма действия, решение упражнений

Учебная. Индивидуальная.
Пары сменного состава

Регулятивные: учитывать правило в планировании и контроле способа решения.

Познавательные: использовать поиск необходимой информации для выполнения заданий с использованием учебной литературы.

Коммуникативные: учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве

Знание: определений, основных понятий, теорем курса.

Умение: применять полученные теоретические знания при решении задач; аргументированно отвечать на поставленные вопросы, участие в диалоге

Демонстрационные плакаты

Задания более сложного уровня

67-68

Повторение. Решение задач

Учебный практикум

Построение алгоритма действия, решение упражнений

Учебная. Индивидуальная.
Пары сменного состава

Регулятивные: учитывать правило в планировании и контроле способа решения.

Познавательные: использовать поиск необходимой информации для выполнения заданий с использованием учебной литературы.

Коммуникативные: учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве

Знание: определений, основных понятий, теорем курса.

Умение: применять полученные теоретические знания при решении задач; аргументированно отвечать на поставленные вопросы, участие в диалоге

Демонстрационные плакаты

Задания более сложного уровня


Перечень учебно-методического и информационного обеспечения образовательного процесса:

1.  Л.С.Атанасян и др Геометрия 7-9 //Учебник для 7-9 классов общеобразовательных учреждений М.: «Просвещение», 2011.

2. Зив, Б.Г. Дидактические материалы по геометрии для 8 кл. [Текст]/ Б.Г. Зив, В.М. Мейлер.- М.: Просвещение.

3. Геометрия. 7-11 классы:  поурочные планы по учебникам Л.С. Атанасяна (компакт-диск) – издательство «Учитель», 2011.

  1. Уроки геометрии Кирилла и Мефодия. 8 класс. СD- диск, 2009.
  2. Контрольно-измерительные материалы. геометрия: 8 класс/ Сост. А.Н. Рурукин. – М.: ВАКО, 2012.- 96 с.

5.  Интернет ресурсы.


По теме: методические разработки, презентации и конспекты

Рабочая программа по геометрии 7 класс по учебнику Атанасян Л. С. Бутузов В. Ф. и др. Геометрия 7-9 классы

Рабочая программа по геометрии 7 класс по учебнику Атанасян Л. С. Бутузов В. Ф. и др. Геометрия 7-9 классы (2 часа в неделю)...

Рабочая программа по геометрии 11 класс (2 часа в неделю, всего 68 часов) Учебник Геометрия 10-11 класс. Погорелов А.В.

Рабочая программа по геометрии 11 класс (2 часа в неделю, всего 68 часов) Учебник Геометрия 10-11 класс. Погорелов А.В. Базовый уровень...

Рабочая программа по геометрии 10 класс (2 часа в неделю, всего 68 часов) Учебник Геометрия 10-11 класс. Погорелов А.В.

Рабочая программа по геометрии 10 класс (2 часа в неделю, всего 68 часов) Учебник Геометрия 10-11 класс. Погорелов А.В. Базовый уровень...

Рабочая программа по математике (алгебре) 5-9 классы и рабочая программа по геометрии 7-9 класс

Рабочая программа составлена на основе примерных программ основного общего образования по математике 2004 года по учебным комплектам: математика 5-6 класс - Н. Я. Виленкин и др., алгебра - Ю. Н. Макар...

Рабочие программы по математике для 5 класса, по алгебре для 8 класса. УМК А. Г. Мордкович. Рабочие программы по геометрии для 7 и 8 класса. Программа соответствует учебнику Погорелова А.В. Геометрия: Учебник для 7-9 классов средней школы.

Рабочая программа содержит пояснительную записку, содержание учебного материала, учебно - тематическое планирование , требования к математической подготовке, список рекомендованной литературы, календа...

Аннотация к рабочей программе по геометрии, 11 класс + рабочая программа по геометрии для 11 класса

Аннотация к рабочей программе по МАТЕМАТИКЕ (геометрии). Класс: 11.Программа по геометрии для 11 класса составлена на основе Федерального компонента государственного образовательного стандарта среднег...

РАБОЧАЯ ПРОГРАММА Предмет геометрия Класс 9 Учитель Асессорова Е.М.

РАБОЧАЯ ПРОГРАММА        Предмет    геометрия      Класс         9 Учитель      Асессорова Е.М....