Рабочая программа по физике.
календарно-тематическое планирование по физике (10, 11 класс) на тему

Точилкина Юлия Валерьевна

КТП по физике 10-11 класс и элективный курс.

Скачать:

ВложениеРазмер
Microsoft Office document icon rp_10-11_kl_2ch.doc1.07 МБ
Microsoft Office document icon elektivnyy_10-11.doc298.5 КБ
Файл moya_rp_kro.docx49.62 КБ

Предварительный просмотр:


Предварительный просмотр:

РАБОЧАЯ  ПРОГРАММА

Факультативного курса по физике

«Методы решения физических задач

при подготовке к сдаче ЕГЭ»

Пояснительная записка

Программа разработана на основе «Программы элективных курсов. Физика. 9-11 классы. Профильное обучение», составитель: В.А. Коровин, - «Дрофа», 2014 г.;  авторской программы «Методы решения физических задач»: В.А. Орлов, Ю.А. Сауров, - М.: Дрофа, 2013 г.; Зорин Н. И. элективный курс «Методы решения физических задач»: 10-11 классы. – М.: ВАКО, 207. – 336 с. – (Мастерская учителя).

Предмет: физика

Класс: 10 - 11

Всего часов на изучение программы: 136 

Количество часов в неделю: 1

Рабочая программа элективного курса по физике «Методы решения физических задач» на 2016 – 2017 учебный год составлена на основе 

  • «Программы элективных курсов. Физика. 9-11 классы. Профильное обучение», составитель: В.А. Коровин, - «Дрофа», 2014 г.
  • авторской программы «Методы решения физических задач»: В.А. Орлов, Ю.А. Сауров, - М.: Дрофа, 2013 г.

Для реализации программы использовано учебное пособие: В.А. Орлов, Ю.А. Сауров «Практика решения физических задач. 10-11 классы», - «Вентана-Граф», 2013 г.

Зорин Н. И. элективный курс «Методы решения физических задач»: 10-11 классы. – М.: ВАКО, 207. – 336 с. – (Мастерская учителя).

        Курс рассчитан на 2 года обучения

Цели факультативного курса:

  1. Развитие познавательных интересов, интеллектуальных и творческих способностей в процессе решения физических задач и самостоятельного приобретения новых знаний;
  2. Совершенствование полученных в основном курсе знаний и умений;
  3. Формирование представителей о постановке, классификаций, приемах и методах решения физических задач;
  4. Научить применять знания по физике для объяснения явлений природы, свойств вещества, решения физических задач, самостоятельного приобретения и оценки новой информации физического содержания.
  5. Подготовить учащихся к успешной сдаче ЕГЭ по физике.

Задачи курса:

  1. углубление и систематизация знаний учащихся;
  2. усвоение учащимися общих алгоритмов решения задач;
  3. овладение основными методами решения задач.

2. Общая характеристика курса

Процесс решения задач служит одним из средств овладения системой научных знаний  по тому или иному  учебному предмету. Особенно велика его роль при обучении физике, где задачи выступают действенным средством формирования основополагающих  физических знаний и умений. В процессе решения обучающиеся овладевают методами исследования различных явлений природы, знакомятся с новыми прогрессивными идеями и взглядами, с открытиями отечественных ученых, с достижениями отечественной науки и техники, с новыми профессиями.

Программа факультативного курса ориентирует учителя на дальнейшее совершенствование уже усвоенных обучающимися знаний и умений. Для этого вся программа делится на несколько разделов. В программе выделены основные разделы школьного курса физики, в начале изучения которых с учащимися повторяются основные законы и формулы данного раздела. При подборе задач по каждому разделу можно использовать вычислительные, качественные, графические, экспериментальные задачи.

В начале изучения курса дается два урока, целью которых является знакомство учащихся с понятием «задача», их классификацией и основными способами решения. Большое значение дается алгоритму, который формирует мыслительные операции: анализ условия задачи, догадка, проект решения, выдвижение гипотезы (решение), вывод.

В 10 классе при решении задач особое внимание уделяется последовательности действий, анализу физического явления, проговариванию вслух решения, анализу полученного ответа. Если в начале раздела для иллюстрации используются задачи из механики, молекулярной физики, электродинамики, то в дальнейшем решаются задачи из разделов курса физики 11 класса.

При повторении обобщаются, систематизируются как теоретический материал, так и приемы решения задач, принимаются во внимание цели повторения при подготовке к единому государственному экзамену.

При решении задач по механике, молекулярной физике, электродинамике главное внимание обращается на формирование умений решать задачи, на накопление опыта решения задач различной трудности.

В конце изучения основных тем («Кинематика и динамика», «Молекулярная физика», «Электродинамика») проводятся итоговые занятия в форме проверочных работ, задания которых составлены на основе открытых баз ЕГЭ по физике части «А», «В» и части «С». Работы рассчитаны на два часа, содержат от 10 до 15 задач, два варианта. После изучения небольших тем («Законы сохранения. Гидростатика», «Основы термодинамики», «Волновые и квантовые свойства света») проводятся занятия в форме тестовой работы на 1 час, содержащей задания из ЕГЭ (часть «А» и часть «В»).

Принципы отбора содержания и организации учебного материала

  • соответствие содержания задач уровню классической физики, выдержавших проверку временем, а также уровню развития современной физики, с возможностью построения в процессе решения физических и математических моделей изучаемых объектов с различной степенью детализации, реализуемой на основе применения: конкретных законов физических теорий, фундаментальных физических законов, методологических принципов физики, а также методов экспериментальной, теоретической и вычислительной физики;
  • соответствие содержания и форм предъявления задач требованиям государственных программ по физике;
  • возможность обучения анализу условий экспериментально наблюдаемых явлений, рассматриваемых в задаче;
  • возможность формирования посредством содержания задач и методов их решения научного мировоззрения и научного подхода к изучению явлений природы, адекватных стилю мышления, в рамках которого может быть решена задача;
  • жизненных ситуаций и развития научного мировоззрения.

Предлагаемый курс ориентирован на коммуникативный исследовательский подход в обучении, в котором прослеживаются следующие этапы субъектной деятельности учащихся и учителя: совместное творчество учителя и учащихся по созданию физической проблемной ситуации или деятельности по подбору цикла задач по изучаемой теме → анализ найденной проблемной ситуации (задачи) четкое формулирование физической части проблемы (задачи)  выдвижение гипотез  разработка моделей (физических, математических) прогнозирование результатов развития во времени экспериментально наблюдаемых явлений   проверка и корректировка гипотез → нахождение решений   проверка и анализ решений → предложения по использованию полученных результатов для постановки и решения других проблем (задач) по изучаемой теме, по ранее изученным темам курса физики, а также по темам других предметов естественнонаучного цикла, оценка значения.

Общие рекомендации к проведению занятий

При изучении курса могут возникнуть методические сложности, связанные с тем, что знаний по большинству разделов курса физики на уровне основной школы недостаточно для осознанного восприятия ряда рассматриваемых вопросов и задач.

Большая часть материала, составляющая содержание прикладного курса, соответствует государственному образовательному стандарту физического образования на профильном уровне, в связи, с чем курс не столько расширяет круг предметных знаний учащихся, сколько углубляет их за счет усиления непредметных мировоззренческой и методологической компонент содержания.

Методы и организационные формы обучения

Для реализации целей и задач данного прикладного курса предполагается использовать следующие формы занятий: практикумы по решению задач, самостоятельная работа учащихся, консультации, зачет. На занятиях применяются коллективные и индивидуальные формы работы: постановка, решения и обсуждения решения задач, подготовка к единому национальному тестированию, подбор и составление задач на тему и т.д. Предполагается также выполнение домашних заданий по решению задач.   Доминантной же формой учения должна стать исследовательская деятельность ученика, которая может быть реализована как на занятиях в классе, так и в ходе самостоятельной работы учащихся. Все занятия должны носить проблемный характер и включать в себя самостоятельную работу.

Методы обучения, применяемые в рамках прикладного курса, могут и должны быть достаточно разнообразными. Прежде всего это исследовательская работа самих учащихся, составление обобщающих таблиц, а также подготовка и защита учащимися алгоритмов решения задач. В зависимости от индивидуального плана учитель должен предлагать учащимся подготовленный им перечень задач различного уровня сложности.

Помимо исследовательского метода целесообразно использование частично-поискового, проблемного изложения, а в отдельных случаях информационно-иллюстративного. Последний метод применяется в том случае, когда у учащихся отсутствует база, позволяющая использовать продуктивные методы.

Средства обучения

Основными средствами обучения при изучении прикладного курса являются:

  • Физические приборы.
  • Графические иллюстрации (схемы, чертежи, графики).
  • Дидактические материалы.
  • Учебники физики для старших классов средней школы.
  • Учебные пособия по физике, сборники задач.

Организация самостоятельной работы

Самостоятельная работа предполагает создание дидактического комплекса задач, решенных самостоятельно на основе использования конкретных законов физических теорий, фундаментальных физических законов, методологических принципов физики, а также методов экспериментальной, теоретической и вычислительной физики  из различных сборников задач с ориентацией на профильное образование учащихся.

Ожидаемыми результатами занятий являются:

  • расширение знаний об основных алгоритмах решения задач, различных методах приемах решения задач;
  • развитие познавательных интересов, интеллектуальных и творческих способностей на основе опыта самостоятельного приобретения новых знаний, анализа и оценки новой информации;
  • сознательное самоопределение ученика относительно профиля дальнейшего обучения или профессиональной деятельности;
  • получение представлений о роли физики в познании мира, физических и математических методах исследования.

Требования к уровню освоения содержания курса:

Учащиеся должны уметь:

  • анализировать физическое явление;
  • проговаривать вслух решение;
  • анализировать полученный ответ;
  • классифицировать предложенную задачу;
  • составлять простейших задачи;
  • последовательно выполнять и проговаривать этапы решения задачи средней трудности;
  • выбирать рациональный способ решения задачи;
  • решать комбинированные задачи;
  • владеть различными методами решения задач:   аналитическим, графическим, экспериментальным и т.д.;

владеть методами самоконтроля и самооценки

3. Содержание курса

10 -11 классы (136 = 68+68)

10 класс

Введение   (4 ч)

Физическая задача.
Классификация задач (2 ч)

Что такое физическая задача. Состав физической задачи. Физическая теория и решение задач. Значение задач в обучении и жизни.

Классификация физических задач по требованию, содержанию, способу задания и решения. Примеры задач всех видов.

Составление физических задач. Основные требования к составлению задач. Способы и техника составления задач. Примеры задач всех видов.

Правила и приемы решения физических задач

( 2 ч)

Общие требования при решении физических задач. Этапы решения физической задачи. Работа с текстом задачи. Анализ физического явления; формулировка идеи • решения (план решения). Выполнение плана решения задачи. Числовой расчет. Использование вычислительной техники для расчетов. Анализ решения и его значение. Оформление решения.

Типичные недостатки при решении и оформлении решения физической задачи. Изучение примеров решения задач. Различные приемы и способы решения: алгоритмы, аналогии, геометрические приемы. Метод размерностей, графические решения и т. д.

Механика – 38 часов

Кинематика (6 ч)

Основные законы и понятия кинематики.

Решение расчетных и графических задач на равномерное движение. Математическая запись уравнения движения. График движения. График скорости. Решение задач на равноускоренное движение.

Движение по окружности. Решение задач.

Динамика и статика

(16 ч)

Координатный метод решения задач по механике. Решение задач на основные законы динамики: Ньютона, законы для сил тяготения, упругости, трения, сопротивления. Решение задач на движение материальной точки, системы точек, твердого тела под действием нескольких сил.

Задачи на определение характеристик равновесия физических систем.

Задачи на принцип относительности: кинематические и динамические характеристики движения тела в разных инерциальных системах отсчета.

Подбор, составление и решение по интересам различных сюжетных задач: занимательных, экспериментальных с бытовым содержанием, с техническим и краеведческим содержанием, военно-техническим содержанием.

Экскурсии с целью отбора данных для составления задач.

Законы сохранения

(16 ч)

Классификация задач по механике: решение задач средствами кинематики, динамики, с помощью законов, сохранения.

Задачи на закон сохранения импульса и реактивное движение. Задачи на определение работы и мощности. Задачи на закон сохранения и превращения механической энергии.

Решение задач несколькими способами. Составление задач на заданные объекты или явления. Взаимопроверка решаемых задач. Знакомство с примерами решения задач по механике республиканских и международных олимпиад.

Конструкторские задачи и задачи на проекты: модель акселерометра, модель маятника Фуко, модель кронштейна, модель пушки с противооткатным устройством, проекты самодвижущихся тележек, проекты устройств для наблюдения невесомости, модель автоколебательной системы.

Основы МКТ и термодинамики – 22 часа

Строение и свойства газов, жидкостей и твёрдых тел

(12 ч)

Качественные задачи на основные положения и основное уравнение молекулярно-кинетической теории (МКТ). Задачи на описание поведения идеального газа: основное уравнение МКТ, определение скорости молекул, характеристики состояния газа в изопроцессах.

Задачи на свойства паров: использование уравнения Менделеева — Клапейрона, характеристика критического состояния. Задачи на описание явлений поверхностного слоя; работа сил поверхностного натяжения, капиллярные явления, избыточное давление в мыльных пузырях. Задачи на определение характеристик влажности воздуха.

Задачи на определение характеристик твердого тела: абсолютное и относительное удлинение, тепловое расширение, запас прочности, сила упругости.

Качественные и количественные задачи. Устный диалог при решении качественных задач. Графические и экспериментальные задачи, задачи бытового содержания.

Основы термодинамики

(10 ч)

Комбинированные задачи на первый закон термодинамики. Задачи на тепловые двигатели.

Экскурсия с целью сбора данных для составления задач.

Конструкторские задачи и задачи на проекты: модель газового термометра; модель предохранительного клапана на определенное давление; проекты использования газовых процессов для подачи сигналов; модель тепловой машины; проекты практического определения радиуса тонких капилляров.

Электрическое и магнитное поля (4 часа)

Электрическое поле – 4 часа

Характеристика решения задач раздела: общее и разное, примеры и приемы решения.

Задачи разных видов на описание электрического поля различными средствами: законами сохранения заряда и законом Кулона, силовыми линиями, напряженностью, разностью потенциалов, энергией. Решение задач на описание систем конденсаторов.

11 класс

Электрическое и магнитное поля (продолжение) (12 ч)

Постоянный электрический ток в различных средах

(6 ч)

Задачи на различные приемы расчета сопротивления сложных электрических цепей. Задачи разных видов «а описание электрических цепей постоянного электрического тока с помощью закона Ома для замкнутой цепи, закона Джоуля — Ленца, законов последовательного и параллельного соединений. Ознакомление с правилами Кирхгофа при решении задач. Постановка и решение фронтальных экспериментальных задач на определение показаний приборов при изменении сопротивления тех или иных участков цепи, на определение сопротивлений участков цепи и т. д. Решение задач на расчет участка цепи, имеющей ЭДС.

Задачи на описание постоянного электрического тока в электролитах, вакууме, газах, полупроводниках: характеристика носителей, характеристика конкретных явлений и др. Качественные, экспериментальные, занимательные задачи, задачи с техническим содержанием, комбинированные задачи.

Конструкторские задачи на проекты: установка для нагревания жидкости на заданную температуру, модель автоматического устройства с электромагнитным реле, проекты и модели освещения, выпрямитель и усилитель на полупроводниках, модели измерительных приборов, модели «черного ящика».

Магнитное поле (6 часов)

Задачи разных видов на описание магнитного поля тока и его действия: магнитная индукция и магнитный поток, сила Ампера и сила Лоренца.

Решение качественных экспериментальных задач с использованием электрометра, магнитного зонда и другого оборудования.

Электромагнитные колебания и волны

(20 ч)  

Задачи разных видов на описание явления электромагнитной индукции: закон электромагнитной индукции, правило Ленца, индуктивность.

Задачи на переменный электрический ток: характеристики переменного электрического тока, электрические машины, трансформатор.

Задачи на описание различных свойств электромагнитных волн: скорость, отражение, преломление, интерференция, дифракция, поляризация. Задачи по геометрической оптике: зеркала, оптические схемы. Классификация задач по СТО и примеры их решения.

Задачи на определение оптической схемы, содержащейся в «черном ящике»: конструирование, приемы и примеры решения. Групповое и коллективное решение экспериментальных задач с использованием осциллографа, звукового генератора, трансформатора, комплекта приборов для изучения свойств электромагнитных волн, электроизмерительных приборов.

Экскурсия с целью сбора данных для составления задач.

Конструкторские задачи и задачи на проекты: плоский конденсатор заданной емкости, генераторы различных колебаний, прибор для измерения освещенности, модель передачи электроэнергии и др.

 Квантовая физика ( 18 часов)

Задачи различных видов на законы квантовой физики.

 Фотон. Давление света. Уравнение Эйнштейна для фотоэффекта.

Применение постулатов Бора для расчета линейчатых спектров излучения и поглощения энергии водородоподобными атомами. Волны де-Бройля для классической и релятивистской частиц.

Атомное    ядро.    Закон   радиоактивного   распада. Применение   законов   сохранения   заряда,   массового числа, импульса и энергии в задачах о ядерных превращениях.

Обобщающие занятия по методам и приёмам решения физических задач. Повторение.

(18 часов)


Тематическое планирование

Название  раздела

Название темы

Количество часов

Количество часов на решение задач по материалам ЕГЭ

Плановые сроки прохождения

1 Введение

Физическая задача. Классификация задач

2

10 класс

Правила и приемы решения физических задач

2

2. Механика

Кинематика материальной точки

6

Основы динамики

16

1

Законы сохранения

16

1

3.Основы МКТ и термодинамики

Молекулярная физика

12

Основы термодинамики

10

2

4.Основы электродинамики

Электростатика  

4

Постоянный ток

Магнитные взаимодействия.

12

2

11класс

5.Электромагнитные колебания и волны

Электромагнитные колебания Механические и электромагнитные волны

20

1

6.Квантовая физика

Квантовая теория света. Ядерная физика

18

7.Повторение

Решение тестовых вариантов ЕГЭ

4

4

Механика

6

Основы МКТ И начала термодинамики

5

Основы электродинамики

3

Всего

136

11

Материально-техническое обеспечение образовательного процесса:

Перечень учебного оборудования кабинета физики, используемого для обеспечения образовательного процесса прилагается.

Перечень используемого учебно-методического комплекта.

Литература для учителя:

В.А. Орлов, Ю.А. Сауров «Практика решения физических задач. 10-11 классы», - «Вентана-Граф», 2010 г.

Зорин Н. И. элективный курс «Методы решения физических задач»: 10-11 классы. – М.: ВАКО, 207. – 336 с. – (Мастерская учителя).

Литература для учеников

  1. ЕГЭ по физике. 11 класс : учебное пособие / Е. М. Шулежко, А. Т. Шулежко. – М. : БИНОМ. Лаборатория знаний, 2011.
  2. Тематические и тренировочные варианты тестов ЕГЭ под редакцией ФИПИ.

Календарно – тематическое планирование

10 класс

№ п/п

Тема занятия

Кол-во часов

Дата

Введение (4 час)

1/1

Физическая задача.
Классификация задач. Правила и приемы решения физических задач.

1

2/2

Примеры задач всех видов.

1

3/3

Правила и приёмы решения физических задач

1

4/4

Типичные недостатки при решении и оформлении решения физической задачи.

1

Механика

Кинематика (6 часов)

5/1

Основные законы и понятия кинематики.

1

6/2

Решение расчетных и графических задач на равномерное движение.

1

7/3

Графические задачи

1

8/4

Решение задач на равноускоренное движение.

1

9/5

Графические задачи

1

10/6

Движение по окружности. Решение задач.

1

Динамика и статика (16 часов)

11/1

Координатный метод решения задач по механике. Решение задач на основные законы динамики: Ньютона, законы для сил тяготения, упругости, трения, сопротивления. Решение задач части А

1

12/2

Решение задач на основные законы динамики: Ньютона, законы для сил тяготения, упругости, трения, сопротивления. Решение задач части А.

1

13/3

Решение задач на основные законы динамики: Ньютона, законы для сил тяготения, упругости, трения, сопротивления. Решение задач части А

1

14/4

Решение задач на основные законы динамики: Ньютона, законы для сил тяготения, упругости, трения, сопротивления. Решение задач части А

1

15/5

Решение задач на основные законы динамики: Ньютона, законы для сил тяготения, упругости, трения, сопротивления. Решение задач части В и С

1

16/6

Решение задач на движение материальной точки, системы точек, твердого тела под действием нескольких сил. Решение задач части В и С.

1

17/7

Решение задач на движение материальной точки, системы точек, твердого тела под действием нескольких сил. Решение задач части В и С.

1

18/8

Решение задач на движение материальной точки, системы точек, твердого тела под действием нескольких сил. Решение задач части В и С.

1

19/9

Задачи на определение характеристик равновесия физических систем. Элементы статики. Задания части А.

1

20/10

Задачи на определение характеристик равновесия физических систем. Элементы статики. Момент силы. Условия равновесия. Задания части А.

1

21/11

Решение задач на условие равновесия. Задания части В  и С.

1

22/12

Решение задач на условие равновесия. Задания части В  и С.

1

23/13

Задачи на принцип относительности: кинематические и динамические характеристики движения тела в разных инерциальных системах отсчета.

1

24/14

Задачи на принцип относительности: кинематические и динамические характеристики движения тела в разных инерциальных системах отсчета. Задачи части С

1

25/15

Подбор, составление и решение задач по интересам.

1

26/16

Самостоятельная работа по теме: Движение материальной точки. Тест.

1

Законы сохранения (16 часов)

27/1

Классификация задач по механике: решение задач средствами кинематики, динамики, с помощью законов сохранения.

1

28/2

Решение задач средствами кинематики, динамики, с помощью законов сохранения части А

1

29/3

Задачи на закон сохранения импульса и реактивное движение. Задачи части А.

1

30/4

Задачи на определение работы и мощности. Задачи части А

1

31/5

Решение задач с помощью законов сохранения части  В и С.

1

32/6

Решение задач с помощью законов сохранения части  В и С.

1

33/7

Задачи на закон сохранения и превращения механической энергии. Решение задач несколькими способами.

1

34/8

Задачи на закон сохранения и превращения механической энергии. Решение задач несколькими способами.

1

35/9

Решение задач с помощью законов сохранения части  В и С.

1

36/10

Решение задач с помощью законов сохранения части  В и С.

1

37/11

Решение задач с помощью законов сохранения части  В и С.

1

38/12

Решение задач с помощью законов сохранения части  В и С.

39/13

Знакомство с примерами решения задач по механике региональных и школьных олимпиад.

1

40/14

Механические колебания. Превращение энергии при колебаниях. Задания части А.

1

41/15

Колебательные системы. Способ решения задач части С.

1

42/16

Самостоятельная работа по теме : Законы сохранения.

1

Основы МКТ и термодинамики – 22 часа

Строение и свойства газов, жидкостей и твёрдых тел (12 часов)

43/1

Качественные задачи на основные положения и основное уравнение молекулярно-кинетической теории (МКТ). Задания части А.

1

44/2

Задачи на основные положения и основное уравнение молекулярно-кинетической теории (МКТ). Задания части А и В.

1

45/3

Задачи на описание поведения идеального газа: основное уравнение МКТ, определение скорости молекул, характеристики состояния газа в изопроцессах. Задачи части А.

1

46/4

Задачи на описание поведения идеального газа: основное уравнение МКТ, определение скорости молекул, характеристики состояния газа в изопроцессах. Задачи части В и С

1

47/5

Графические задачи на изопроцессы. Часть А и В

1

48/6

Графические задачи на изопроцессы. Часть А и В

1

49/7

Задачи на свойства паров: использование уравнения Менделеева—Клапейрона, характеристика критического состояния.

1

50/8

Задачи на свойства паров: использование уравнения Менделеева—Клапейрона, характеристика критического состояния. Задания части А и В

1

51/9

Задачи на свойства паров: использование уравнения Менделеева—Клапейрона, характеристика критического состояния. Задания части С( качественные)

1

52/10

Задачи на определение характеристик твердого тела: абсолютное и относительное удлинение, тепловое расширение, запас прочности, сила упругости.

1

53/11

Качественные и количественные задачи. Графические и экспериментальные задачи, задачи бытового содержания.

1

54/12

Задачи на инструментальные, абсолютные и относительные погрешности.

1

Основы термодинамики (10 часов)

55/1

Комбинированные задачи на первый закон термодинамики.

1

56/2

Задачи части А на первый закон термодинамики

1

57/3

Задачи части В и С на первый закон термодинамики

1

58/4

Задачи части В и С на первый закон термодинамики

1

59/5

Графические задачи

1

60/6

Графические задачи

1

61/7

Задачи на тепловые двигатели. Часть А и В

1

62/8

Комбинированные задачи части С

1

63/9

Самостоятельная работа по теме Молекулярная физика и термодинамика

1

64/10

Самостоятельная работа по теме Молекулярная физика и термодинамика

1

Электрическое поле (4 часа)

65/1

Характеристика решения задач раздела: общее и разное, примеры и приемы решения.

1

66/2

Задачи разных видов на описание электрического поля различными средствами: законами сохранения заряда и законом Кулона, силовыми линиями, напряженностью.

1

67/3

Задачи разных видов на описание электрического поля различными средствами: разностью потенциалов, энергией.

1

68/4

Решение задач на описание систем конденсаторов.

1


Календарно – тематическое планирование

11 класс

№ п/п

Тема занятия

Кол-во часов

Дата

Электрическое и магнитное поля (продолжение) (12 ч)

Постоянный электрический ток в различных средах – 6 часов

1/1

Задачи на различные приемы расчета сопротивления сложных электрических цепей. Задачи части А и В

1

2/2

Задачи на различные приемы расчета сопротивления сложных электрических цепей. Задачи части А и В

3/3

Решение задач на расчет участка цепи, имеющей ЭДС. Постановка и решение фронтальных экспериментальных задач на определение показаний приборов.

1

4/4

Решение задач на расчет участка цепи, имеющей ЭДС. Задачи части В и С

1

5/5

Задачи на описание постоянного электрического тока в электролитах, вакууме, газах, полупроводниках.

1

6/6

Самостоятельная работа по теме Постоянный электрический ток

1

Магнитное поле (6 часов)

7/1

Задачи разных видов на описание магнитного поля тока и его действия на проводник с током: магнитная индукция и магнитный поток, сила Ампера. Задания части А

1

8/2

Задачи разных видов на описание магнитного поля тока и его действия на проводник с током: магнитная индукция и магнитный поток, сила Ампера. Задания части В и С

1

9/3

Задачи разных видов на описание магнитного поля тока и его действия на проводник с током: магнитная индукция и магнитный поток, сила Ампера. Задания части В и С

1

10/4

Задачи разных видов на описание магнитного поля тока и его действия на проводник с током: магнитная индукция и магнитный поток, сила Ампера. Задания части В и С

1

11/5

Задачи разных видов на описание магнитного поля тока и его действия на движущийся заряд: сила Лоренца. Задания части А

1

12/6

Самостоятельная работа по теме: Магнитное поле тока и его действие на движущийся заряд: сила Лоренца. Тест

1

Электромагнитные колебания и волны (20 часов)

13/1

Задачи разных видов на описание явления электромагнитной индукции: закон электромагнитной индукции, правило Ленца, индуктивность. Задачи части А.

1

14/2

Задачи разных видов на описание явления электромагнитной индукции: закон электромагнитной индукции, правило Ленца, индуктивность. Задачи части А.

1

15/3

Задачи разных видов на описание явления электромагнитной индукции: закон электромагнитной индукции, правило Ленца, индуктивность. Задачи части В и С

1

16/4

Задачи разных видов на описание явления электромагнитной индукции: закон электромагнитной индукции, правило Ленца, индуктивность. Задачи части В и С.

1

17/5

Задачи на переменный электрический ток: характеристики переменного электрического тока. Задачи части А

1

18/6

Задачи на переменный электрический ток: характеристики переменного электрического тока. Задачи части В

1

19/7

Задачи на переменный электрический ток: электрические машины, трансформатор. Задачи В и С

1

20/8

Задачи на переменный электрический ток: электрические машины, трансформатор. Задачи В и С

1

21/9

Задачи по геометрической оптике: зеркала, оптические схемы. Задачи части А

1

22/10

Задачи по геометрической оптике: зеркала, оптические схемы. Задачи части В

1

23/11

Задачи по геометрической оптике: зеркала, оптические схемы Задачи части В и С

1

24/12

Задачи по геометрической оптике: зеркала, оптические схемы Задачи части В и С

1

25/13

Задачи на описание различных свойств электромагнитных волн: скорость, отражение, преломление, интерференция, дифракция, поляризация. Задачи части А

1

26/14

Задачи на описание различных свойств электромагнитных волн: скорость, отражение, преломление, интерференция, дифракция, поляризация. Задачи части А

1

27/15

Задачи на описание различных свойств электромагнитных волн: скорость, отражение, преломление, интерференция, дифракция, поляризация. Задачи части В

1

28/16

Задачи на описание различных свойств электромагнитных волн: скорость, отражение, преломление, интерференция, дифракция, поляризация. Задачи части В

1

29/17

Задачи на описание различных свойств электромагнитных волн: скорость, отражение, преломление, интерференция, дифракция, поляризация. Задачи части В и С

1

30/18

Задачи на описание различных свойств электромагнитных волн: скорость, отражение, преломление, интерференция, дифракция, поляризация. Задачи части С.

1

31/19

Классификация задач по СТО и примеры их решения.

1

32/20

Самостоятельная работа по  теме Электромагнитные колебания и волны. Тест.

1

Квантова физика – 18 часов

Кванты и атомы – 10 часов

33/1

Корпускулярно-волновой дуализм. Гипотеза Планка. Решение задач части А.

1

34/2

Явление фотоэффекта. Решение задач части А

1

35/3

Явление фотоэффекта. Решение задач части А

1

36/4

Явление фотоэффекта. Решение задач части В

1

37/5

Явление фотоэффекта. Решение задач части В и С

1

38/6

Явление фотоэффекта. Решение задач части В и С

1

39/7

Практическое занятие по определению постоянной Планка.

1

40/8

Явление фотоэффекта. Решение задач части В и С

1

41/9

Строение атома. Опыт Резерфорда. Постулаты Бора. Решение задач части А

1

42/10

Постулаты Бора. Решение задач части В и С

1

Атомное ядро и элементарные частицы –

8 часов

43/1

Радиоактивные превращения атомных ядер. Ядерные реакции. Решение задач части А

1

44/2

Радиоактивные превращения атомных ядер. Ядерные реакции. Решение задач части В и С

1

45/3

Закон радиоактивного распада. Решение задач части А и В

1

46/4

Закон радиоактивного распада. Решение задач части А и В

1

47/5

Энергия связи. Энергетический выход ядерных реакций. Решение задач части А

1

48/6

Энергия связи. Энергетический выход ядерных реакций. Решение задач части А, В и С.

1

49/7

Законы сохранения импульса и энергии в ядерных реакциях. Решение задач части С

1

50/8

Законы сохранения импульса и энергии в ядерных реакциях. Решение задач части С

1

Повторение – 18 часов

Решение тренировочных вариантов ЕГЭ – (4 часа)

51/1

Повторение курса физики. Решение тестовых заданий.

1

52/2

Повторение курса физики. Решение тестовых заданий.

1

53/3

Повторение курса физики. Решение тестовых заданий.

1

54/4

Повторение курса физики. Решение тестовых заданий.

1

Повторение темы. Механика. (6 часов)

55/5

Задачи на основные уравнения кинематики

1

56/6

Задачи на основные законы динамики.

1

57/7

Задачи на принцип относительности.

1

58/8

Задачи на закон сохранения импульса.

1

59/9

Задачи на закон сохранения энергии.

1

60/10

Комбинированные задачи

1

Молекулярная физика. Термодинамика. (5 часов)

61/11

Задачи на описание поведения идеального газа.

1

62/12

Задачи на свойства паров. Задачи на определение характеристик влажности воздуха.

1

63/13

Задачи на первый закон термодинамики.

1

64/14

Задачи на тепловые двигатели.

1

65/15

Задачи на уравнение теплового баланса.

1

Электричество. (3 часа)

66/16

Общая характеристика решения задач по электростатике.

1

67/17

Задачи на приёмы расчёта сопротивления сложных электрических цепей. Задачи на расчёт участка цепи, имеющей ЭДС

1

68/18

Обобщающее занятие

1

Перечень учебно-методических средств обучения 

Литература

  1. Орлов В. Л., Сауров Ю. А. «Методы решения физических задач» («Программы элективных курсов. Физика. 9-11 классы. Профильное обучение»). Составитель В. А. Коровин. Москва: Дрофа, 2013 г.
  2. Зорин Н. И. «Элективный курс «Методы решения физических задач»: 10-11 классы», М., ВАКО, 2013 г. (мастерская учителя).
  3.  ЕГЭ по  физике. 11 класс: учебное пособие / Е. М. Шулежко.- М. : БИНОМ. Лаборатория знаний, 2011. – 334 с. 6 ил. – (Готовимся к итоговой аттестации).
  4. ЕГЭ-2012. Физика : Тематические и тренировочные варианты : 22 варианта : 9- 11 классы под ред. М. Ю. Демидовой. М. : Национальное образование, 2011. – 176 с. – (ЕГЭ. ФИПИ – школе).
  5. ЕГЭ-2012. Физика: типовые экзаменационные варианты: 32 варианта: 9-11 классы/ под редакцией М. Ю. Демидовой.- М. 6 Национальное образование, 2011
  6. Орлов В. А. Оптимальный банк заданий для подготовки учащихся. Единый государственный экзамен 2012. Физика. Учебное пособие./ В. А. Орлов, М. Ю. Демидова, Г. Г. Никифоров, Н. К. Ханнанов. – Москва: Интеллект – Центр, 2012
  7. М. Ф. Дмитриев, М. Я. Юшина Сборник задач по элементарной физике под редакцией М. Ф. Дмитриева   Москва 2004
  8. Отличник ЕГЭ. Физика. Решение сложных задач под редакцией В. А. Макарова, М. В. Семёнова, А. А, Якуты; ФИПИ. – М.: Интеллект – Центр, 2011 – 368 с.

Материально- техническое обеспечение образовательного процесса:

Перечень учебного оборудования кабинета физики, используемого для обеспечения  

 образовательного процесса прилагается.



Предварительный просмотр:

Муниципальное бюджетное общеобразовательное учреждение

средняя общеобразовательная школа № 3

имени В.К. Сурина г. Белорецк

муниципального района Белорецкий район

 Республики Башкортостан

 РАССМОТРЕНО                                                                  СОГЛАСОВАНО                                                                УТВЕРЖДЕНО

заседание ШМО                                                                       зам. директора                                                                  приказом директора        

от 30 августа 2016 г.                                                                по УВР                                                                               МОБУ СОШ №

 протокол № 1                                                                          Ульянова Н.В.                                                                   г. Белорецк РБ

_________________                                                                 _____________                                                        ___________________                                                      

                                                                                                                                                                                             

                                                                                                « 01»   сентября  2016 г.                                           от 01.09.2016 г. № ____        

 Адаптированная рабочая программа учебного курса по

 ФИЗИКЕ

Классы  7, 8,9

Учитель Точилкина Юлия Валерьевна

Количество часов по рабочей программе:

         всего 7, 8, 9  классы – 68 часов;

         в неделю 7, 8, 9  классы - 2 часа в неделю

Из них:

         плановых контрольных работ  7класс - 4, 8 класс – 5, 9класс - 5

         лабораторных работ  7 класс – 10, 8 класс – 10, 9 класс -6

     

Адаптированная рабочая программа учебного курса «ФИЗИКА» для детей обучающихся в классах коррекционно-развивающего обучения, разработана на основе Фундаментального ядра содержания общего образования и Требований к результатам общего образования, представленных в федеральном государственном образовательном стандарте ОО второго поколения.

УМК

  1. Физика. 7 кл.: учеб. для общеобразоват. учреждений. / А.В. Пёрышкин. –      11-е изд., стереотип. – М.: Дрофа, 2012. – 192 с.: ил.
  2. Физика. 8 кл.: учеб. для общеобразоват. учреждений. / А.В. Пёрышкин. – 9-е изд., стереотип. – М.: Дрофа, 2013. – 191, (1) с.: ил
  3. Сборник задач по физике: Учеб. пособие для учащихся 7 – 9 кл. сред. шк. / В.И. Лукашик – 6-е изд., перераб. – М.: Просвещение, 2014. – 191 с.: ил.
  4. Физика. 9 кл.: учеб. для общеобразоват. учреждений. / А.В. Пёрышкин. – 9-е изд., стереотип. – М.: Дрофа, 2013. – 300  с.: ил

2016-2017 учебный год

Рабочая программа

Для основного общего образования

(Базовый уровень, адаптирован для специальных коррекционных классов).

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Статус документа.

Рабочая программа составлена на основе обязательного минимума содержания физического образования для основной школы и в соответствии с учебным планом школы (по 2 учебных часа в неделю в 7, 8, 9 классах соответственно). За основу данной  Рабочей программы  взята Программа «Физика 7-9 классы». Авторы  программы Е. М. Гутник, А. В. Перышкин («Программы  для  общеобразовательных  учреждений: Физика. Астрономия. 7-11 кл.» / Сост. Ю. И. Дик, В. А. Коровин. – М.: Дрофа,  2000, стр.44-51).            Содержание Рабочей программы адаптировано к уровню классов коррекции   с учетом рекомендаций и изменений, внесенных в программу обучения детей с задержкой психического развития (ЗПР) (ж. «Дефектология» № 4, 1993г.)

       

          Изучение физики в образовательных учреждениях основного общего образования направлено на достижение следующих целей:

​ освоение знаний о механических, тепловых, электромагнитных и квантовых явлениях; величинах, характеризующих эти явления; законах, которым они подчиняются; методах научного познания природы и формирование на этой основе представлений о физической картине мира;

​ овладение умениями проводить наблюдения природных явлений, описывать и обобщать результаты наблюдений, использовать простые измерительные приборы для изучения физических явлений; представлять результаты наблюдений или измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости; применять полученные знания для объяснения разнообразных природных явлений и процессов, принципов действия важнейших технических устройств, для решения физических задач;

​ развитие познавательных интересов, интеллектуальных и творческих способностей, самостоятельности в приобретении новых знаний при решении физических задач и выполнении экспериментальных исследований с использованием информационных технологий;

​  воспитание убежденности в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважения к творцам науки и техники; отношения к физике как к элементу общечеловеческой культуры;

​ применение полученных знаний и умений для решения практических задач повседневной жизни, для обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды

Важными коррекционными задачами курса физики в классах коррекционно-развивающего обучения являются:

​ развитие у учащихся основных мыслительных операций (анализ, синтез, сравнение, обобщение);

​ нормализация взаимосвязи деятельности с речью;

​ формирование приемов умственной работы (анализ исходных данных, планирование деятельности, осуществление поэтапного и итогового самоконтроля);

​ развитие речи, умения использовать при пересказе соответствующую терминологию;

​ развитие общеучебных умений и навыков.

Общая характеристика учебного предмета.

       Физика как наука о наиболее общих законах природы, выступая в качестве учебного предмета в школе, вносит существенный вклад в систему знаний об окружающем мире. Она раскрывает роль науки в экономическом и культурном развитии общества, способствует формированию современного научного мировоззрения. Для решения задач формирования основ научного мировоззрения, развития интеллектуальных способностей и познавательных интересов школьников в процессе изучения физики основное внимание следует уделять не передаче суммы готовых знаний, а знакомству с методами научного познания окружающего мира, постановке проблем, требующих от учащихся самостоятельной деятельности по их разрешению. Подчеркнем, что ознакомление школьников с методами научного познания предполагается проводить при изучении всех разделов курса физики, а не только при изучении специального раздела «Физика и физические методы изучения природы».

      Гуманитарное значение физики как составной части общего образовании состоит в том, что она вооружает школьника научным методом познания, позволяющим получать объективные знания об окружающем мире.

     Знание физических законов необходимо для изучения химии, биологии, физической географии, технологии, ОБЖ.

      Курс физики в примерной программе основного общего образования структурируется на основе рассмотрения различных форм движения материи в порядке их усложнения: механические явления, тепловые явления, электромагнитные явления, квантовые явления. Физика в основной школе изучается на уровне рассмотрения явлений природы, знакомства с основными законами физики и применением этих законов в технике и повседневной жизни.

          Усвоение учебного материала по физике вызывает большие затруднения у учащихся с ЗПР в связи с такими их особенностями, как быстрая утомляемость, недостаточность абстрактного мышления, недоразвитие пространственных представлений, низкие общеучебные умения и навыки. Учет особенностей учащихся классов КРО требует, чтобы при изучении нового материала обязательно происходило многократное его повторение; расширенное рассмотрение тем и вопросов, раскрывающих связь физики с жизнью; актуализация первичного жизненного опыта учащихся

         Для эффективного усвоения учащимися с ЗПР учебного материала по физике в программу общеобразовательной школы внесены следующие изменения: добавлены часы на изучение тем и вопросов, имеющих практическую направленность; предусмотрены вводные уроки, резервные часы для повторения слабо усвоенных тем и решения задач; увеличено время на проведение лабораторных работ; часть материала, не включенного в «Требования к уровню подготовки выпускников», изучается в ознакомительном плане, а некоторые, наиболее сложные вопросы исключены из рассмотрения.

Место предмета в учебном плане

 Федеральный базисный учебный план для образовательных учреждений Российской Федерации отводит 204 часа для обязательного изучения физики на ступени основного общего образования. В том числе в VII, VIII и IX классах по 68 учебных часов из расчета 2 учебных часа в неделю. В примерной программе предусмотрен резерв свободного учебного времени в объеме 21 час (10%) для реализации авторских подходов, для коррекционных занятий, использования разнообразных форм организации учебного процесса, внедрения современных методов обучения и педагогических технологий, учета местных условий.                  

Изучение  теории адаптируется с условиями преподавания в классах КРО. Для лучшего усвоения материала используются коррекционно-развивающие упражнения.

ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ.

В результате изучения физики 7-9 класса ученик должен

знать/понимать:

​ смысл понятий: физическое явление, физический закон, вещество, взаимодействие, электрическое поле, магнитное поле, волна, атом, атомное ядро, ионизирующие излучения;

​ смысл физических величин: путь, скорость, ускорение, масса, плотность, сила, давление, импульс, работа, мощность, кинетическая энергия, потенциальная энергия, коэффициент полезного действия, внутренняя энергия, температура, количество теплоты, удельная теплоемкость, влажность воздуха, электрический заряд, сила электрического тока, электрическое напряжение, электрическое сопротивление, работа и мощность электрического тока, фокусное расстояние линзы;

​ смысл физических законов: Паскаля, Архимеда, Ньютона, всемирного тяготения, сохранения импульса и механической энергии, сохранения энергии в тепловых процессах, сохранения электрического заряда, Ома для участка электрической цепи, Джоуля-Ленца, прямолинейного распространения света, отражения света;

Уметь:

​ описывать и объяснять физические явления: равномерное прямолинейное движение, равноускоренное прямолинейное движение, передачу давления жидкостями и газами, плавание тел, механические колебания и волны, диффузию, теплопроводность, конвекцию, излучение, испарение, конденсацию, кипение, плавление, кристаллизацию, электризацию тел, взаимодействие электрических зарядов, взаимодействие магнитов, действие магнитного поля на проводник с током, тепловое действие тока, электромагнитную индукцию, отражение, преломление и дисперсию света;

​ использовать физические приборы и измерительные инструменты для измерения физических величин: расстояния, промежутка времени, массы, силы, давления, температуры, влажности воздуха, силы тока, напряжения, электрического сопротивления, работы и мощности электрического тока;

​ представлять результаты измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости: пути от времени, силы упругости от удлинения пружины, силы трения от силы нормального давления, периода колебаний маятника от длины нити, периода колебаний груза на пружине от массы груза и от жесткости пружины, температуры остывающего тела от времени, силы тока от напряжения на участке цепи, угла отражения от угла падения света, угла преломления от угла падения света;

​ выражать результаты измерений и расчетов в единицах Международной системы;

​ приводить примеры практического использования физических знаний о механических, тепловых, электромагнитных и квантовых явлениях;

​ решать задачи на применение изученных физических законов;

​ осуществлять самостоятельный поиск информации естественнонаучного содержания с использованием различных источников (учебных текстов, справочных и научно-популярных изданий, компьютерных баз данных, ресурсов Интернета), ее обработку и представление в разных формах (словесно, с помощью графиков, математических символов, рисунков и структурных схем);

​ использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

​ обеспечения безопасности в процессе использования транспортных средств, электробытовых приборов, электронной техники;

​ контроля за исправностью электропроводки, водопровода, сантехники и газовых приборов в квартире;

​ рационального применения простых механизмов;

​ оценки безопасности радиационного фона.

РАБОЧАЯ ПРОГРАММА

(СОДЕРЖАНИЕ ОБРАЗОВАНИЯ)

ФИЗИКА

7 класс (Перышкин А.В.

(68 часов, 2 часа в неделю)

I.  Введение (4 ч)

         Предмет и методы физики. Экспериментальный метод изучения природы. Измерение физических величин. Погрешность измерения. Обобщение результатов эксперимента. Наблюдение простейших явлений и процессов природы с помощью органов чувств (зрения, слуха, осязания). Использование простейших измерительных приборов. Схематическое изображение опытов. Методы получения знаний в  физике. Физика и техника.

Фронтальная лабораторная работа.

1.Определение цены деления измерительного прибора.

Школьный компонент

Спутниковая информация для изучения загрязнения атмосферы и окружающей среды. Хозяйственная деятельность человека и ее влияние на окружающую среду.

Взаимосвязь природы и человеческого общества. Коррекционные задания.

II. Первоначальные сведения о строении вещества. (6 часов.)

Гипотеза о дискретном строении вещества. Молекулы. Непрерывность и хаотичность движения частиц вещества. Диффузия. Броуновское движение. Модели газа, жидкости и твердого тела. Взаимодействие частиц вещества. Взаимное притяжение и отталкивание молекул.

Три состояния вещества.

Фронтальная лабораторная работа.

1.Измерение размеров малых тел.

Школьный компонент 

Распространение загрязняющих веществ в атмосфере и водоемах.

Загрязнение поверхности водоемов нефтяной пленкой.

Источники твердых, жидких и газообразных веществ, загрязняющих окружающую среду. Коррекционные задания

III. Взаимодействие тел. (22 часа.)

Механическое движение. Равномерное и не равномерное движение. Скорость.

 Расчет пути и времени движения. Траектория. Прямолинейное движение.

Взаимодействие тел. Инерция. Масса. Плотность. Измерение массы тела на весах. Расчет массы и объема по его плотности.

Сила. Силы в природе: тяготения, тяжести, трения, упругости. Закон Гука. Вес тела. Связь между силой тяжести и массой тела.  Динамометр. Сложение двух сил, направленных по одной прямой. Трение. Упругая деформация.

Фронтальная лабораторная работа.

3.Измерение массы тела на рычажных весах.

4.Измерение объема тела.

5.Измерение плотности твердого вещества.

6.Градуирование пружины и измерение сил динамометром.

 

Школьный компонент 

Скорость движения автотранспорта и уменьшение выброса в атмосферу отравляющих веществ. Вредное трение и проблема энергоснабжения. Коррекционные задания.

IV.Давление твердых тел, жидкостей и газов. (22 часа)

Давление. Опыт Торричелли. Барометр-анероид. Атмосферное давление на различных высотах. Закон Паскаля. Способы увеличения и уменьшения давления.

Давление газа. Вес воздуха. Воздушная оболочка. Измерение атмосферного давления. Манометры. Поршневой жидкостный насос. Передача давления твердыми телами, жидкостями, газами. Действие жидкости и газа на погруженное в них тело. Расчет давления жидкости на дно и стенки сосуда. Сообщающие сосуды. Архимедова сила.  Гидравлический пресс. Плавание тел. Плавание судов. Воздухоплавание.

Фронтальная лабораторная работа.

7.Измерение выталкивающей силы, действующей на погруженное в жидкость тело.

8.Выяснение условий плавания тела в жидкости.

Школьный компонент 

Водоисточники, качество питьевой воды.

Изменение состава атмосферы в результате человеческой деятельности.

Экологически вредные последствия использования водного и воздушного транспорта. Единый мировой воздушный и водный океаны. Коррекционные занятия.

V. Работа и мощность.  Энергия. (13 часов.)

Работа. Мощность. Энергия.  Кинетическая энергия. Потенциальная энергия. Закон сохранения механической энергии. Простые механизмы. КПД механизмов.

Рычаг. Равновесие сил на рычаге. Момент силы. Рычаги в технике, быту и природе. Применение закона равновесия рычага к блоку. Равенство работ при использовании простых механизмов. «Золотое правило» механики.

Фронтальная лабораторная работа.

9.Выяснение условия равновесия рычага.

10.Измерение КПД при подъеме по наклонной плоскости.

Школьный компонент

Понятие равновесия в экологическом смысле. Экологическая безопасность различных механизмов. Связь прогресса человеческой цивилизации с энергопотреблением. Использование энергии рек и ветра. Коррекционные занятия.

8 класс (Перышкин А.В.)

(68 часов, 2 часа в неделю)

I.Тепловые явления (28 часов)

Внутренняя энергия. Тепловое движение. Температура. Теплопередача. Необратимость процесса теплопередачи. Связь температуры вещества с хаотическим движением его частиц. Способы изменения внутренней энергии.

Теплопроводность. Количество теплоты. Удельная теплоемкость. Конвекция.

Излучение. Закон сохранения энергии в тепловых процессах. Плавление и кристаллизация. Удельная теплота плавления. График плавления и отвердевания.

Преобразование энергии при изменениях агрегатного состояния вещества.

Испарение и конденсация. Удельная теплота парообразования и конденсации. Работа пара и газа при расширении. Кипение жидкости. Влажность воздуха.

Тепловые двигатели. Энергия топлива. Удельная теплота сгорания.

Агрегатные состояния. Преобразование энергии в тепловых двигателях.

КПД теплового двигателя.

Фронтальная лабораторная работа.

1.Сравнение количеств теплоты при смешивании воды  разной температуры.

2. Измерение удельной теплоемкости твердого тела.

Школьный компонент

Теплопередача в природе и экологические вопросы современности. Парниковый эффект. Новые виды топлива. Температурный режим класса.

Отрицательные последствия использования тепловых двигателей. Нарушение теплового баланса природы. Теплоизоляция и ее роль в природе. Коррекционные занятия.

II. Электрические явления. (28 часов)

Электризация тел. Электрический заряд. Взаимодействие зарядов. Два вида электрического заряда. Дискретность электрического заряда. Электрон.

Закон сохранения электрического заряда. Электрическое поле. Электроскоп. Строение атомов. Объяснение электрических явлений. Проводники и непроводники электричества. Действие электрического поля на электрические заряды. Постоянный электрический ток. Источники электрического тока.

Носители свободных электрических зарядов в металлах, жидкостях и газах. Электрическая цепь и ее составные части. Сила тока. Единицы силы тока. Амперметр. Измерение силы тока. Напряжение. Единицы напряжения. Вольтметр. Измерение напряжения. Зависимость силы тока от напряжения. Сопротивление. Единицы сопротивления. Закон Ома для участка электрической цепи. Расчет сопротивления проводников. Удельное сопротивление. Примеры на расчет сопротивления проводников, силы тока и напряжения. Реостаты.

Последовательное и параллельное соединение проводников. Действия электрического тока. Закон Джоуля-Ленца. Работа электрического тока. Мощность электрического тока. Единицы работы электрического тока, применяемые на практике. Счетчик электрической энергии. Электронагревательные приборы. Расчет электроэнергии, потребляемой бытовыми приборами. Нагревание проводников электрическим током.

Количество теплоты, выделяемое проводником с током. Лампа накаливания. Короткое замыкание. Предохранители.

Фронтальная лабораторная работа.

3.Сборка электрической цепи и измерение силы тока в ее различных участках.

4. Измерение напряжения на различных участках электрической цепи.

5. Регулирование силы тока реостатом.

6.Измерение сопротивления проводника с помощью амперметра и вольтметра.

7.Измерение работы и мощности электрического тока.

8.Измерение КПД установки с электрическим нагревателем.

Школьный компонент 

Влияние стационарного электричества на биологические объекты. Использование электричества в производстве, быту. Атмосферное электричество. Электрический способ очистки воздуха от пыли. Разряд молний и источники разрушения озона. Изменение электропроводности загрязненной атмосферы. Коррекционные занятия.

III. Световые явления. (9 часов)

Источники света. Прямолинейное распространение,  отражение и преломление света. Луч.  Закон отражения света. Плоское зеркало. Линза. Оптическая сила линзы. Изображение даваемое линзой. Измерение фокусного расстояния собирающей линзы. Оптические приборы. Глаз и зрение. Очки.

9 КЛАСС (ПЕРЫШКИН А.В.)

 (68 ч, 2 ч в неделю)

I. Законы взаимодействия и движения тел (27 ч)

Материальная точка. Система отсчёта.

Перемещение. Скорость прямолинейного равномерного движения.

Прямолинейное равноускоренное движение: мгновенная скорость, ускорение, перемещение.

Графики зависимости кинематических величин от времени при равномерном и равноускоренном движении.

Относительность механического движения.

Инерциальные системы отсчёта. Первый, второй и третий законы Ньютона.

Свободное падение. Закон всемирного тяготения. Искусственные спутники Земли.

Импульс. Закон сохранения импульса. Ракеты.

Фронтальные лабораторные работы.

  1. Исследование равноускоренного движения без начальной скорости.
  2. Измерение ускорения свободного падения.

II. Механические колебания и волны. Звук (11 ч)

Колебательное движение. Колебания груза на пружине. Свободные колебания. Колебательная система. Маятник. Амплитуда, период, частота колебаний.

Превращения энергии при колебательном движении. Затухающие колебания. Вынужденные колебания.

Распространение колебаний в упругих средах. Поперечные и продольные волны. Связь длины волны со скоростью её распространения и периодом (частотой).

Звуковые волны. Скорость звука. Высота и громкость звука. Эхо.

Фронтальная лабораторная  работа.

  1. Исследование зависимости периода и частоты свободных колебаний маятника от его длины.

III. Электромагнитные явления (12 ч)

Однородное и неоднородное магнитное поле.

Направление тока и направление линий его магнитного поля. Правило буравчика.

Обнаружение магнитного поля. Правило левой руки.

Индукция магнитного поля Магнитный поток. Электромагнитная индукция.

Генератор переменного тока. Преобразования энергии в электрогенераторах. Экологические проблемы, связанные с тепловыми и гидроэлектростанциями.

Электромагнитное поле. Электромагнитные волны. Скорость распространения электромагнитных волн. Электромагнитная природа света.

Фронтальная лабораторная работа.

  1. Изучение явления электромагнитной индукции.

IV. Строение атома и атомного ядра (14 ч)

Радиоактивность как свидетельство сложного строения атомов. Альфа-, бета и гамма-излучения.

Опыты Резерфорда. Ядерная модель атома.

Радиоактивные превращения атомных ядер.

Протонно-нейтронная модель ядра. Зарядовое и массовое числа.

Ядерные реакции. Деление и синтез ядер. Сохранение зарядового и массового чисел при ядерных реакциях.

Энергия связи частиц в ядре. Выделение энергии при делении и синтезе ядер. Излучение звёзд. Ядерная энергетика. Экологические проблемы работы атомных электростанций.

Методы наблюдения и регистрации частиц в ядерной физике. Дозиметрия.

Фронтальные лабораторные работы.

  1. Изучение треков заряженных частиц по готовым фотографиям.
  2. Изучение деления ядра урана по фотографии треков.

Обобщающее повторение (6 ч)

Демонстрации.

  1. Прямолинейное и криволинейное движение.
  2. Направление скорости при движении по окружности.
  3. Падение тел в разряжённом пространстве (в трубке Ньютона).
  4. Свободные колебания груза на нити и груза на пружине.
  5. Образование и распространение поперечных и продольных волн.
  6. Колеблющееся тело как источник звука.
  7. Второй закон Ньютона.
  8. Третий закон Ньютона.
  9. Закон сохранения импульса.
  10. Реактивное движение.
  11. Модель ракеты.
  12. Стробоскопический метод изучения движения тела.
  13. Запись колебательного движения.
  14. Взаимодействие постоянных магнитов.
  15. Расположение магнитных стрелок вокруг прямого проводника и катушки с током.
  16. Действие магнитного поля на ток.
  17. Движение прямого проводника и рамки с током в магнитном поле.
  18. Электромагнитная индукция.
  19. Получение переменного тока при вращении витка в магнитном поле.
  20. Модель опыта Резерфорда.
  21. Наблюдение треков частиц в камере Вильсона.
  22. Устройство и действие счетчика ионизирующих частиц.

Нормы оценки знаний и умений учащихся по физике

При оценке ответов учащихся учитываются следующие знания:

о физических явлениях:

  • признаки явления, по которым оно обнаруживается;
  • условия, при которых протекает явление;
  • связь данного явления с другими;
  • объяснение явления на основе научной теории;
  • примеры учета и использование его на практике;

о физических опытах:

  • цель, схема, условия, при которых осуществлялся опыт, ход и результаты опыта;

о физических понятиях и величинах:

  • явления или свойства, которые характеризуются данным понятием (величиной);
  • определение понятия (величины);
  • формулы, связывающие данную величину с другими;
  • единицы физической величины;
  • способы измерения величины;

о физических законах:

  • формулировка и математическое выражение закона;
  • опыты, подтверждающие его справедливость;
  • примеры учета и применения на практике;
  • условия применимости (для старших классов);

о физических теориях:

  • опытное обоснование теории;
  • основные понятия, положения, законы, принципы;
  • основные следствия;
  • практические применения;
  • границы применимости (для старших классов);

о приборах, механизмах, машинах:

  • назначение;
  • принцип действия и схема устройства;
  • применение и правила пользования приборами.

При оценке ответов учащихся учитываются следующие умения:

  • применять понятия, законы и теории для объяснения явлений природы и техники;
  • самостоятельно работать с учебником;
  • решать задачи на основе известных законов и формул;
  • пользоваться справочными таблицами физических величин;

При оценке лабораторных работ учитываются умения:

  • планирование проведения опыта;
  • собирать установку по схеме;
  • пользоваться измерительными приборами;
  • проводить наблюдения,  снимать показания измерительных приборов, составлять таблицы  зависимости величин и строить графики;
  • оценивать и вычислять погрешности измерений (в старших классах);
  • составлять краткий отчет и делать выводы по проделанной работе.

Оценка ответов учащихся

Оценка “5” ставится в том случае, если учащийся:

  • обнаруживает верное понимание физической сущности рассматриваемых явлений и закономерностей, законов и теорий, а также правильное определение физических величин, их единиц и способов измерения
  • правильно выполнять чертежи, схемы и графики, сопутствующие ответу;
  • строит  ответ по собственному плану, сопровождает рассказ новыми примерами, умеет применить знания в новой ситуации при выполнении практических заданий
  • может установить связь между изучаемым и ранее изученным материалом по курсу физики, а также с материалом, усвоенным при изучении других предметов.

Оценка “4” ставится, если ответ удовлетворяет основным требованиям к ответу на оценку “5”, но учащийся не использует собственный план ответа, новые примеры, не применяет знания в новой ситуации, не использует связи с ранее изученным материалом и материалом, усвоенным при изучении других предметов.

Оценка “3” ставится, если большая часть ответа удовлетворяет требованиям к ответу на  оценку “4”, но в ответе обнаруживаются отдельные пробелы, не препятствующие дальнейшему усвоению программного материала; учащийся умеет применять полученные знания при решении простых задач с использованием готовых формул, но затрудняется при решении задач, требующих преобразования формул.

Оценка “2”  в том случае, если учащийся не овладел основными знаниями и умениями в соответствии с требованиями программы.

В письменных контрольных работах учитывается также, какую часть работы выполнил ученик.

Оценка лабораторных работ

Оценка “5” ставится в том случае, если учащийся:

  • выполнил работу в полном объеме с соблюдением необходимой последовательности проведения опытов и измерений
  • самостоятельно и рационально смонтировал необходимое оборудование, все опыты провел в условиях режима, обеспечивающих получение правильных результатов и выводов; соблюдал требования безопасности труда;
  • в отчете правильно и аккуратно выполнил все записи, таблицы, рисунки, чертежи, графики, вычисления;
  • правильно выполнил анализ погрешностей.

Оценка “4” ставится в том случае, если были выполнены требования к оценке “5”, но учащийся допустил недочеты или негрубые ошибки.

Оценка “3” ставится, если результат выполненной части таков, что позволяет получить правильные выводы, но в ходе проведения опыта и измерений были допущены ошибки.

Оценка “2” ставится, если результаты не позволяют сделать правильных выводов, если опыты, измерения, вычисления, наблюдения производились неправильно.

Во всех случаях оценка снижается, если не соблюдал требования безопасности труда.

Оценка письменных контрольных работ

Оценка “5” ставится за работу, выполненную полностью без ошибок и недочетов.

Оценка “4” ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов.

Оценка “3” ставится, если ученик правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и трех недочетов, при наличии четырех – пяти недочетов.

Оценка “2” ставится, если число ошибок и недочетов превысило норму для оценки 3 или правильно выполнено менее 2/3 всей работы.

Оценка за решение задач

Оценка “5” ставится за работу, в которой нет ошибок и допущен не более чем один недочет, (приведены полные объяснения хода решения и обоснования правомерности применяемых законов и соотношений, а также выполнена проверка ответа).

Оценка “4” ставится за работу, выполненную полностью, но содержащую:

- не более 1 негрубой ошибки и одного недочета;

- не более двух недочетов.

Такая же оценка выставляется за работу, в которой отсутствуют указанные недостатки, (но нечетко выполнены объяснение решения, обоснование применяемых законов и соотношений и проверка правильности ответа).

Оценка “3” ставится в том случае, когда выполнено не менее половины работы и при этом в ней   обнаруживается:

      - не более двух грубых;    

      - одна грубая, одна негрубая и один недочет;

      - не более трех негрубых;

      - одна негрубая и три недочета;

      - при отсутствии ошибок допущено 4-5 недочетов;

Оценка “2” ставится, когда выполнено менее половины работы или превышены нормы ошибок для оценки «3».

               За оригинальность и находчивость допускаются поощрительные баллы, но общая оценка при этом не может быть   выше «5».

Оценка за ответы по теории

Оценка “5” за устный или письменный ответ по теории ставится в том случае, если отвечающий:

 -  демонстрирует полное понимание физической сущности рассматриваемых явлений и закономерностей, знание законов и  теорий, подтверждает их  собственными конкретными примерами, показывает типы задач по данной  теме;

 - дает точные и лаконичные определения основных понятий, формулировки законов, содержание теории, методы измерений и единиц измерения физических величин;

 - ответ сопровождается чертежами, графиками, рисунками, выполняет их грамотно и аккуратно; правильно записывает формулы, пользуется принятой системой условных обозначений;

 - при ответе показывает самостоятельность и аргументированность суждений, умеет делать обобщения собственные выводы, в ответ включает самое главное, а не повторяет дословно тест из учебника, составляет логически стройный план ответа, связывает ответ с материалом смежных тем и предметов.

Оценка “4” ставится в том случае, когда ответ соответствует названным выше требованиям, но отвечающий

 - допустил в ответе одну негрубую ошибку или не более двух недочетов, но сумел исправить их самостоятельно;

 - слишком близко придерживался текста учебника, затрудняется с иллюстрацией ответа на примерах и задачах,      допускает неточность в определении понятий и в формулировках законов;

Оценка “3” ставится в том случае, когда отвечающий правильно понимает физическую сущность рассматриваемых явлений и закономерностей, но при ответе:

- допускает ошибки, свидетельствующие о пробелах в усвоении существенных вопросов курса физики, если это не препятствует пониманию и усвоению других тем и разделов;

-  испытывает затруднения в примени конкретных физических явлений на основе теорий и законов или в подтверждении теорий примерами их практического применения;

- неполно отвечает на основные и дополнительные вопросы или механически воспроизводит текст учебника без его осмысления, не может выделить главное в вопросе и логически последовательно построить ответ;

- допускает одну - две грубые ошибки, но исправляет их самостоятельно или с незначительной помощью учителя, обнаруживает непонимание отдельных фрагментов учебного материала.

Оценка “2” ставится в том случае, когда отвечающий:

- не знает и не понимает значительную или основную часть программного материала в рамках спрашиваемого материала;

- Имеет слабо сформированные и неполные знания и не умеет применять их к решению конкретных вопросов и задач стандартного типа;

- при ответе на один из вопросов допускает более двух грубых ошибок, которые не может исправить даже с помощью учителя.

Перечень ошибок

Грубые ошибки

  1. Незнание определений основных законов, понятий, правил, основных положений теории, формул, общепринятых символов обозначения физических величин, единиц их измерения.
  2. Неумение выделять в ответе главное.
  3. Неумение применять знания для решения задач и объяснения физических явлений: неправильно сформулированные вопросы задачи или неверные объяснения хода ее решения; незнание приемов решения задач, аналогичные ранее решенным в классе; ошибки, показывающие неправильное понимание условия задачи или неправильное истолкование решения.
  4. Неумение читать и строить графики и принципиальные схемы.
  5. Неумение подготовить к работе установку или лабораторное оборудование, провести опыт, необходимые расчеты или использовать полученные данные для выводов.
  6. Неумение определять показание измерительного прибора.
  7. Небрежное отношение  к лабораторному оборудованию и измерительным приборам.
  8. Нарушение требований правил безопасного выполнения труда при выполнении эксперимента.

Негрубые ошибки

  1. Неточности формулировок, определений, понятий, законов, теорий, вызванные неполнотой охвата основных признаков определяемого понятия; ошибки, вызванные несоблюдением условий проведения опыта и измерений.
  2. Ошибки в условных обозначениях принципиальных схемах; неточности чертежей, графиков, схем.
  3. Пропуск или неточное написание наименований единиц физических величин.
  4. Нерациональный выбор хода решения.

Недочёты

  1. Нерациональные записи при вычислениях, нерациональные приемы вычислений, преобразований и решений задач.
  2. Арифметические ошибки в вычислениях, если эти ошибки грубо не искажают реальность полученного результата.
  3. Отдельные погрешности в формулировке вопроса или ответа.
  4. Небрежное выполнение записей, чертежей, схем, графиков.
  5. Орфографические и пунктуационные ошибки.


По теме: методические разработки, презентации и конспекты

Рабочая программа по физике 10 класс.Мякишев Г.Я., Буховцев Б.Б. Физика-10

Рабочая программа по физике 10 класс.Мякишев Г.Я., Буховцев Б.Б. Физика-10, пояснительная записка, календарно-тематическое планирование, базовый уровень-68 часов, 2 часа в неделю...

Рабочая программа по физике 11 класс.Мякишев Г.Я., Буховцев Б.Б. Физика-11

Рабочая программа по физике 11 класс.Мякишев Г.Я., Буховцев Б.Б. Физика-11, пояснительная записка, календарно тематическое планирование, 68 часов, 2 часа в неделю, базовый уровень...

Рабочая программа по физике для обучающихся 10-11классов (базовый уровень) к комплекту учебников «Физика» авт.Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский

Данная рабочая программа реализуется через комплект учебников физики 10-11 класса авторов Г.Я. Мякишев и Б.Б. Буховцев, который наиболее полно отражает идеи «Обязательного минимума содержания физическ...

Рабочая программа по физике к учебнику Физика. 10 класс. Л. Э. Генденштейн, Ю. И. Дик

Рабочая программа по физике к учебнику Физика. 10 класс. Л. Э. Генденштейн, Ю. И. Дик 3 часа в неделю...

Рабочая программа по физике для 7-го класса на основе авторской программы Е.М. Гутника, А.В. Пёрышкина. «Физика». 7-9 класс.

ПОЯСНИТЕЛЬНАЯ  ЗАПИСКА Рабочая программа разработана на основе авторской программы Е.М. Гутника, А.В. Пёрышкина. «Физика». 7-9 класс. (Программы для общеобразовательных учреждений. Физика. А...

Рабочая программа по физике 10-11 класс (Базовый уровень) к учебнику "Физика 10" авт. Г.Я. Мякишев, Б.Б.Буховцев, Н.Н. Сотский, "Физика 11" авт. Г.Я. Мякишев, Б.Б.Буховцев

Программа по физике для полной общеобразовательной школы составлена на основе фундаментального ядра содержания общего образования и требований к результатам полного общего образования,  представл...