Урок физики в 8 классе Тема урока: Лабораторная работа №7 «Измерение мощности и работы тока в электрической лампочке»
план-конспект урока по физике (8 класс)
Цель урока: выработать умения и навыки расчеты работы и мощности тока, закрепить навыки работы с приборами.
Скачать:
Предварительный просмотр:
Урок физики в 8 классе
Тема урока: Лабораторная работа №7 «Измерение мощности и работы тока в электрической лампочке»
Цель урока: выработать умения и навыки расчеты работы и мощности тока, закрепить навыки работы с приборами.
Образовательная:
вычисление работы и мощности электрического тока, используя показания амперметра, вольтметра и часов, продолжить формировать практические навыки измерения напряжения, силы тока.
Развивающиеся:
- развивать умения наблюдать, сопоставлять, сравнивать и обобщать результаты экспериментов;
- продолжить формирование умений пользоваться теоритическими и экспериментальными методами физической науки для обоснования выводов по изучаемое теме.
Воспитательная:
развивать познавательный интерес к предмету.
Оборудование: источник питания, низковольтная лампа на подставке, вольтметр, амперметр, ключ, соединительные провода. Часы
Ход урока
1. Организационный момент
Сегодня мы подытожим свои знания по теме «Работа и мощность электрического тока», выполним лабораторную работу по измерению этих физических величин в электрической лампочке.
Но прежде послушаем ваши сообщения по следующим вопросам:
Истрия изображения лампы накаливания
На этот вопрос, заданный в разных странах, можно получить абсолютно различный ответ. Американцы с присущей им самоуверенностью будут доказывать, что это изобретатель первой лампы накаливания – их земляк Эдисон, получивший патент на свое изобретение в 1880 году. Французы назовут русского ученого Яблочкова: при помощи его изобретения начали освещать площади и театры столицы этой страны. Возможно, кто-то вспомнит Лодыгина – изобретателя из Петербурга, лампами которого в 1873 году начали освещать улицы города. Скорей всего, будут и другие ответы: все зависит от осведомленности человека в этом вопросе.
Что самое удивительное, в этом случае все будут правы. Как такое возможно?
С изобретением электричества (открытием электрического тока), научные открытия последовали одни за другими. Причем делали их совершенно разные ученые и изобретатели, в совершенно разных странах. Постепенно электротехника выделилась в отдельную науку (изначально все это относилось к физическим явлениям).
Началом разработок и поисков решений для изобретения именно электрической лампочки стало получение русским академиком Петровым в 1802 году электрической дуги от мощнейшей на то время электрической батареи. В свою очередь, создание этой батареи стало возможно благодаря изобретению итальянцем Вольтом химического источника энергии – гальванического элемента. Таким образом, одно изобретение порождало другие открытия, которые, в свою очередь, давали начало новым идеям и опытам.
К середине 19 века многие ученые и изобретатели проводили эксперименты по получению устойчивого и долговечного свечения. Разнообразие идей привело к тому, что выделилось три направления разработок. Отдельные ученые пытались усовершенствовать дуговую электрическую лампу, другие бились над лампой накаливания, третьи – работали с газоразрядными источниками.
Все же самой перспективной в плане освещения считалась электрическая дуга: именно на этом направлении велось большинство исследований и проводилось различных опытов. Однако все исследователи столкнулись с одинаковой проблемой: между электродами яркая, и устойчивая дуга образуется при определенном расстоянии между ними. Большинство опытов проводилось при помощи угольных электродов, которые достаточно быстро прогорали и дуговое расстояние постоянно менялось.
Требовался автоматический регулятор. Предлагались различные варианты, но у всех был один недостаток: на каждую электрическую лампу накаливания необходим был отдельный источник питания. Большой прорыв в этом направлении в 1856 году совершил изобретатель Шпаковский: ему удалось собрать установку из 11 дуговых ламп, которые работали в одной цепи от единственного источника питания.
Через 13 лет, в 1869 году Чиколев придумал и успешно опробовал дифференциальный регулятор для дуговых ламп. Это изобретение (в усовершенствованном виде) с успехом применяется в мощных установках и сегодня. Пример – в морских прожекторах и на маяках.
ПРОРЫВ ЯБЛОЧКОВА
В середине второй половины 19 века в лавине технических прорывов, новых изобретений наступило относительное затишье. Изобретатели и электротехники по-прежнему не могли решить главную проблему: неравномерность сгорания угольных электродов. Также не был найден эффективный и компактный регулятор. Но, стоит отметить, были и определенные достижения: электроды помещались в стеклянную колбу, что давало им определенную защиту от механического и атмосферного воздействия.
Как это часто бывает с великими изобретениями, помог случай. Находясь в крайней степени задумчивости над решением этой проблемы, Яблочков сделал заказ официанту и задумчиво смотрел, как тот расставляет тарелки и столовые приборы. Каково же было удивление официанта, когда солидный господин внезапно вскочил и, бормоча что-то под нос, выбежал из кафе. Возможно, он так и не узнал, что поневоле стал соавтором революционного решения, которое сдвинуло с мертвой точки изобретение эффективной лампочки.
Дело в том, что до этого времени все исследователи размещали электроды в колбе горизонтально, что приводило к неравномерности образования дуги между ними. При взгляде на параллельно лежащие столовые принадлежности, Яблочкова осенило: именно так нужно размещать электроды. В этом случае расстояние между ними будет одинаковым: потребность в регуляторах просто отпадает сама собой.
Конечно, до окончательного решения проблемы было еще очень далеко, но было совершено главное: был получен новый толчок изобретательской мысли и сломлен барьер многолетнего топтания на месте.
Далее события опять приобрели ускорение, и решения последовали одно за другим:
- Прежде всего, электротехники столкнулись с новой проблемой: параллельно расположенные стержни начали гореть по всей длине: дуга все время скатывалась к токоподводящим клеммам. Проблему удалось решить только после размещения между электродами изоляционной прокладки. После многочисленных опытов в этом качестве лучшей был признан каолин: он равномерно плавился с электродами;
- Следующая проблема, с которой столкнулась команда Яблочкова, являлся вопрос, как зажечь электроды? Решением стала угольная перемычка, располагаемая сверху лампы, которая при подаче тока сгорала, создавая дугу;
- Проблему неодинакового истончения электродов решили созданием положительного стержня более толстым по сравнению с отрицательным. Полностью решить этот вопрос смогло лишь использование переменного тока.
В 1876 году представленная на выставке, которая проводилась в английской столице, свеча Яблочкова имела достаточно простую конструкцию: два вертикально расположенных электрода давали яркий и мягко-матовый свет. Через год после выставки создается акционерное общество, занимающееся вопросом изучения электроосвещения, на основе исследований и достижений Яблочкова.
Также за эти два года были получены необходимые патенты, чтобы во Франции началось производство свечей Яблочкова, которые в Европе получили название «русский свет». Также был налажен выпуск электрических генераторов, которые и питали первую серийно выпускавшуюся лампочку.
ЛАМПЫ НАКАЛИВАНИЯ
Практически параллельно с этим продвигались изобретения и исследования с лампами накаливания. Всемирную известность получил Эдисон: считается, что именно он придумал первую лампу, работающую по принципу нити накаливания. Все это одновременно так, и немного не соответствует действительности. Как и в предыдущем случае, работы велись разными учеными, в различных уголках земного шара. Каждое новое открытие и достижение продвигало на шаг вперед всех изобретателей.
Эксперименты с электротоком начались сразу после его открытия. Уже в начале 19 века проводились опыты с накаливанием различных проводников. Целью применения данной методики для освещения задался в 1844 году изобретатель де-Молейн. Для накаливания он использовал платиновую проволоку, которую размещал внутри стеклянной колбы. Однако такая проволока быстро расплавлялась. В 1845 году английский ученый Кинг предложил заменить платину угольными стержнями.
Энергосберегающие лампы
В 1809 году англичанин Деларю строит первую лампу накаливания (с платиновой спиралью). В 1838 году бельгиец Жобар изобретает угольную лампу накаливания. В 1854 году немец Генрих Гёбель разработал первую «современную» лампу - обугленную бамбуковую нить в вакуумированном сосуде. В последующие 5 лет он разработал то, что многие называют первой практичной лампой. В 1860 год английский химик и физик Джозеф Уилсон Суон продемонстрировал первые результаты и получил патент, однако трудности в получении вакуума привели к тому, что лампа Суона работала недолго и неэффективно.
- Первая американская коммерческая лампа с вольфрамовой спиралью.
- 11 июля 1874 года российский инженер Александр Николаевич Лодыгин получил патент за номером 1619 на нитевую лампу. В качестве нити накала он использовал угольный стержень, помещённый в вакуумированный сосуд.
- В 1875 году В. Ф. Дидрихсон усовершенствовал лампу Лодыгина, осуществив откачку воздуха из неё и применив в лампе несколько волосков (в случае перегорания одного из них следующий включался автоматически).
- Английский изобретатель Джозеф Уилсон Суон получил в 1878 году британский патент на лампу с угольным волокном. В его лампах волокно находилось в разреженной кислородной атмосфере, что позволяло получать очень яркий свет.
- Во второй половине 1870-х годов американский изобретатель Томас Эдисон проводит исследовательскую работу, в которой он пробует в качестве нити различные металлы. В 1879 году он патентует лампу с платиновой нитью. В 1880 году он возвращается к угольному волокну и создаёт лампу с временем жизни 40 часов. Одновременно Эдисон изобрёл бытовой поворотный выключатель. Несмотря на столь непродолжительное время жизни, его лампы вытесняют использовавшееся до тех пор газовое освещение.
- Первые лампы накаливания.
- В 1890-х годах А. Н. Лодыгин изобретает несколько типов ламп с нитями накала из тугоплавких металлов. Лодыгин предложил применять в лампах нити из вольфрама (именно такие применяются во всех современных лампах) и молибдена и закручивать нить накаливания в форме спирали. Он предпринял первые попытки откачивать из ламп воздух, что сохраняло нить от окисления и увеличивало их срок службы во много раз. Первая американская коммерческая лампа с вольфрамовой спиралью впоследствии производилась по патенту Лодыгина. Также им были изготовлены и газонаполненные лампы (с угольной нитью и заполнением азотом).
- С конца 1890-х годов появились лампы с нитью накаливания из окиси магния, тория, циркония и иттрия (лампа Нернста) или нить из металлического осмия (лампа Ауэра) и тантала (лампа Больтона и Фейерлейна). В 1904 году венгры д-р Шандор Юст и Франьо Ханаман получили патент за № 34541 на использование в лампах вольфрамовой нити. В Венгрии же были произведены первые такие лампы, вышедшие на рынок через венгерскую фирму Tungsram в 1905 году.В 1906 году Лодыгин продаёт патент на вольфрамовую нить компании General Electric.
- В том же 1906 году в США он построил и пустил в ход завод по электрохимическому получению вольфрама, хрома, титана. Из-за высокой стоимости вольфрама патент находит только ограниченное применение.В 1910 году Вильям Дэвид Кулидж изобретает улучшенный метод производства вольфрамовой нити. Впоследствии вольфрамовая нить вытесняет все другие виды нитей.
- Остающаяся проблема с быстрым испарением нити в вакууме была решена американским учёным, известным специалистом в области вакуумной техники Ирвингом Ленгмюром, который, работая с 1909 года в фирме «General Electric», ввёл в производство наполнение колбы ламп инертными, точнее тяжёлыми благородными, газами (в частности, аргоном), что существенно увеличило время их работы и повысило светоотдачу.
- КПД И ДОЛГОВЕЧНОСТЬ
- Почти вся подаваемая в лампу энергия превращается в излучение. Потери за счёт теплопроводности и конвекции малы. Для человеческого глаза, однако, доступен только малый диапазон длин волн этого излучения. Основная часть излучения лежит в невидимом инфракрасном диапазоне и воспринимается в виде тепла.
- Коэффициент полезного действия ламп накаливания достигает при температуре около 3400 K своего максимального значения 15 %. При практически достижимых температурах в 2700 K (обычная лампа на 60 Вт) КПД составляет 5 %.
- Схема включения лампы накаливания.
- С возрастанием температуры КПД лампы накаливания увеличивается, но при этом существенно снижается её долговечность. При температуре нити 2700 K время жизни лампы составляет примерно 1000 часов, при 3400 K всего лишь несколько часов, при увеличении напряжения на 20 % яркость возрастает в два раза. Одновременно с этим время жизни уменьшается на 95 %.
- Уменьшение напряжения питания хотя и понижает КПД, но зато увеличивает долговечность.Так, понижение напряжения в два раза (при последовательном включении) уменьшает КПД примерно в 4-5 раз, но зато увеличивает время жизни почти в тысячу раз. Этим эффектом часто пользуются, когда необходимо обеспечить надёжное дежурное освещение без особых требований к яркости, например на лестничных площадках. Часто для этого при питании переменным током лампу подключают последовательно с диодом, благодаря чему ток в лампу идет только в течение половины периода.
- Так как стоимость потребленной лампой накаливания за время службы электроэнергии в десятки раз превышает стоимость самой лампы, существует оптимальное напряжение, при котором стоимость светового потока минимальна. Оптимальное напряжение несколько выше номинального, поэтому способы повышения долговечности путем понижения напряжения питания с экономической точки зрения абсолютно убыточны.
- Ограниченность времени жизни лампы накаливания обусловлена в меньшей степени испарением материала нити во время работы и в большей степени возникающими в нити неоднородностями. Неравномерное испарение материала нити приводит к возникновению истончённых участков с повышенным электрическим сопротивлением, что ведёт к ещё большему нагреву и испарению материала в таких местах. Когда одно из этих сужений истончается настолько, что материал нити в этом месте плавится или полностью испаряется, ток прерывается и лампа выходит из строя.
- Примеры ламп накаливания.
- Наибольший износ нити накала происходит при резкой подаче напряжения на лампу, поэтому значительно увеличить срок её службы можно, используя разного рода устройства плавного запуска.
- Вольфрамовая нить накаливания имеет в холодном состоянии удельное сопротивление, которое всего в 2 раза выше, чем сопротивление алюминия. При перегорании лампы часто бывает, что сгорают медные проводки, соединяющие контакты цоколя с держателями спирали. Так, обычная лампа на 60 Вт в момент включения потребляет свыше 700 Вт, а 100-ваттная — более киловатта. По мере прогрева спирали её сопротивление возрастает, а мощность падает до номинальной.
- Для сглаживания пиковой мощности могут использоваться терморезисторы с сильно падающим сопротивлением по мере прогрева, реактивный балласт в виде ёмкости или индуктивности, диммеры (автоматические или ручные). Напряжение на лампе растет по мере прогрева спирали и может использоваться для шунтирования балласта автоматикой. Без отключения балласта лампа может потерять от 5 до 20 % мощности, что тоже может быть выгодно для увеличения ресурса.
2. Основное содержание урока
Откроем учебники на странице 175 и подготовим в тетрадях бланк отчет о выполнении лабораторной работы.
В тетрадях у вас должно быть указано: номер работы, название работы.
Цель работы
Приборы и материалы
Таблица заполняется по ходу выполнения работы. Результаты измерения записываем под схемой и делаем расчеты работы и мощности тока в лампе, работающей на доске.
I –сила тока, А | U-напряжен., В | T- время, с | P- мощность тока, Вт | A-работа тока, Дж |
Прежде, чем приступить к работе напомним правила техники безопасности:
- собирать цепь при отключенном источнике питания;
- соблюдать полярность подключения амперметра и вольтметра;
- собрав цепь, получить разрешение учителя на начало работы
3. Физкультминутка
Каждый ученик работает самостоятельно. Собрать электрический цепь по схеме:
Сделать вычисления по формулам P=J*U
A=J*U*t=P*t, t = 5 мин =300 с.
Вывод: Мы решили экспериментальную задачу.
Решать задачи можно вечно.
Вселенная ведь бесконечна
Спасибо всем за урок.
А главное, чтоб был он впрок!
Мне понравилось с вами сегодня работать! Спасибо.
Дано: Р = 0,16кВт t= 24часа тариф = 3,07 руб./ кВт•час |
А -? Стоимость электроэнергии? |
Задача: какое количество электрической энергии потребляет холодильник за 24 часа работы. Какова стоимость этой электроэнергии, если ее тариф 3,07 руб/кВт?»
Решение:
А =Р t =0,16кВт*24час = 3,84 кВт•час
Стоимость = тариф *А =
=3,07руб/кВт•час•3,84кВт=11,79 руб.
Ответ: за сутки холодильник потребляет электроэнергии на сумму 11рублей 79 копеек.
4. Подведение итогов. Сегодня на уроке вы научились измерять и рассчитывать работу и мощность тока, а так же определять стоимость потраченной электрической энергии эти знания обязательно пригодятся вам в жизни.
5. Домашнее задание: параграфы № 50-51 – повторить, посчитать работу электрического тока у вас в доме за три дня и стоимость электроэнергии.
По теме: методические разработки, презентации и конспекты
Конспект урока по физике. 7 класс. .тема урока: Механическая работа. Единицы измерения.
Тип урока: изучение нового материала.Предоставить новый материал в необычной , нестандартной форме . Изучить физические понятия, применяя литературные произведения. Проделать физические опыты, привлек...
Урок физики 8 класс. Тема урока: «Испарение и конденсация. Поглощение энергии при испарении жидкости и выделение ее при конденсации пара».
Цели урока:1)продолжить формирование у учащихся знаний о тепловых явлениях;2)продолжить формирование у учащихся умения описывать агрегатные превращения вещества с молекулярно-кинетической теории строе...
мастер-класс применения ИКТ на уроках физики "Урок по физике 7 класс Тема урока: «Исследование силы Архимеда».
Цели урока:Образовательные:повторить и обобщить изученный материал по теме: «Архимедова сила. Плавание тел»;продолжить формирование умений наблюдать и объяснять физические явления, обобщат...
Мультимедийная разработка урока. физика 8 класс Тема урока: Плавление и отвердевание кристаллических тел.
Цели и задачи, решаемые с помощью представленной работы:1. Наглядно сформулировать цели и задачи урока. 2. Повторить пройденный материал, необходимый для изучения н...
Урок географии в 7 классе. Тема урока: "Физико – географическое положение Африки".
Разработка урока географии в 7 классе по теме: "Физико – географическое положение Африки".Цель: Научить давать характеристику ФГП материка.Задачи: - Познакомить с физико–географическ...
План урока в 7 классе. Тема урока "Цвет гласных звуков"комбинированный (изучение нового учебного материала и самостоятельная работа)
Вид урока: беседа и самостоятельная работа. Методы обучения: в беседе – диалогический, в практической работе – репродуктивный, частично поисковый. Цели урока:...
ТЕХНОЛОГИЧЕСКАЯ КАРТА к уроку физики 7 класса «Обобщающий урок по теме «Первоначальные сведения о строении вещества». Кратковременная контрольная работа»
Тема урока: Обобщающий урок по теме «Первоначальные сведения о строении вещества». Кратковременная контрольная работа. Тип урока: комбинированный Цель урока: организация усвоения и закрепления осно...