Рабочая программа по алгебре 7-9 класс
рабочая программа по алгебре (7, 8, 9 класс)
Рабочая программа по алгебре в 7-9 классах к учебнику Макарычева, Ю. Н. Алгебра. 7-9 класс - М. : Просвещение.
Скачать:
Вложение | Размер |
---|---|
rabochaya_programma_po_algebre_7-9_.docx | 113.85 КБ |
Предварительный просмотр:
Рабочая программа составлена в соответствии с требованием Федерального государственного образовательного стандарта основного общего образования и с учетом примерной основной образовательной программы основного общего образования по математике и на основе авторской программы (Т.А. Бурмистровой 7-9 классы) по линии учебников(УМК) Макарычева, Ю. Н. Алгебра. 7-9 класс - М. : Просвещение.
Планируемые результаты освоения предмета на курс алгебры 7-9 классы
В личностном направлении:
- сформированность ответственного отношения к учению, готовность и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учетом устойчивых познавательных интересов;
- сформированность целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;
- сформированность коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими, в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;
- умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументация, приводить примеры и контпримеры;
- представление о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости, для развития цивилизации;
- критичность мышления, умение распознать логически некорректные высказывания, отличать гипотезу от фактов;
- креативность мышления, инициатива, находчивость, активность при решении алгебраических задач;
- умение контролировать процесс и результат учебной математической деятельности;
- способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.
В метапредметном направлении:
- умение самостоятельно планировать альтернативные пути достижение целей, осознанно выбирать наиболее эффективные способы решений учебных и познавательных задач;
- умение осуществлять контроль по результатам и по способу действий на уровне произвольного внимания и вносить необходимые коррективы;
- умение адекватно оценивать правильность и ли ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;
- осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовидовых связей;
- умение устанавливать причинно-следственные связи; строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;
- умение создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;
- умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределение функций и ролей участников, взаимодействие и общие способы работы; умение работать в группе: находить общие решения и разрешать конфликты на основе согласования позиций и учета интересов; слушать партнера; формулировать, аргументировать и отстаивать свое мнение;
- сформированность учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);
- первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;
- умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
- умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решения в условиях неполной и избыточной, точной и вероятностной информации;
- умение понимать и использовать математические средства наглядности( рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
- умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
- умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
- понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
- умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
- умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.
В предметном направлении:
- умение работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи. применяя математическую терминологию и символику, использовать различные языки математики ( словесный, символический, графический), обосновывать суждения, проводить классификацию, доказывать математические утверждения;
- владение базовой понятийным аппаратом: иметь представление о числе, владение символьным языком алгебры, знание элементарных функциональных зависимостей, формирование представлений о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
- умение выполнять алгебраические преобразования рациональных выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;
- умение пользоваться математическими формулами и самостоятельно составлять формулы зависимостей между величинами на основе обобщения частных случаев и эксперимента;
- умение решать линейные и квадратные уравнения и неравенства, а также приводимые к ним уравнения, неравенства, системы; применять графические представления для решения и исследования уравнений, неравенств, систем; применять полученные умения для решения задач из математики, смежных предметов, практики;
- овладение системой функциональных понятий, функциональным языком и символикой, умение строить графики функций, описывать их свойства, использовать функционально-графические представления для описания и анализа математических задач и реальных зависимостей;
- овладение основными способами представления и анализа статистических данных; умения решать задачи на нахождение частоты и вероятности случайных событий;
- умение применять изученные понятия, результаты и методы пр решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов.
Содержание учебного предмета
«Алгебра»
7 класс
(3 часа в неделю, 102 часов в год)
1. Выражения, тождества, уравнения ( 22 часа)
Числовые выражения с переменными. Простейшие преобразования выражений. Уравнение, корень уравнения. Линейное уравнение с одной переменной. Решение текстовых задач методом составления уравнений. Статистические характеристики.
Основная цель - систематизировать и обобщить сведения о преобразованиях алгебраических выражений и решении уравнений с одной переменной.
Первая тема курса 7 класса является связующим звеном между курсом математики 5—6 классов и курсом алгебры. В ней закрепляются вычислительные навыки, систематизируются и обобщаются сведения о преобразованиях выражений и решении уравнений.
Нахождение значений числовых и буквенных выражений дает возможность повторить с учащимися правила действий с рациональными числами. Умения выполнять арифметические действия с рациональными числами являются опорными для всего курса алгебры. Следует выяснить, насколько прочно овладели ими учащиеся, и в случае необходимости организовать повторение с целью ликвидации выявленных пробелов. Развитию навыков вычислений должно уделяться серьезное внимание и в дальнейшем при изучении других тем курса алгебры.
В связи с рассмотрением вопроса о сравнении значений выражений расширяются сведения о неравенствах: вводятся знаки и дается понятие о двойных неравенствах.
При рассмотрении преобразований выражений формально-оперативные умения остаются на том, же уровне, учащиеся поднимаются на новую ступень в овладении теорией. Вводятся понятия «тождественно равные выражения», «тождество», «тождественное преобразование выражений», содержание которых будет постоянно раскрываться и углубляться при изучении преобразований различных алгебраических выражений. Подчеркивается, что основу тождественных преобразований составляют свойства действий над числами.
Усиливается роль теоретических сведений при рассмотрении уравнений. С целью обеспечения осознанного восприятия учащимися алгоритмов решения уравнений вводится вспомогательное понятие равносильности уравнений, формулируются и разъясняются на конкретных примерах свойства равносильности. Дается понятие линейного уравнения и исследуется вопрос о числе его корней. В системе упражнений особое внимание уделяется решению уравнений вида ах = b при различных значениях а и b. Продолжается работа по формированию у учащихся умения использовать аппарат уравнений как средство для решения текстовых задач. Уровень сложности задач здесь остается таким же, как в 6 классе.
Изучение темы завершается ознакомлением учащихся с простейшими статистическими характеристиками: средним арифметическими, модой, медианой, размахом. Учащиеся должны уметь использовать эти характеристики для анализа ряда данных в несложных ситуациях.
2. Функции ( 11 часов)
Функция, область определения функции. Вычисление значений функции по формуле. График функции. Прямая пропорциональность и ее график. Линейная функция и ее график.
Основная цель - ознакомить учащихся с важнейшими функциональными понятиями и с графиками прямой пропорциональности и линейной функции общего вида.
Данная тема является начальным этапом в систематической функциональной подготовке учащихся. Здесь вводятся такие понятия, как функция, аргумент, область определения функции, график функции. Функция трактуется как зависимость одной переменной от другой. Учащиеся получают первое представление о способах задания функции. В данной теме начинается работа по формированию у учащихся умений находить по формуле значение функции по известному значению аргумента, выполнять ту же задачу по графику и решать по графику обратную задачу.
Функциональные понятия получают свою конкретизацию при изучении линейной функции и ее частного вида — прямой пропорциональности. Умения строить и читать графики этих функций широко используются как в самом курсе алгебры, так и в курсах геометрии и физики. Учащиеся должны понимать, как влияет знак коэффициента на расположение в координатной плоскости графика функции у = kх, где k≠0, как зависит от значений k и b взаимное расположение графиков двух функций вида у = kх + b
Формирование всех функциональных понятий и выработка соответствующих навыков, а также изучение конкретных функций сопровождаются рассмотрением примеров реальных зависимостей между величинами, что способствует усилению прикладной направленности курса алгебры.
3. Степень с натуральным показателем ( 11 часов)
Степень с натуральным показателем и ее свойства. Одночлен. Функции у = х2, у = х3 и их графики.
Основная цель — выработать умение выполнять действия над степенями с натуральными показателями.
В данной теме дается определение степени с натуральным показателем. В курсе математики 6 класса учащиеся уже встречались с примерами возведения чисел в степень. В связи с вычислением значений степени в 7 классе дается представление о нахождении значений степени с помощью калькулятора. Рассматриваются свойства степени с натуральным показателем. На примере доказательства свойств аm • аn = аm +n , аm : аn = аm-n где m > n, (аm)п = аmn, (аb)п = аnbn учащиеся впервые знакомятся с доказательствами, проводимыми на алгебраическом материале. Указанные свойства степени с натуральным показателем находят применение при умножении одночленов и возведении одночленов в степень. При нахождении значений выражений, содержащих степени, особое внимание следует обратить на порядок действий.
Рассмотрение функций у = х2, у = х3 позволяет продолжить работу по формированию умений строить и читать графики функций. Важно обратить внимание учащихся на особенности графика функции у = х2 : график проходит через начало координат, ось Оу является его осью симметрии, график расположен в верхней полуплоскости.
Умение строить графики функций у = х2 и у = х3 используется для ознакомления учащихся с графическим способом решения уравнений.
4. Многочлены ( 17 часов)
Многочлен. Сложение, вычитание и умножение многочленов. Разложение многочленов на множители.
Основная цель — выработать умение выполнять сложение, вычитание, умножение многочленов и разложение многочленов на множители.
Данная тема играет фундаментальную роль в формировании умения выполнять тождественные преобразования алгебраических выражений. Формируемые здесь формально-оперативные умения являются опорными при изучении действий с рациональными дробями, корнями, степенями с рациональными показателями.
Изучение темы начинается с введения понятий многочлена, стандартного вида многочлена, степени многочлена. Основное место в этой теме занимают алгоритмы действий с многочленами - сложение, вычитание и умножение. Учащиеся должны понимать, что сумму, разность, произведение многочленов всегда можно представить в виде многочлена. Действия сложения, вычитания и умножения многочленов выступают как составной компонент в заданиях на преобразования целых выражений. Поэтому нецелесообразно переходить к комбинированным заданиям прежде, чем усвоены основные алгоритмы.
Серьезное внимание в этой теме уделяется разложению многочленов на множители с помощью вынесения за скобки общего множителя и с помощью группировки. Соответствующие преобразования находят широкое применение как в курсе 7 класса, так и в последующих курсах, особенно в действиях с рациональными дробями.
В данной теме учащиеся встречаются с примерами использования рассматриваемых преобразований при решении разнообразных задач, в частности при решении уравнений. Это позволяет в ходе изучения темы продолжить работу по формированию умения решать уравнения, а также решать задачи методом составления уравнений. В число упражнений включаются несложные задания на доказательство тождества.
5. Формулы сокращенного умножения ( 19 часов)
Формулы (а ± b)2 = а2 ± 2аb + b2, (а ± b)3 = а3 ± 3а2Ь + Заb2 ± b3, (а ± b) (а2 ± аb + b2) = а3 ± b3. Применение формул сокращенного умножения в преобразованиях выражений.
Основная цель — выработать умение применять формулы сокращенного умножения в преобразованиях целых выражений в многочлены и в разложении многочленов на множители.
В данной теме продолжается работа по формированию у учащихся умения выполнять тождественные преобразования целых выражений. Основное внимание в теме уделяется формулам (а - b) (а + b) = а2 - Ь2, (а ± b)2 = а2 +± 2аb + b2. Учащиеся должны знать эти формулы и соответствующие словесные формулировки, уметь применять их как «слева направо», так и «справа налево».
Наряду с указанными рассматриваются также формулы (a ± b)3 = а3 ± За2b + Заb2 ± b3, а3 ± b3 = (а + b) (а2 ± аb + b2). Однако они находят меньшее применение в курсе, поэтому не следует излишне увлекаться выполнением упражнений на их использование.
В заключительной части темы рассматривается применение различных приемов разложения многочленов на множители, а также использование преобразований целых выражений для решения широкого круга задач.
6. Системы линейных уравнений ( 16 часов)
Система уравнений. Решение системы двух линейных уравнений с двумя переменными и его геометрическая интерпретация. Решение текстовых задач методом составления систем уравнений.
Основная цель - ознакомить учащихся со способом решения систем линейных уравнений с двумя переменными, выработать умение решать системы уравнений и применять их при решении текстовых задач.
Изучение систем уравнений распределяется между курсами 7 и 9 классов. В 7 классе вводится понятие системы и рассматриваются системы линейных уравнений.
Изложение начинается с введения понятия «линейное уравнение с двумя переменными». В систему упражнений включаются несложные задания на решение линейных уравнений с двумя переменными в целых числах.
Формируется умение строить график уравнения а + bу = с, где а ≠ 0 или Ь ≠ 0, при различных значениях а, b, с. Введение графических образов дает возможность наглядно исследовать вопрос о числе решений системы двух линейных уравнений с двумя переменными.
Основное место в данной теме занимает изучение алгоритмов решения систем двух линейных уравнений с двумя переменными способом подстановки и способом сложения. Введение систем позволяет значительно расширить круг текстовых задач, решаемых с помощью аппарата алгебры. Применение систем упрощает процесс перевода данных задачи с обычного языка на язык уравнений.
7.Повторение(6 часов)
Планируемые результаты освоения программы по учебному предмету «Алгебра» в 7 классе
Ученик научится:
Тождественные преобразования
- Выполнять несложные преобразования для вычисления значений числовых выражений, содержащих степени с натуральным показателем;
- выполнять несложные преобразования целых выражений: раскрывать скобки, приводить подобные слагаемые;
- использовать формулы сокращенного умножения (квадрат суммы, квадрат разности, разность квадратов) для упрощения вычислений значений выражений.
Уравнения и неравенства
- Оперировать на базовом уровне понятиями: равенство, числовое равенство, уравнение, корень уравнения, решение уравнения, числовое неравенство, неравенство, решение неравенства;
- проверять справедливость числовых равенств и неравенств;
- решать системы несложных линейных уравнений;
- проверять, является ли данное число решением уравнения;
В повседневной жизни и при изучении других предметов:
- составлять и решать линейные уравнения при решении задач, возникающих в других учебных предметах.
Функции
- Находить значение функции по заданному значению аргумента;
- находить значение аргумента по заданному значению функции в несложных ситуациях;
- определять положение точки по ее координатам, координаты точки по ее положению на координатной плоскости;
- строить график линейной функции;
- определять приближенные значения координат точки пересечения графиков функций.
В повседневной жизни и при изучении других предметов:
- использовать свойства линейной функции и ее график при решении задач из других учебных предметов.
Статистика и теория вероятностей
- Иметь представление о статистических характеристиках;
- решать простейшие комбинаторные задачи методом прямого и организованного перебора;
- представлять данные в виде таблиц, диаграмм, графиков;
- читать информацию, представленную в виде таблицы, диаграммы, графика;
- определять основные статистические характеристики числовых наборов.
В повседневной жизни и при изучении других предметов:
- оценивать количество возможных вариантов методом перебора;
- сравнивать основные статистические характеристики, полученные в процессе решения прикладной задачи, изучения реального явления;
Текстовые задачи
- Решать несложные сюжетные задачи разных типов на все арифметические действия;
- составлять план решения задачи;
- интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;
- решать задачи разных типов (на работу, на покупки, на движение);
- находить процент от числа, число по проценту от него, находить процентное снижение или процентное повышение величины;
- решать несложные логические задачи методом рассуждений.
В повседневной жизни и при изучении других предметов:
- выдвигать гипотезы о возможных предельных значениях искомых в задаче величин (делать прикидку).
История математики
- Описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;
- знать примеры математических открытий и их авторов, в связи с отечественной и всемирной историей;
- понимать роль математики в развитии России.
Методы математики
- Выбирать подходящий изученный метод для решения изученных типов математических задач;
- Приводить примеры математических закономерностей в окружающей действительности и произведениях искусства.
Ученик получит возможность научиться:
Тождественные преобразования
- Оперировать понятиями степени с натуральным показателем;
- выполнять преобразования целых выражений: действия с одночленами (сложение, вычитание, умножение), действия с многочленами (сложение, вычитание, умножение);
- выполнять разложение многочленов на множители одним из способов: вынесение за скобку, группировка, использование формул сокращенного умножения;
- выделять квадрат суммы и разности одночленов;
- выполнять преобразования выражений, содержащих модуль.
Уравнения и неравенства
- Оперировать понятиями: уравнение, неравенство, корень уравнения, решение неравенства, равносильные уравнения;
- решать линейные уравнения и уравнения, сводимые к линейным с помощью тождественных преобразований;
- решать уравнения вида ;
- решать несложные уравнения в целых числах.
В повседневной жизни и при изучении других предметов:
- составлять и решать линейные уравнения при решении задач других учебных предметов;
- выполнять оценку правдоподобия результатов при решении задач других учебных предметов;
- выбирать соответствующие уравнения, неравенства для составления математической модели заданной реальной ситуации или прикладной задачи;
- уметь интерпретировать полученный при решении уравнения, неравенства результат в контексте заданной реальной ситуации или прикладной задачи.
Функции
- Оперировать понятиями: функциональная зависимость, функция, график функции, способы задания функции, аргумент и значение функции;
- строить график линейной функции;
- составлять уравнения прямой по заданным условиям: проходящей через две точки с заданными координатами, проходящей через данную точку и параллельной данной прямой;
- исследовать функцию по ее графику.
В повседневной жизни и при изучении других предметов:
- иллюстрировать с помощью графика реальную зависимость или процесс по их характеристикам;
- использовать свойства и график линейной функции при решении задач из других учебных предметов.
Текстовые задачи
- Решать простые и сложные задачи разных типов, а также задачи повышенной трудности;
- использовать разные краткие записи как модели текстов сложных задач для построения поисковой схемы и решения задач;
- выделять этапы решения задачи и содержание каждого этапа;
- уметь выбирать оптимальный метод решения задачи и осознавать выбор метода, рассматривать различные методы, находить разные решения задачи, если возможно;
- анализировать затруднения при решении задач;
- интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;
- анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние) при решении задач на движение двух объектов как в одном, так и в противоположных направлениях;
- решать разнообразные задачи «на части»,
- решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;
- осознавать и объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение), выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задач указанных типов;
- решать задачи на проценты, в том числе, сложные проценты с обоснованием, используя разные способы;
- решать логические задачи разными способами, в том числе, с двумя блоками и с тремя блоками данных с помощью таблиц;
- решать задачи по комбинаторике и теории вероятностей на основе использования изученных методов и обосновывать решение;
- решать несложные задачи по математической статистике;
- овладеть основными методами решения сюжетных задач: арифметический, алгебраический, перебор вариантов, геометрический, графический, применять их в новых по сравнению с изученными ситуациях.
В повседневной жизни и при изучении других предметов:
- выделять при решении задач характеристики рассматриваемой в задаче ситуации, отличные от реальных (те, от которых абстрагировались), конструировать новые ситуации с учетом этих характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества;
- решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат.
Статистика и теория вероятностей
- извлекать информацию, представленную в таблицах, на диаграммах, графиках;
- составлять таблицы, строить диаграммы и графики на основе данных;
- представлять информацию с помощью кругов Эйлера.
В повседневной жизни и при изучении других предметов:
- извлекать, интерпретировать и преобразовывать информацию, представленную в таблицах, на диаграммах, графиках, отражающую свойства и характеристики реальных процессов и явлений;
- определять статистические характеристики выборок по таблицам, диаграммам, графикам, выполнять сравнение в зависимости от цели решения задачи.
История математики
- Характеризовать вклад выдающихся математиков в развитие математики и иных научных областей;
- понимать роль математики в развитии России.
Методы математики
- Используя изученные методы, проводить доказательство, выполнять опровержение;
- выбирать изученные методы и их комбинации для решения математических задач;
- применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач
Содержание учебного предмета
«Алгебра»
8 класс
(3 часа в неделю 102 часа в год)
1. Повторение курса алгебры 7-го класса (3 часа)
2. Рациональные дроби (23 часа)
Рациональная дробь. Основное свойство дроби, сокращение дробей.
Тождественные преобразования рациональных выражений. Функция и ее график.
Основная цель – выработать умение выполнять тождественные преобразования рациональных выражений.
Так как действия с рациональными дробями существенным образом опираются на действия с многочленами, то в начале темы необходимо повторить с учащимися преобразования целых выражений.
Главное место в данной теме занимают алгоритмы действий с дробями. Учащиеся должны понимать, что сумму, разность, произведение и частное дробей всегда можно представить в виде дроби. Приобретаемые в данной теме умения выполнять сложение, вычитание, умножение и деление дробей являются опорными в преобразованиях дробных выражений. Поэтому им следует уделить особое внимание. Нецелесообразно переходить к комбинированным заданиям на все действия с дробями прежде, чем будут усвоены основные алгоритмы. Задания на все действия с дробями не должны быть излишне громоздкими и трудоемкими.
При нахождении значений дробей даются задания на вычисления с помощью калькулятора. В данной теме расширяются сведения о статистических характеристиках. Вводится понятие среднего гармонического ряда положительных чисел.
Изучение темы завершается рассмотрением свойств графика функции .
3. Квадратные корни (19 часов)
Понятие об иррациональных числах. Общие сведения о действительных числах. Квадратный корень. Понятие о нахождении приближенного значения квадратного корня. Свойства квадратных корней. Преобразования выражений, содержащих квадратные корни. Функция ее свойства и график.
Основная цель – систематизировать сведения о рациональных числах и дать представление об иррациональных числах, расширив тем самым понятие о числе; выработать умение выполнять преобразования выражений, содержащих квадратные корни.
В данной теме учащиеся получают начальное представление о понятии действительного числа. С этой целью обобщаются известные учащимся сведения о рациональных числах. Для введения понятия иррационального числа используется интуитивное представление о том, что каждый отрезок имеет длину и потому каждой точке координатной прямой соответствует некоторое число. Показывается, что существуют точки, не имеющие рациональных абсцисс.
При введении понятия корня полезно ознакомить учащихся с нахождением корней с помощью калькулятора.
Основное внимание уделяется понятию арифметического квадратного корня и свойствам арифметических квадратных корней. Доказываются теоремы о корне из произведения и дроби, а также тождество , которые получают применение в преобразованиях выражений, содержащих квадратные корни. Специальное внимание уделяется освобождению от иррациональности в знаменателе дроби в выражениях вида . Умение преобразовывать выражения, содержащие корни, часто используется как в самом курсе алгебры, так и в курсах геометрии, алгебры и начал анализа.
Продолжается работа по развитию функциональных представлений учащихся. Рассматриваются функция , ее свойства и график. При изучении функции показывается ее взаимосвязь с функцией , где x ≥ 0.
4. Квадратные уравнения (21 час)
Квадратное уравнение. Формула корней квадратного уравнения. Решение рациональных уравнений. Решение задач, приводящих к квадратным уравнениям и простейшим рациональным уравнениям.
Основная цель – выработать умения решать квадратные уравнения и простейшие рациональные уравнения и применять их к решению задач.
В начале темы приводятся примеры решения неполных квадратных уравнений. Этот материал систематизируется. Рассматриваются алгоритмы решения неполных квадратных уравнений различного вида.
Основное внимание следует уделить решению уравнений вида ах2 + bх + с = 0, где а ≠ 0, с использованием формулы корней. В данной теме учащиеся знакомятся с формулами Виета, выражающими связь между корнями квадратного уравнения и его коэффициентами. Они используются в дальнейшем при доказательстве теоремы о разложении квадратного трехчлена на линейные множители.
Учащиеся овладевают способом решения дробных рациональных уравнений, который состоит в том, что решение таких уравнений сводится к решению соответствующих целых уравнений с последующим исключением посторонних корней.
Изучение данной темы позволяет существенно расширить аппарат уравнений, используемых для решения текстовых задач.
5. Неравенства (20 часов)
Числовые неравенства и их свойства. Почленное сложение и умножение числовых неравенств. Погрешность и точность приближения. Линейные неравенства с одной переменной и их системы.
Основная цель – ознакомить учащихся с применением неравенств для оценки значений выражений, выработать умение решать линейные неравенства с одной переменной и их системы.
Свойства числовых неравенств составляют ту базу, на которой основано решение линейных неравенств с одной переменной. Теоремы о почленном сложении и умножении неравенств находят применение при выполнении простейших упражнений на оценку выражений по методу границ. Вводятся понятия абсолютной погрешности и точности приближения, относительной погрешности.
Умения проводить дедуктивные рассуждения получают развитие как при доказательствах указанных теорем, так и при выполнении упражнений на доказательства неравенств.
В связи с решением линейных неравенств с одной переменной дается понятие о числовых промежутках, вводятся соответствующие названия и обозначения. Рассмотрению систем неравенств с одной переменной предшествует ознакомление учащихся с понятиями пересечения и объединения множеств.
При решении неравенств используются свойства равносильных неравенств, которые разъясняются на конкретных примерах. Особое внимание следует уделить отработке умения решать простейшие неравенства вида ах > b, ах < b, остановившись специально на случае, когда а < 0.
В этой теме рассматривается также решение систем двух линейных неравенств с одной переменной, в частности таких, которые записаны в виде двойных неравенств.
6. Степень с целым показателем. (11 часов)
Степень с целым показателем и ее свойства. Стандартный вид числа. Приближенный вычисления.
Основная цель – выработать умение применять свойства степени с целым показателем в вычислениях и преобразованиях.
В этой теме формулируются свойства степени с целым показателем. Метод доказательства этих свойств показывается на примере умножения степеней с одинаковыми основаниями. Дается понятие о записи числа в стандартном виде. Приводятся примеры использования такой записи в физике, технике и других областях знаний.
- Повторение (5 часов)
Планируемые результаты освоения программы по учебному предмету «Алгебра» в 8 классе
Ученик научится:
Элементы теории множеств и математической логики
- Оперировать на базовом уровне понятиями: множество, элемент множества, подмножество, принадлежность;
- задавать множества перечислением их элементов;
- находить пересечение, объединение, подмножество в простейших ситуациях;
- оперировать на базовом уровне понятиями: определение, аксиома, теорема, доказательство;
- приводить примеры и контрпримеры для подтверждения своих высказываний.
В повседневной жизни и при изучении других предметов:
- использовать графическое представление множеств для описания реальных процессов и явлений, при решении задач других учебных предметов.
Тождественные преобразования
- Выполнять несложные преобразования для вычисления значений числовых выражений степени с целым отрицательным показателем;
- выполнять несложные преобразования дробно-линейных выражений и выражений с квадратными корнями.
Уравнения и неравенства
- Оперировать на базовом уровне понятиями: равенство, числовое равенство, уравнение, корень уравнения, решение уравнения, числовое неравенство, неравенство, решение неравенства;
- решать линейные неравенства и несложные неравенства, сводящиеся к линейным;
- решать квадратные уравнения по формуле корней квадратного уравнения.
В повседневной жизни и при изучении других предметов:
- составлять и решать линейные уравнения при решении задач, возникающих в других учебных предметах.
Функции
- Находить значение функции по заданному значению аргумента;
- находить значение аргумента по заданному значению функции в несложных ситуациях.
Статистика и теория вероятностей
- представлять данные в виде таблиц, диаграмм, графиков;
- читать информацию, представленную в виде таблицы, диаграммы, графика.
В повседневной жизни и при изучении других предметов:
- сравнивать основные статистические характеристики, полученные в процессе решения прикладной задачи, изучения реального явления.
Текстовые задачи
- строить модель условия задачи (в виде таблицы, схемы, рисунка или уравнения), в которой даны значения двух из трех взаимосвязанных величин, с целью поиска решения задачи;
- осуществлять способ поиска решения задачи, в котором рассуждение строится от условия к требованию или от требования к условию;
- составлять план решения задачи;
- выделять этапы решения задачи;
- решать задачи разных типов (на работу, на покупки, на движение), связывающих три величины, выделять эти величины и отношения между ними;
- решать логические задачи методом рассуждений.
В повседневной жизни и при изучении других предметов:
- выдвигать гипотезы о возможных предельных значениях искомых в задаче величин (делать прикидку).
Ученик получит возможность научиться:
Элементы теории множеств и математической логики
- Оперировать понятиями: определение, теорема, аксиома, множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность, включение, равенство множеств;
- изображать множества и отношение множеств с помощью кругов Эйлера;
- определять принадлежность элемента множеству, объединению и пересечению множеств;
- оперировать понятиями: высказывание, истинность и ложность высказывания, отрицание высказываний, операции над высказываниями: и, или, не, условные высказывания (импликации);
- строить высказывания, отрицания высказываний.
В повседневной жизни и при изучении других предметов:
- строить цепочки умозаключений на основе использования правил логики;
- использовать множества, операции с множествами, их графическое представление для описания реальных процессов и явлений.
Тождественные преобразования
- Оперировать понятиями степени с целым отрицательным показателем;
- выполнять преобразования целых выражений: действия с одночленами (сложение, вычитание, умножение), действия с многочленами (сложение, вычитание, умножение);
- раскладывать на множители квадратный трехчлен;
- выполнять преобразования выражений, содержащих степени с целыми отрицательными показателями, переходить от записи в виде степени с целым отрицательным показателем к записи в виде дроби;
- выполнять преобразования дробно-рациональных выражений: сокращение дробей, приведение алгебраических дробей к общему знаменателю, сложение, умножение, деление алгебраических дробей, возведение алгебраической дроби в натуральную и целую отрицательную степень;
- выполнять преобразования выражений, содержащих квадратные корни;
- выделять квадрат суммы или разности двучлена в выражениях, содержащих квадратные корни;
- выполнять преобразования выражений, содержащих модуль.
Уравнения и неравенства
- Оперировать понятиями: уравнение, неравенство, корень уравнения, решение неравенства, равносильные уравнения, область определения уравнения (неравенства, системы уравнений или неравенств);
- решать квадратные уравнения и уравнения, сводимые к квадратным с помощью тождественных преобразований;
- решать дробно-линейные уравнения;
- решать простейшие иррациональные уравнения вида , ;
- использовать метод интервалов для решения целых и дробно-рациональных неравенств;
- решать линейные уравнения и неравенства с параметрами;
- решать несложные квадратные уравнения с параметром.
В повседневной жизни и при изучении других предметов:
- составлять и решать квадратные уравнения, системы линейных уравнений, неравенств при решении задач других учебных предметов;
- выполнять оценку правдоподобия результатов, получаемых при решении линейных и квадратных уравнений и систем линейных уравнений и неравенств при решении задач других учебных предметов;
- выбирать соответствующие уравнения, неравенства или их системы для составления математической модели заданной реальной ситуации или прикладной задачи;
- уметь интерпретировать полученный при решении уравнения, неравенства или системы результат в контексте заданной реальной ситуации или прикладной задачи.
Функции
- Оперировать понятиями: функциональная зависимость, функция, график функции, способы задания функции, аргумент и значение функции;
- исследовать функцию по ее графику.
В повседневной жизни и при изучении других предметов:
- иллюстрировать с помощью графика реальную зависимость или процесс по их характеристикам.
Текстовые задачи
- Решать простые и сложные задачи разных типов, а также задачи повышенной трудности;
- использовать разные краткие записи как модели текстов сложных задач для построения поисковой схемы и решения задач;
- знать и применять оба способа поиска решения задач (от требования к условию и от условия к требованию);
- уметь выбирать оптимальный метод решения задачи и осознавать выбор метода, рассматривать различные методы, находить разные решения задачи, если возможно;
- выполнять различные преобразования предложенной задачи, конструировать новые задачи из данной, в том числе обратные;
- анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние) при решении задач на движение двух объектов как в одном, так и в противоположных направлениях;
- осознавать и объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение), выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задач указанных типов;
- решать логические задачи разными способами, в том числе, с двумя блоками и с тремя блоками данных с помощью таблиц;
- овладеть основными методами решения сюжетных задач: арифметический, алгебраический, перебор вариантов, геометрический, графический, применять их в новых по сравнению с изученными ситуациях.
В повседневной жизни и при изучении других предметов:
- выделять при решении задач характеристики рассматриваемой в задаче ситуации, отличные от реальных (те, от которых абстрагировались), конструировать новые ситуации с учетом этих характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества;
- решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат.
Статистика и теория вероятностей
- извлекать информацию, представленную в таблицах, на диаграммах, графиках;
- составлять таблицы, строить диаграммы и графики на основе данных;
- представлять информацию с помощью кругов Эйлера.
В повседневной жизни и при изучении других предметов:
- извлекать, интерпретировать и преобразовывать информацию, представленную в таблицах, на диаграммах, графиках, отражающую свойства и характеристики реальных процессов и явлений;
- определять статистические характеристики выборок по таблицам, диаграммам, графикам, выполнять сравнение в зависимости от цели решения задачи.
История математики
- Характеризовать вклад выдающихся математиков в развитие математики и иных научных областей;
- понимать роль математики в развитии России.
Методы математики
- Используя изученные методы, проводить доказательство, выполнять опровержение;
- выбирать изученные методы и их комбинации для решения математических задач;
- использовать математические знания для описания закономерностей в окружающей действительности и произведениях искусства;
- применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач
Содержание ученого предмета
«Алгебра»
9 класс (4 часа в неделю 136 часов в год)
1.Квадратичная функция(29 часа)
Функция. Возрастание и убывание функции. Квадратный трехчлен. Разложение квадратного трехчлена на множители. Решение задач путем выделения квадрата двучлена из квадратного трехчлена. Функция у=ах2+вх+с, ее свойства и график. Простейшие преобразования графиков функций. Функция у=хn. Определение корня n-й степени. Вычисление корней –й степени.
2. Уравнения и неравенства с одной переменной (20 часов)
Целое уравнение и его корни. Биквадратные уравнения. Дробные рациональные уравнения. Решение неравенств второй степени с одной переменной. Решение неравенств методом интервалов.
3.Уравнения и неравенства с двумя переменными и их системы (24 часов)
Уравнение с двумя переменными и его график. Графический способ решения систем уравнений. Решение систем содержащих одно уравнение первой, а другое второй степени. Решение текстовых задач методом составления систем. Неравенства с двумя переменными. Системы неравенств с двумя переменными.
4.Прогрессии (17 часов)
Последовательности. Арифметическая и геометрическая прогрессии. Формулы n-го члена и суммы n первых членов прогрессии.
5.Элементы комбинаторики и теории вероятностей (17 часов)
Примеры комбинаторных задач. Перестановки, размещения, сочетания. Относительная частота случайного события. Равновозможные события и их вероятность.
6.Повторение. Решение задач по курсу алгебры 7-9 (29 часов)
Планируемые результаты освоения учебного предмета «Алгебра» в 9 классе
Ученик научится:
Тождественные преобразования
- Выполнять несложные преобразования для вычисления значений числовых выражений, содержащих степени с натуральным показателем, степени с целым отрицательным показателем;
- выполнять несложные преобразования целых выражений: раскрывать скобки, приводить подобные слагаемые;
- использовать формулы сокращенного умножения (квадрат суммы, квадрат разности, разность квадратов) для упрощения вычислений значений выражений;
- выполнять несложные преобразования дробно-линейных выражений и выражений с квадратными корнями.
В повседневной жизни и при изучении других предметов:
- понимать смысл записи числа в стандартном виде;
- оперировать на базовом уровне понятием «стандартная запись числа».
Уравнения и неравенства
- Оперировать на базовом уровне понятиями: равенство, числовое равенство, уравнение, корень уравнения, решение уравнения, числовое неравенство, неравенство, решение неравенства;
- проверять справедливость числовых равенств и неравенств;
- решать линейные неравенства и несложные неравенства, сводящиеся к линейным;
- решать системы несложных линейных уравнений, неравенств;
- проверять, является ли данное число решением уравнения (неравенства);
- решать квадратные уравнения по формуле корней квадратного уравнения;
- изображать решения неравенств и их систем на числовой прямой.
В повседневной жизни и при изучении других предметов:
- составлять и решать линейные уравнения при решении задач, возникающих в других учебных предметах.
Функции
- Находить значение функции по заданному значению аргумента;
- находить значение аргумента по заданному значению функции в несложных ситуациях;
- определять положение точки по ее координатам, координаты точки по ее положению на координатной плоскости;
- по графику находить область определения, множество значений, нули функции, промежутки знакопостоянства, промежутки возрастания и убывания, наибольшее и наименьшее значения функции;
- строить график линейной функции;
- проверять, является ли данный график графиком заданной функции (линейной, квадратичной, обратной пропорциональности);
- определять приближенные значения координат точки пересечения графиков функций;
- оперировать на базовом уровне понятиями: последовательность, арифметическая прогрессия, геометрическая прогрессия;
- решать задачи на прогрессии, в которых ответ может быть получен непосредственным подсчетом без применения формул.
В повседневной жизни и при изучении других предметов:
- использовать графики реальных процессов и зависимостей для определения их свойств (наибольшие и наименьшие значения, промежутки возрастания и убывания, области положительных и отрицательных значений и т.п.);
- использовать свойства линейной функции и ее график при решении задач из других учебных предметов.
Статистика и теория вероятностей
- Иметь представление о статистических характеристиках, вероятности случайного события, комбинаторных задачах;
- решать простейшие комбинаторные задачи методом прямого и организованного перебора;
- читать информацию, представленную в виде таблицы, диаграммы, графика;
- оценивать вероятность события в простейших случаях;
- иметь представление о роли закона больших чисел в массовых явлениях.
В повседневной жизни и при изучении других предметов:
- оценивать количество возможных вариантов методом перебора;
- иметь представление о роли практически достоверных и маловероятных событий;
- сравнивать основные статистические характеристики, полученные в процессе решения прикладной задачи, изучения реального явления;
- оценивать вероятность реальных событий и явлений в несложных ситуациях.
Текстовые задачи
- Решать несложные сюжетные задачи разных типов на все арифметические действия;
- строить модель условия задачи (в виде таблицы, схемы, рисунка или уравнения), в которой даны значения двух из трех взаимосвязанных величин, с целью поиска решения задачи;
- осуществлять способ поиска решения задачи, в котором рассуждение строится от условия к требованию или от требования к условию;
- составлять план решения задачи;
- выделять этапы решения задачи;
- интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;
- знать различие скоростей объекта в стоячей воде, против течения и по течению реки;
- решать задачи на нахождение части числа и числа по его части;
- решать задачи разных типов (на работу, на покупки, на движение), связывающих три величины, выделять эти величины и отношения между ними;
- находить процент от числа, число по проценту от него, находить процентное снижение или процентное повышение величины;
- решать несложные логические задачи методом рассуждений.
В повседневной жизни и при изучении других предметов:
- выдвигать гипотезы о возможных предельных значениях искомых в задаче величин (делать прикидку).
История математики
- Описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;
- знать примеры математических открытий и их авторов, в связи с отечественной и всемирной историей;
- понимать роль математики в развитии России.
Методы математики
- Выбирать подходящий изученный метод для решения изученных типов математических задач;
- Приводить примеры математических закономерностей в окружающей действительности и произведениях искусства.
Ученик получит возможность научиться:
Тождественные преобразования
- Оперировать понятиями степени с натуральным показателем, степени с целым отрицательным показателем;
- выполнять преобразования целых выражений: действия с одночленами (сложение, вычитание, умножение), действия с многочленами (сложение, вычитание, умножение);
- выполнять разложение многочленов на множители одним из способов: вынесение за скобку, группировка, использование формул сокращенного умножения;
- выделять квадрат суммы и разности одночленов;
- раскладывать на множители квадратный трехчлен;
- выполнять преобразования выражений, содержащих степени с целыми отрицательными показателями, переходить от записи в виде степени с целым отрицательным показателем к записи в виде дроби;
- выполнять преобразования дробно-рациональных выражений: сокращение дробей, приведение алгебраических дробей к общему знаменателю, сложение, умножение, деление алгебраических дробей, возведение алгебраической дроби в натуральную и целую отрицательную степень;
- выполнять преобразования выражений, содержащих квадратные корни;
- выделять квадрат суммы или разности двучлена в выражениях, содержащих квадратные корни;
- выполнять преобразования выражений, содержащих модуль.
В повседневной жизни и при изучении других предметов:
- выполнять преобразования и действия с числами, записанными в стандартном виде;
- выполнять преобразования алгебраических выражений при решении задач других учебных предметов.
Уравнения и неравенства
- Оперировать понятиями: уравнение, неравенство, корень уравнения, решение неравенства, равносильные уравнения, область определения уравнения (неравенства, системы уравнений или неравенств);
- решать линейные уравнения и уравнения, сводимые к линейным с помощью тождественных преобразований;
- решать квадратные уравнения и уравнения, сводимые к квадратным с помощью тождественных преобразований;
- решать дробно-линейные уравнения;
- решать простейшие иррациональные уравнения вида , ;
- решать уравнения вида ;
- решать уравнения способом разложения на множители и замены переменной;
- использовать метод интервалов для решения целых и дробно-рациональных неравенств;
- решать линейные уравнения и неравенства с параметрами;
- решать несложные квадратные уравнения с параметром;
- решать несложные системы линейных уравнений с параметрами;
- решать несложные уравнения в целых числах.
В повседневной жизни и при изучении других предметов:
- составлять и решать линейные и квадратные уравнения, уравнения, к ним сводящиеся, системы линейных уравнений, неравенств при решении задач других учебных предметов;
- выполнять оценку правдоподобия результатов, получаемых при решении линейных и квадратных уравнений и систем линейных уравнений и неравенств при решении задач других учебных предметов;
- выбирать соответствующие уравнения, неравенства или их системы для составления математической модели заданной реальной ситуации или прикладной задачи;
- уметь интерпретировать полученный при решении уравнения, неравенства или системы результат в контексте заданной реальной ситуации или прикладной задачи.
Функции
- Оперировать понятиями: функциональная зависимость, функция, график функции, способы задания функции, аргумент и значение функции, область определения и множество значений функции, нули функции, промежутки знакопостоянства, монотонность функции, четность/нечетность функции;
- строить графики линейной, квадратичной функций, обратной пропорциональности, функции вида: , ,, ;
- на примере квадратичной функции, использовать преобразования графика функции y=f(x) для построения графиков функций ;
- составлять уравнения прямой по заданным условиям: проходящей через две точки с заданными координатами, проходящей через данную точку и параллельной данной прямой;
- исследовать функцию по ее графику;
- находить множество значений, нули, промежутки знакопостоянства, монотонности квадратичной функции;
- оперировать понятиями: последовательность, арифметическая прогрессия, геометрическая прогрессия;
- решать задачи на арифметическую и геометрическую прогрессию.
В повседневной жизни и при изучении других предметов:
- иллюстрировать с помощью графика реальную зависимость или процесс по их характеристикам;
- использовать свойства и график квадратичной функции при решении задач из других учебных предметов.
Текстовые задачи
- Решать простые и сложные задачи разных типов, а также задачи повышенной трудности;
- использовать разные краткие записи как модели текстов сложных задач для построения поисковой схемы и решения задач;
- различать модель текста и модель решения задачи, конструировать к одной модели решения несложной задачи разные модели текста задачи;
- знать и применять оба способа поиска решения задач (от требования к условию и от условия к требованию);
- моделировать рассуждения при поиске решения задач с помощью граф-схемы;
- выделять этапы решения задачи и содержание каждого этапа;
- уметь выбирать оптимальный метод решения задачи и осознавать выбор метода, рассматривать различные методы, находить разные решения задачи, если возможно;
- анализировать затруднения при решении задач;
- выполнять различные преобразования предложенной задачи, конструировать новые задачи из данной, в том числе обратные;
- интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;
- анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние) при решении задач на движение двух объектов как в одном, так и в противоположных направлениях;
- исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчета;
- решать разнообразные задачи «на части»,
- решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;
- осознавать и объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение), выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задач указанных типов;
- владеть основными методами решения задач на смеси, сплавы, концентрации;
- решать задачи на проценты, в том числе, сложные проценты с обоснованием, используя разные способы;
- решать логические задачи разными способами, в том числе, с двумя блоками и с тремя блоками данных с помощью таблиц;
- решать задачи по комбинаторике и теории вероятностей на основе использования изученных методов и обосновывать решение;
- решать несложные задачи по математической статистике;
- овладеть основными методами решения сюжетных задач: арифметический, алгебраический, перебор вариантов, геометрический, графический, применять их в новых по сравнению с изученными ситуациях.
В повседневной жизни и при изучении других предметов:
- выделять при решении задач характеристики рассматриваемой в задаче ситуации, отличные от реальных (те, от которых абстрагировались), конструировать новые ситуации с учетом этих характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества;
- решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат;
- решать задачи на движение по реке, рассматривая разные системы отсчета.
Статистика и теория вероятностей
- извлекать информацию, представленную в таблицах, на диаграммах, графиках;
- составлять таблицы, строить диаграммы и графики на основе данных;
- оперировать понятиями: факториал числа, перестановки и сочетания, треугольник Паскаля;
- применять правило произведения при решении комбинаторных задач;
- оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями;
- представлять информацию с помощью кругов Эйлера;
- решать задачи на вычисление вероятности с подсчетом количества вариантов с помощью комбинаторики.
В повседневной жизни и при изучении других предметов:
- извлекать, интерпретировать и преобразовывать информацию, представленную в таблицах, на диаграммах, графиках, отражающую свойства и характеристики реальных процессов и явлений;
- определять статистические характеристики выборок по таблицам, диаграммам, графикам, выполнять сравнение в зависимости от цели решения задачи;
- оценивать вероятность реальных событий и явлений.
Отношения
- Оперировать понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция, подобие фигур, подобные фигуры, подобные треугольники;
- применять теорему Фалеса и теорему о пропорциональных отрезках при решении задач;
- характеризовать взаимное расположение прямой и окружности, двух окружностей.
В повседневной жизни и при изучении других предметов:
- использовать отношения для решения задач, возникающих в реальной жизни.
Измерения и вычисления
- Оперировать представлениями о длине, площади, объеме как величинами. Применять теорему Пифагора, формулы площади, объема при решении многошаговых задач, в которых не все данные представлены явно, а требуют вычислений, оперировать более широким количеством формул длины, площади, объема, вычислять характеристики комбинаций фигур (окружностей и многоугольников) вычислять расстояния между фигурами, применять тригонометрические формулы для вычислений в более сложных случаях, проводить вычисления на основе равновеликости и равносоставленности;
- проводить простые вычисления на объемных телах;
- формулировать задачи на вычисление длин, площадей и объемов и решать их.
В повседневной жизни и при изучении других предметов:
- проводить вычисления на местности;
- применять формулы при вычислениях в смежных учебных предметах, в окружающей действительности.
История математики
- Характеризовать вклад выдающихся математиков в развитие математики и иных научных областей;
- понимать роль математики в развитии России.
Методы математики
- Используя изученные методы, проводить доказательство, выполнять опровержение;
- выбирать изученные методы и их комбинации для решения математических задач;
- использовать математические знания для описания закономерностей в окружающей действительности и произведениях искусства;
- применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач.
Тематическое планирование учебного предмета «Алгебра»
7 класс
№ п/п | Тема урока | Количество часов |
1. Выражения, тождества, уравнения (22 часа) | ||
1 | Числовые выражения | 2 |
2 | Выражения с переменными | 1 |
3 | Сравнение значений выражений. | 2 |
4 | Свойства действий над числами. | 2 |
5 | Тождества. Тождественные преобразования. | 1 |
6 | Тождественные преобразования выражений. | 1 |
7 | Контрольная работа №1 по теме: «Числовые выражения и выражения с переменными" | 1 |
8 | Уравнение и его корни. | 1 |
9 | Линейное уравнение с одной переменной. | 3 |
10 | Решение задач с помощью уравнений. | 3 |
11 | Среднее арифметическое, размах и мода. | 2 |
12 | Медиана как статистическая характеристика. | 2 |
13 | Контрольная работа № 2 по теме: «Линейные уравнения» | 1 |
2. Функции (11 часов) | ||
14 | Что такое функция. | 1 |
15 | Вычисление значений функции по формуле. | 2 |
16 | График функции. | 2 |
17 | Прямая пропорциональность и ее график. | 2 |
18 | Линейная функция и ее график. | 3 |
19 | Контрольная работа №3 по теме: «Функции». | 1 |
3. Степень с натуральным показателем (11 часов) | ||
20 | Определение степени с натуральным показателем. | 1 |
21 | Умножение и деление степеней. | 2 |
22 | Возведение в степень произведения и степени. | 2 |
23 | Одночлен и его стандартный вид. | 1 |
24 | Умножение одночленов. Возведение одночлена в степень. | 2 |
25 | Функции y=x2 , y=x3 и их графики. | 2 |
26 | Контрольная работа №4 по теме: «Степень с натуральным показателем». | 1 |
4. Многочлены (17 часа) | ||
27 | Многочлен и его стандартный вид. | 1 |
28 | Сложение и вычитание многочленов. | 2 |
29 | Умножение одночлена на многочлен. | 3 |
30 | Вынесение общего множителя за скобки. | 3 |
31 | Контрольная работа №5 по теме: «Многочлены» | 1 |
32 | Умножение многочлена на многочлен. | 3 |
33 | Разложение на множители многочлена способом группировки. | 3 |
34 | Контрольная работа №6 по теме: «Действия с многочленами». | 1 |
5. Формулы сокращенного умножения (19 часов) | ||
35 | Возведение в квадрат и в куб суммы и разности двух выражений. | 3 |
36 | Разложение на множители с помощью формул квадрата суммы и квадрата разности. | 2 |
37 | Умножение разности двух выражений на их сумму. | 2 |
38 | Разложение разности квадратов на множители. | 2 |
39 | Разложение на множители суммы и разности кубов. | 2 |
40 | Контрольная работа №7 по теме: «Формулы сокращенного умножения». | 1 |
41 | Преобразование целого выражения в многочлен. | 3 |
42 | Применение различных способов для разложения на множители. | 3 |
43 | Контрольная работа №8 по теме: «Преобразования целых выражений» | 1 |
6. Системы линейных уравнений (16 часов) | ||
44 | Линейные уравнения с двумя переменными. | 1 |
45 | График линейного уравнения с двумя переменными. | 2 |
46 | Системы линейных уравнений с двумя переменными. | 2 |
47 | Способ подстановки. | 3 |
48 | Способ сложения. | 3 |
49 | Решение задач с помощью систем уравнений. | 4 |
51 | Контрольная работа №9 по теме: «Системы линейных уравнений». | 1 |
7. Повторение. (6 часов) | ||
52 | Преобразование выражений. | 1 |
53 | Линейная функция и её график. | 1 |
54 | Степень и её свойства. | 1 |
55 | Итоговое контрольное тестирование | 1 |
56 | Многочлены. Формулы сокращенного умножения. | 1 |
57 | Решение систем линейных уравнений. | 1 |
ИТОГО | 102 |
Тематическое планирование учебного предмета «Алгебр»
8 класс
№ п/п | Тема урока | Количество часов |
| ||
1. | Формулы сокращенного умножения. Упрощение выражений. | 1 |
2. | Решение систем уравнений. | 1 |
3. | Диагностическая контрольная работа. | 1 |
| ||
4. | Рациональные выражения. | 2 |
5. | Основное свойство дроби. Сокращение дробей. | 3 |
6. | Сложение и вычитание дробей с одинаковыми знаменателями. | 2 |
7. | Сложение и вычитание дробей с разными знаменателями. | 4 |
8. | Контрольная работа №1 по теме «Сумма и разность дробей. | 1 |
9. | Умножение дробей. Возведение дроби в степень. | 3 |
10. | Деление дробей. | 2 |
11. | Преобразование рациональных выражений. | 3 |
12. | Функция y= k/x и её график. | 2 |
13. | Контрольная работа №2 по теме «Рациональные дроби». | 1 |
| ||
14. | Рациональные числа. | 1 |
15. | Иррациональные числа. | 1 |
16. | Квадратные корни. Арифметический квадратный корень. | 1 |
17. | Уравнение х² = α. | 1 |
18. | Нахождение приближённого значения квадратного корня. | 1 |
19. | Функция у= и её график. | 2 |
20. | Квадратный корень из произведения и дроби. | 2 |
21. | Квадратный корень из степени. | 1 |
22. | Контрольная работа №3 по теме «Свойства квадратного арифметического корня». | 1 |
23. | Вынесение множителя из-под знака корня. Внесение множителя под знак корня. | 3 |
24. | Преобразование выражений, содержащих квадратные корни. | 4 |
25. | Контрольная работа №4 по теме «Применение свойств квадратного корня». | 1 |
| ||
26. | Определение квадратного уравнения. Неполные квадратные уравнения. | 2 |
27. | Формула корней квадратного уравнения. | 4 |
28. | Решение задач с помощью квадратных уравнений. | 2 |
29. | Теорема Виета. | 2 |
30. | Контрольная работа №5 по теме «Квадратные уравнения». | 1 |
31. | Решение дробных рациональных уравнений. | 5 |
32. | Решение задач с помощью дробных рациональных уравнений. | 4 |
33. | Контрольная работа №6 по теме «Дробные рациональные уравнения». | 1 |
| ||
34. | Сравнение чисел. Числовые неравенства. | 2 |
35. | Свойства числовых неравенств. | 2 |
36. | Сложение и умножение числовых неравенств. | 2 |
37. | Погрешность и точность приближения. | 2 |
38. | Контрольная работа №7 по теме «Числовые неравенства и их свойства». | 1 |
39. | Пересечение и объединение множеств. | 1 |
40. | Числовые промежутки. | 2 |
41. | Решение неравенств с одной переменной. | 4 |
42. | Решение систем неравенств с одной переменной. | 3 |
43. | Контрольная работа №8 по теме «Неравенства с одной переменной и их системы». | 1 |
| ||
44. | Определение степени с целым отрицательным показателем. | 2 |
45. | Свойства степени с целым показателем. | 2 |
46. | Стандартный вид числа. | 2 |
47. | Контрольная работа №9 по теме «Степень с целым показателем и ее свойства». | 1 |
48. | Сбор и группировка статистических данных. | 2 |
49. | Наглядное представление статистической информации. | 2 |
| ||
50. | Повторение. Рациональные дроби. | 1 |
51. | Повторение. Квадратные корни. | 1 |
52. | Итоговая аттестация. | 1 |
53. | Повторение. Квадратные уравнения. | 1 |
54. | Повторение. Неравенства. | 1 |
ИТОГО | 102 |
Тематическое планирование учебного предмета «Алгебра»
9 класс
№ п/п | Тема урока | Количество часов |
1. Квадратичная функция (29 часа) | ||
1 | Функция | 1 |
2 | Область определения и область значения функции. | 2 |
3 | Свойства функций. | 3 |
4 | Диагностическая контрольная работа | 1 |
5 | Квадратный трехчлен и его корни. | 2 |
6 | Разложение квадратного трехчлена на множители. | 3 |
7 | Контрольная работа №1 по теме «Квадратный трехчлен» | 1 |
8 | Функция y=ax2 , ее график и свойства | 3 |
9 | Графики функций и . | 2 |
10 | Построение графика квадратичной функции. | 4 |
11 | Функция у=хп | 2 |
12 | Корень п-ой степени. | 4 |
13 | Контрольная работа №2 по теме «Квадратичная функция» | 1 |
2. Уравнения и неравенства с одной переменной (20 часов) | ||
14 | Целое уравнение и его корни | 3 |
15 | Уравнения, приводимые к квадратным | 4 |
16 | Дробные рациональные уравнения. | 5 |
17 | Решение неравенств второй степени с одной переменной | 3 |
18 | Решение неравенств методом интервалов | 4 |
19 | Контрольная работа №3 по теме «Уравнения и неравенства с одной переменной» | 1 |
3. Уравнения и неравенства с двумя переменными (24 часа) | ||
20 | Уравнение с двумя переменными и его график | 3 |
21 | Графический способ решения систем уравнений | 3 |
22 | Решение систем уравнений второй степени | 5 |
23 | Решение задач с помощью систем уравнений | 4 |
24 | Решение задач с помощью систем уравнений второй степени | 1 |
25 | Неравенства с двумя переменными | 3 |
26 | Системы неравенств с двумя переменными | 3 |
27 | Обобщение, систематизация и коррекция знаний | 1 |
28 | Контрольная работа №4 по теме «Уравнения и неравенства с двумя переменными и их системы» | 1 |
4. Арифметическая и геометрическая прогрессии (17 часов) | ||
29 | Последовательности | 1 |
30 | Определение арифметической прогрессии Формула n-го члена арифметической прогрессии | 3 |
31 | Формула суммы п первых членов арифметической прогрессии. | 4 |
32 | Контрольная работа №5 по теме «Арифметическая прогрессия» | 1 |
33 | Определение геометрической прогрессии. | 1 |
34 | Формула n-го члена геометрической прогрессии | 3 |
35 | Формула суммы п первых членов геометрической прогрессии | 3 |
36 | Контрольная работа № 6 по теме «Геометрическая прогрессия» | 1 |
5. Элементы комбинаторики и теории вероятности (17 часов) | ||
37 | Примеры комбинаторных задач | 1 |
38 | Решение комбинаторных задач. | 1 |
39 | Перестановки | 3 |
40 | Размещения | 3 |
41 | Сочетания | 2 |
42 | Обобщающий урок | 1 |
43 | Относительная частота случайного события | 2 |
44 | Вероятность равновозможных событий | 3 |
45 | Контрольная работа №7 по теме «Элементы комбинаторики и теории вероятностей» | 1 |
6. Повторение (29 часов) | ||
46 | Числовые выражения | 2 |
47 | Уравнения и их системы | 3 |
48 | Тождественные преобразования | 3 |
49 | Степень и её свойства | 2 |
50 | Квадратные уравнения и их корни | 2 |
51 | Решение линейных и квадратных неравенств | 3 |
52 | Функции и их графики | 3 |
53 | Решение текстовых задач | 3 |
54 | Промежуточная аттестация | 1 |
55 | Арифметическая прогрессия | 2 |
56 | Геометрическая прогрессия | 2 |
57 | Решение заданий Огэ | 3 |
58 | Итоговый урок | 1 |
ИТОГО | 136 |
По теме: методические разработки, презентации и конспекты
Рабочая программа по алгебре для 11 класса
Рабочая программа по алгебре для 11 класса к учебнику Колмагорова. Рассчитана на три часа в неделю. 102ч базовый уровень.Программа содержит:Пояснительную запискуПоурочное планирование с домашним задан...
Рабочая программа по алгебре для 9 класса
Рабочая программа по алгебре для 9 класса по учебнику «Алгебра 9», авторы Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова. Программа расчитана на 102 учебных часа (3 урока в неделю)....
рабочие программы по алгебре 7-8 класс и по геометрии 7-8 класс
Данные рабочие программы предназначены для учителей, которые работают в 7-8 классах по учебникам алгебры Макарычева и по учебникам геометрии Атанасяна. В рабочих программах имеется пояснительная...
Рабочая программа по алгебре 7-9 класс к учебнику "Алгебра " Мордкович А.Г.
Рабочая программа составлена на основе принципов коррекционно-развивающего обучения детей- инвалидов дистанционно....
Рабочая программа по алгебре для 8 класса. ( 4 часа в неделю в 1 четверти, 3 часа в неделю во 2 четверти. Всего 119 часов в год) . Учебник: Ю.Н. Макарычев, Н.Г. Миндюк и др. " Алгебра 8"
Программа содержит: пояснительную записку, содержание тем учебного курса, требования к уровню подготовки обучающихся, подробный календарно-тематический план....
Рабочая программа по алгебре 8-9 классы (базовый уровень) к УМК Алгебра 8. Алгебра 9. Макарычев Ю. Н., Миндюк Н.Г. и др
Содержание рабочей программы: Пояснительная записка. Содержание курса. Тематический план. Ожидаемые результаты. Календарно-тематическое планирование. Рабочая программа составлена на основе: - Феде...
Рабочая программа по алгебре. 7-9 класс. Учебники "Алгебра" Ю.Н.Макарычев, Н.Г.Миндюк. (7,8,9 классы)
Рабочая программа по алгебре 7-9 класс (базовый уровень). Учебники под редакцией Ю.Н.Макарычева, Н.Г.Миндюка....