Технологическая карта урока по теме "Разложение многочлена на множители способом группировки"
план-конспект урока по алгебре (7 класс)

Колоярова Любовь Александровна

Разложение многочлена на множители способом группировки

Применяется при решении уравнений и сокращении дробей

 

Цель: восприятие, осмысление и первичное закрепление новых знаний.

Задачи:

1) выработать умение правильно раскладывать многочлен на множители;

2) знать алгоритм разложения многочлена на множители  способом группировки ;

3) уметь применять алгоритм на практике.

 

Скачать:


Предварительный просмотр:

Технологическая карта урока

Учитель

Колоярова Любовь Александровна

Место работы

ГБОУ СОШ с.Екатериновка м.р.Безенчукский

Должность

Учитель математики

Учебный предмет

Алгебра

Базовый учебник

Алгебра . 7 класс: учебник для общеобразовательных организаций; авторы: Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С. Б. Суворова; под ред. С.А. Теляковского; 5-е изд.- М.: Просвещение, 2018.

Класс

7

Тип урока

Урок открытия нового знания

Технологии построения урока (применяемые на уроке)

Проблемного обучения, развитие исследовательских умений.

Тема урока

Разложение многочлена на множители способом группировки

Актуальность учебного материала

Применяется при решении уравнений и сокращении дробей

Учебные цели и задачи

Цель: восприятие, осмысление и первичное закрепление новых знаний.

Задачи:

1) выработать умение правильно раскладывать многочлен на множители;

2) знать алгоритм разложения многочлена на множители  способом группировки ;

3) уметь применять алгоритм на практике.

Планируемые результаты:

- личностные

- метапредметные

Личностные результаты:

- формировать умение ясно, грамотно излагать свои мысли;

- формировать навыки работы по алгоритму;

- формировать умение выстраивать аргументацию, приводить примеры.

Метапредметные:

Познавательные УУД

- выделять и формулировать познавательную цель.

Регулятивные УУД

- определять цели учебной деятельности;

- осуществлять поиск ее достижения.

Коммуникативные УУД

- развивать способность с помощью вопросов добывать недостающую информацию;

- слушать и слышать друг друга, понимать возможность существования различных точек зрения, не совпадающих с собственной.

Предметные результаты:

- познакомиться с операцией «Способ группировки для разложения многочленов»:

- научиться применять данную операцию на практике.

Форма работы учащихся

групповая, фронтальная, индивидуальная

Необходимое техническое оборудование и материалы

Компьютер, проектор, экран, доска, учебники, карточки с заданиями.

Технологическая карта урока

№ п/п

Этапы урока

Деятельность учителя

Деятельность ученика

Длительность этапа

1

Организационный  момент.

Приветствует, проверяет готовность к уроку, желает успеха. Включение в деловой ритм.

Приветствие учителя и подготовка к уроку.

2 мин.

2

Мотивация  учебной деятельности.

Организует повторение знаний, закрепление умений.

Вынесите общий множитель за скобки:

1. 12а + 15b =

2. ab – аy =

3. а³b – а² =

4. 4аb² + 8а²b² =

5. (2 + х) + а(2 + х) =

Решение примеров, самопроверка

Каждое выполненное задание один из учащихся класса объясняет

7 мин.

3

Актуализация знаний и создание проблемной ситуации.

Создается проблемная ситуация: задача знакома на первый взгляд, но не решается.

- Разложите на множители 9х + 9у + mx + my

- Есть ли общий множитель у всех слагаемых? (Нет)

- Значит, способ вынесения общего множителя за скобки  не подходит.

Постановка учебной задачи: научиться раскладывать многочлен на множители другим способом.

Ставят цель, формулируют проблему и тему урока.

3  мин.

4

Выявление причины затруднения

Организует работу учащихся по исследованию проблемной ситуации.

Рассмотрим многочлен:

9x + 9y + mx + my 

- Есть ли общий множитель у всех слагаемых?

Что вы увидели?

(Есть общий множитель 9 у первого и второго слагаемых и общий множитель m у третьего и четвертого слагаемых.)

- Давайте объединим их в группы:

 (9x +9y) + (mx + my)

- Что можно сделать с общим множителем в каждой группе? (Вынести его за скобки).

9(x + y) + m(x + y)

- Сколько сейчас получилось слагаемых? (Два)

- Что интересного заметили в получившемся выражении? (Есть один общий множитель (х + у))

- Вынесем его за скобки: (x + y)(9 + m)

- Что мы получили? (Произведение)

- Значит, многочлен представили в виде произведения.

 Каким способом? (Объединяя слагаемые в группы)

- Поэтому этот способ называется способом группировки.

- Давайте попробуем найти иную группировку слагаемых и сравнить новый результат с уже полученным.

(9x + mx) + (9y + my) = x(9 + m) + y(9 + m) = (x + y)(9 + m)

Сделать вывод.

Рассмотрим еще один пример.

x2y + 3x – xy2 – 3y

- А давайте посмотрим алгоритм разложения многочлена на множители способом группировки

Соотносят полученное выражение с материалом, изученным ранее: выносят за скобки общие множители.

На основе выполненных действий делают вывод о вариантности способов группировки.

Учащиеся предлагают варианты группировки и по рядам выполняют разложение многочлена на множители способом группировки

Смотрят алгоритм разложения на множители способом группировки

12 мин.

5

Физкультминутка

Выполняют упражнения

1 мин.

6

Первичное закрепление с самопроверкой по эталону

Устанавливает осознанность восприятия, делает первичное обобщение.

Предлагает выполнить задания на применение новых знаний:  дифференцированные задания по уровням 

А.  Базовый уровень («3»)

1) 7а – 7b + аn – bn = 7(a – b) + n(a – b) = (a – b)(7 + n)

2) xy + 2y + 2x + 4 = y(x + 2) + 2(x + 2) = (y + 2)(x + 2)

3) y2a — y2b + xa — x2b = y2(a – b) + x2(a – b) = 

= (a – b)(y2 + x2)

Б. Компетентный уровень («4»)

1) xy + 2y – 2x – 4 = y(x + 2) – 2(x + 2) = (x + 2)(y – 2)

2) 2сх – су – 6х + 3у = c(2x – y) + 3(–2x + y) = 

= (2x – y)(c – 3)

3) х+ xy + xy+ y3 = x(x + y) + y2(x + y) = = (x + y)(x + y2)

С. Творческий уровень («5»)

1) x+ x3y – xy–y4 = x3(x + y) – y3(x + y) = 

= (x + y)(x3 – y3)

2) ху2 – bу2 – ах + аb + у2 – а = y2(x – b + 1) + a(-x + b – 1) = (y2 – a)(x – b + 1)

3) х2 – 3х + 6 – 2x= x(x – 3) + 2(3 – x) = (x – 2)(x – 3)

Те учащиеся, которые решат вперед доски все задания, могут подойти к учителю и проверить задания по эталону.

Работая с алгоритмом, учащиеся действуют поэтапно, отдавая себе отчет, что надо сделать и почему. Происходит осознание нового правила, его осмысление и запоминание.

Работа с доской, индивидуальная.

9 мин.

7

Рефлексия учебной деятельности на уроке

Организует рефлексию, организует самооценку результатов учащихся.

Осуществляют оценку урока и самооценку, соотносят цель и результаты, степень их соответствия

Отвечают на вопросы:

  • Какой материал повторили на уроке?
  • Что нового узнали?
  • С какими трудностями столкнулись?

4 мин.

8

Информация о домашнем задании, инструктаж по его выполнению

- Чтобы закрепить знания, необходимо дома выполнить задания

Учитель задает домашнее задание с учетом уровня подготовки обучающихся: весь класс – знание теории пункта 30, всем№ 709(б, г, е), № 710(б, г), № 711(б, г)

Доп. задание № 658

Записывают в дневник

2 мин.


По теме: методические разработки, презентации и конспекты

Технологическая карта урока алгебры по теме « Разложение многочлена на множители способом группировки»

Технологическая карта по теме « Разложение многочлена на множители способом группировки» для учащихся 7 классаЦели урока:  Организация деятельности учащихся по формированию навыков разложения мно...

Технологическая карта урока алгебры в 7 классе по теме "Разложение многочлена на множители способом группировки"

Данный материал содержит в себе технологическую карту урока алгебры в 7 классе по теме "Разложение многочлена на множители способом группировки", а также раздаточный материал....

технологическая карта урока алгебры в 7 классе по теме "Разложение многочлена на множители способом группировки"

Урок закрепления материала к учебнику Алгебра 7 под редакцией Г. В. Дорофеева. Целью урока является осмысление и первичное закрепление новых знаний учащимися. На уроке применяется технология проблемно...

Технологическая карта урока Разложение многочлена на множители способом группировки

Технологическая  карта урокаРазложение многочлена на множители способом группировки....