Статья по теме "Что такое нестандартная задача"
статья по алгебре

Тубянская Екатерина Павловна

Давайте разберёмся, какая задача называется нестандартной. На мой взгляд, наиболее удачное определение нестандартной задачи дано Л. М. Фридманом и Е. Н. Турецким в книге «Как научиться решать задачи».

Нестандартные задачи – это такие задачи, для которых в курсе математики не имеется общих правил и положений, определяющих точную программу их решения.

 

Скачать:

ВложениеРазмер
Файл chto_takoe_nestandartnaya_zadacha.docx34.23 КБ

Предварительный просмотр:

Что такое нестандартная задача?

Давайте разберёмся, какая задача называется нестандартной. На мой взгляд, наиболее удачное определение нестандартной задачи дано Л. М. Фридманом и Е. Н. Турецким в книге «Как научиться решать задачи».

Нестандартные задачи – это такие задачи, для которых в курсе математики не имеется общих правил и положений, определяющих точную программу их решения.

Часто путают понятия нестандартной задачи и задачи повышенной сложности. Условия задач повышенной сложности построены таким образом, что учащиеся могут легко выделить математический аппарат для решения такой задачи. 

Нестандартная задача же подразумевает наличие некоторого исследования.

Колягин даёт такое определение нестандартной задачи:

-такая задача, при предъявлении которой учащийся не знает заранее ни способа её решения, ни того, на какой учебный материал она опирается.

Из этого определения мы можем сделать вывод, что одна и та же задача может являться для одних детей – стандартной, а для других – нестандартной, так как они ещё не знакомы с методами решения задачи такого типа.

Таким образом, каждая текстовая задача в той или иной ситуации может считаться нестандартной.

Кроме того, для того, чтобы задача стала нестандартной, достаточно просто заменить её формулировку, используя жизненные ситуации, или ситуации, близкие к интересам школьников.

Например, вместо задания «решить Диофантово уравнение», можно сформулировать условие задачи так: «Сколькими разными способами можно расплатиться за покупку 96 рублей, имея только рублёвые и пятирублёвые монеты?»

Для чего же, собственно говоря, нужно решать нестандартные задачи?

Во-первых, решение нестандартных задач развивает навыки мыслительных операций, таких как анализ, синтез, сравнение, обобщение и т.д.

Во-вторых, решение таких задач позволяет учащимся проявить творческие способности, самостоятельность, стремление к достижению цели, умение действовать не по алгоритму, развивает смекалку.

Нестандартные задачи повышают интерес учащихся к математике и учат ориентироваться в нестандартных жизненных ситуациях, находить оригинальные пути решения.

Как же все-таки отличить нестандартную задачу? Давайте попробуем выделить некоторые критерии:

1) Нестандартная задача не должна иметь готовых алгоритмов, заученных детьми;

2) Для решения нестандартной задачи, учащимся должно хватать знаний.

3) Задача должна быть интересной по содержанию.

4) Задача должна иметь доступное для детей содержание.

Классификация нестандартных задач, приведённая И. В. Егорченко:

1. Задачи, направленные на поиск взаимосвязей между заданными объектами, процессами или явлениями.

2. Задачи, неразрешимые или не решаемые средствами школьного курса на данном уровне знаний учащихся.

3. Задачи, в которых необходимо:

-проведение и использование аналогий, определение различий заданных объектов, процессов или явлений, установление противоположности заданных явлений и процессов;

-осуществление практической демонстрации, абстрагирование от тех или иных свойств объекта, процесса, явления или конкретизации той или иной стороны данного явления;

-установка причинно-следственных отношений между заданными объектами, процессами или явлениями;

-построение аналитическим или синтетическим путем причинно-следственных цепочек с последующим анализом получившихся вариантов;

-правильное осуществление последовательности определенных действий, избегая ошибок-«ловушек»;

-осуществление перехода от плоскостного к пространственному варианту заданного процесса, объекта, явления или наоборот.

В математике нет каких-либо общих правил, позволяющих решить любую нестандартную задачу, так как такие задачи в какой-то степени неповторимы.

Рассмотрим, несколько методов решения нестандартных задач:

· алгебраический;

· арифметический;

· метод перебора;

· метод рассуждения;

· практический;

· метод предположения.

Алгебраический метод решения задач развивает творческие способности, способность к обобщению, формирует абстрактное мышление и обладает такими преимуществами, как краткость записи и рассуждений при составлении уравнений, экономит время.

Для того чтобы решить задачу алгебраическим методом необходимо:

· провести разбор задачи с целью выбора основного неизвестного и выявления зависимости между величинами, а также выражения этих зависимостей на математическом языке в форме двух алгебраических выражений;

· найти основание для соединения этих выражений знаком «=» и составить уравнение;

· найти решения полученного уравнения, организовать проверку решения уравнения.

Все эти этапы решения задачи логически связаны между собой. Например, о поисках основания для соединения двух алгебраических выражений знаком равенства мы упоминаем как об особом этапе, но ясно, что на предыдущем этапе указанные выражения образуются не произвольно, а с учётом возможности соединить их знаком «=».

Как выявление зависимостей между величинами, так и перевод этих зависимостей на математический язык требует напряжённой аналитико-синтетической мыслительной деятельности. Успех в этой деятельности зависит, в частности от того, знают ли учащиеся, в каких отношениях вообще могут находиться эти величины, и понимают ли они реальный смысл этих отношений (например, отношений, выраженных терминами «позже на…», «старше в…раз» и т.п.). Далее требуется понимание, каким именно математическим действием или, свойством действия или какой связью (зависимостью) между компонентами и результатом действия может быть описано то или иное конкретное отношение.

Приведём пример решения нестандартной задачи алгебраическим методом.

Маша купила тетрадь, карандаш и линейку. Когда её спросили, сколько она заплатила за всю покупку, Маша сказала: «Тетрадь стоит 12 рублей, а карандаш столько же, сколько одна тетрадь и половину стоимости линейки. А стоимость линейки такая же, как стоимость карандаша и тетради вместе. Какова стоимость всей покупки?

Решение.

Пусть х кг –стоимость линейки; тогда (12+1/2х) р – стоимость карандаша.

х = 12+12+1/2х

1/2х=24

Х=48 – линейка

12+24 = 36 – карандаш

12 – тетрадь

Арифметический метод решения также требует большого умственного напряжения, что положительно сказывается на развитии умственных способностей, математической интуиции, на формировании умения предвидеть реальную жизненную ситуацию.

Рассмотрим пример решения нестандартной задачи арифметическим методом:

Задача. У двух рыбаков спросили: «Сколько рыбы в ваших корзинах?»

«В моей корзине половина того, что в корзине у него, да ещё 10», - ответил первый. «А у меня в корзине столько, сколько у него, да ещё 20», - подсчитал второй. Мы сосчитали, а теперь посчитайте вы.

Решение.

Построим схему к задаче. Обозначим первым отрезком схемы количество рыбы у первого рыбака. Вторым отрезком обозначим количество рыбы у второго рыбака.

В связи с тем, что современному человеку необходимо иметь представление об основных методах анализа данных и вероятностных закономерностях, играющих важную роль в науке, технике и экономике, в школьный курс математики вводят элементы комбинаторики, теории вероятностей и математической статистики, в которых удобно разбираться при помощи метода перебора.

Включение комбинаторных задач в курс математики оказывает положительное влияние на развитие школьников. «Целенаправленное обучение решению комбинаторных задач способствует развитию такого качества математического мышления, как вариативность. Под вариативностью мышления мы понимаем направленность мыслительной деятельности ученика на поиск различных решений задачи в случае, когда нет специальных указаний на это» [6, с. 21].

Комбинаторные задачи можно решать различными методами. Условно эти методы можно разделить на «формальные» и «неформальные». При «формальном» методе решения нужно определить характер выбора, выбрать соответствующую формулу или комбинаторное правило (существуют правила суммы и произведения), подставить числа и вычислить результат. Результат - это количество возможных вариантов, сами же варианты в этом случае не образовываются.

При «неформальном» же методе решения на первый план выходит сам процесс составления различных вариантов. И главное уже не сколько, а какие варианты могут получиться. К таким методам относится метод перебора. Этот метод доступен даже младшим школьникам, и позволяет накапливать опыт практического решения комбинаторных задач, что служит основой для введения в дальнейшем комбинаторных принципов и формул. Кроме того, в жизни человеку приходится не только определять число возможных вариантов, но и непосредственно составлять все эти варианты, а, владея приёмами систематического перебора, это можно сделать более рационально.

Задачи по сложности осуществления перебора делятся на три группы:

1 . Задачи, в которых нужно произвести полный перебор всех возможных вариантов.

2. Задачи, в которых использовать приём полного перебора нецелесообразно и нужно сразу исключить некоторые варианты, не рассматривая их (то есть осуществить сокращённый перебор).

3. Задачи, в которых операция перебора производится несколько раз и по отношению к разного рода объектам.

Приведём соответствующие примеры задач:

Задача. Расставляя знаки «+» и «-» между данными числами 9…2…4, составь все возможные выражения.

Решение.

Проводится полный перебор вариантов:

а) два знака в выражении могут быть одинаковыми, тогда получаем:

9 + 2 + 4 или 9 - 2 - 4;

б) два знака могут быть разными, тогда получаем:

9 + 2 - 4 или 9 - 2 + 4.

Задача. Учитель говорит, что он нарисовал в ряд 4 фигуры: большой и маленький квадраты, большой и маленький круги так, что на первом месте находится круг и одинаковые по форме фигуры не стоят рядом, и предлагает ученикам отгадать, в какой последовательности расставлены эти фигуры.

Решение.

Всего существует 24 различных расположения этих фигур. И составлять их все, а потом выбирать соответствующие данному условию нецелесообразно, поэтому проводится сокращённый перебор.

На первом месте может стоять большой круг, тогда маленький может быть только на третьем месте, при этом большой и маленький квадраты можно поставить двумя способами - на второе и четвёртое место.

Аналогичное рассуждение проводится, если на первом месте стоит маленький круг, и также составляются два варианта.

Задача. Три компаньона одной фирмы хранят ценные бумаги в сейфе, на котором 3 замка. Компаньоны хотят распределить между собой ключи от замков так, чтобы сейф мог открываться только в присутствии хотя бы двух компаньонов, но не одного. Как это можно сделать?

Решение.

Сначала перебираются все возможные случаи распределения ключей. Каждому компаньону можно дать по одному ключу или по два разных ключа, или по три.

Предположим, что у каждого компаньона по три разных ключа. Тогда сейф сможет открыть один компаньон, а это не соответствует условию.

Предположим, что у каждого компаньона по одному ключу. Тогда, если придут двое из них, то они не смогут открыть сейф.

Дадим каждому компаньону по два разных ключа. Первому - 1 и 2 ключи, второму - 1 и 3 ключи, третьему - 2 и 3 ключи. Проверим, когда придут любые два компаньона, смогут ли они открыть сейф.

Могут прийти первый и второй компаньоны, у них будут все ключи (1 и 2, 1 и 3). Могут прийти первый и третий компаньоны, у них также будут все ключи (1 и 2, 2 и 3). Наконец, могут прийти второй и третий компаньоны, у них тоже будут все ключи (1 и 3, 2 и 3).

Таким образом, чтобы найти ответ в этой задаче, нужно выполнить операцию перебора несколько раз.

При отборе комбинаторных задач нужно обращать внимание на тематику и форму представления этих задач. Желательно, чтобы задачи не выглядели искусственным, а были понятны и интересны детям, вызывали у них положительные эмоции. Можно для составления задач использовать практический материал из жизни.

Встречаются и другие задачи, которые можно решить методом перебора.

В качестве примера решим задачу: «Маркизу Карабасу было 31 год, а его молодому энергичному Коту в Сапогах 3 года, когда произошли известные по сказке события. Сколько лет произошло с тех пор, если сейчас Кот в три раза младше своего хозяина?» Перебор вариантов представим таблицей.

Возраст Маркиза Карабаса и Кота в Сапогах

М.

31

32

33

34

35

36

37

38

39

40

41

42

К.

3

4

5

6

7

8

9

10

11

12

13

14

Во ? раз

-

-

-

-

-

-

-

-

-

-

-

+

14 - 3 = 11 (лет)

Ответ: 11 лет прошло.

При этом ученик как бы экспериментирует, наблюдает, сопоставляет факты и на основании частных выводов делает те или иные общие заключения. В процессе этих наблюдений обогащается его реально-практический опыт. Именно в этом и состоит практическая ценность задач на перебор. При этом слово «перебор» используется в смысле разбора всех возможных случаев, которые удовлетворяют условиям задачи, показав, что других решений быть не может.

Эту задачу можно решить и алгебраическим методом.

Пусть Коту х лет, тогда Маркизу 3х, исходя из условия задачи, составим уравнение:

3х - х = 28,

2х = 28,

х = 28: 2,

х = 14.

Коту сейчас 14 лет, тогда прошло 14 - 3 = 11(лет).

Ответ: 11 лет прошло.

Метод рассуждений можно использовать для решения математических софизмов.

Ошибки, допущенные в софизме, обычно сводятся к следующим: выполнению «запрещённых» действий, использованию ошибочных чертежей, неверному словоупотреблению, неточности формулировок, «незаконным» обобщениям, неправильным применениям теорем.

Раскрыть софизм - это, значит, указать ошибку в рассуждении, основываясь на которой была создана внешняя видимость доказательства.

Разбор софизмов, прежде всего, развивает логическое мышление, прививает навыки правильного мышления. Обнаружить ошибку в софизме - это, значит, осознать её, а осознание ошибки предупреждает от повторения её в других математических рассуждениях. Помимо критичности математического мышления этот вид нестандартных задач выявляет гибкость мышления. Сумеет ли ученик «вырваться из тисков» этого строго логичного на первый взгляд пути, разорвать цепь умозаключений в том самом звене, которое является ошибочным и делает ошибочным все дальнейшие рассуждения?

Разбор софизмов помогает также сознательному усвоению изучаемого материала, развивает наблюдательность и критическое отношение к тому, что изучается.

а) Вот, к примеру, софизм с неправильным применением теоремы.

Докажем, что 2 • 2 = 5.

Возьмём в качестве исходного соотношения следующее очевидное равенство: 4 : 4 = 5 : 5 (1)

Вынесем за скобки общий множитель в левой и правой частях, получим:

4 • (1 : 1) = 5 • (1 : 1) (2)

Числа в скобках равны, значит, 4 = 5 или 2 • 2 = 5.

Решение.

В рассуждении при переходе от равенства (1) к равенству (2) создана иллюзия правдоподобия на основе ложной аналогии с распределительным свойством умножения относительно сложения.

б) Софизм с использованием «незаконных» обобщений.

Имеются две семьи - Ивановых и Петровых. Каждая состоит из 3 человек - отца, матери и сына. Отец Иванов не знает отца Петрова. Мать Иванова не знает матери Петровой. Единственный сын Ивановых не знает единственного сына Петровых. Вывод: ни один член семьи Ивановых не знает ни одного члена семьи Петровых. Верно ли это?

Решение.

Если член семьи Ивановых не знает равного себе по семейному статусу члена семьи Петровых, то это не значит, что он не знает всю семью. Например, отец Иванов может знать мать и сына Петровых.

Метод рассуждений можно использовать и для решения логических задач. Под логическими задачами обычно понимают такие задачи, которые решаются с помощью одних лишь логических операций. Иногда решение их требует длительных рассуждений, необходимое направление которых заранее нельзя предугадать.

Задача. Говорят, что Тортила отдала золотой ключик Буратино не так просто, как рассказал А. Н. Толстой, а совсем иначе. Она вынесла три коробочки: красную, синюю и зелёную. На красной коробочке было написано: «Здесь лежит золотой ключик», а на синей - «Зелёная коробочка пуста», а на зелёной - «Здесь сидит змея». Тортила прочла надписи и сказала: «Действительно в одной коробочке лежит золотой ключик, в другой - змея, а третья - пуста, но все надписи неверны. Если отгадаешь, в какой коробочке лежит золотой ключик, он твой». Где лежит золотой ключик?

Решение.

Так как все надписи на коробочках неверны, то в красной коробочке лежит не золотой ключик, зеленая коробочка не пустая и в ней не змея, значит в зеленой коробочке - ключик, в красной - змея, а синяя - пуста.

При решении логических задач активизируется логическое мышление, а это умение выводить следствия из посылок, которое крайне необходимо для успешного овладения математикой.

Ребус - это загадка, но загадка не совсем обычная. Слова и числа в математических ребусах изображены при помощи рисунков, звездочек, цифр и различных знаков. Чтобы прочесть то, что зашифровано в ребусе, надо правильно назвать все изображенные предметы и понять, какой знак что изображает. Ребусами люди пользовались еще тогда, когда не умели писать. Свои письма они составляли из предметов. Например, вожди одного племени послали однажды своим соседям вместо письма птицу, мышь, лягушку и пять стрел. Это означало: «Умеете ли летать как птицы и прятаться в земле как мыши, прыгать по болотам как лягушки? Если не умеете, то не пробуйте воевать с нами. Мы засыпим вас стрелами, как только вы вступите в нашу страну».

Решение.

Судя по первой букве суммы 1), Д = 1 или 2.

Предположим, что Д = 1. Тогда, У ? 5. У = 5 исключаем, т.к. Р не может быть равно 0. У ? 6, т.к. 6 + 6 = 12, т.е. Р = 2. Но такое значение Р при дальнейшей проверке не подходит. Аналогично, У ? 7.

Предположим, что У = 8. Тогда, Р = 6, А = 2, К = 5, Д = 1.

Магический (волшебный) квадрат - это квадрат, в котором сумма чисел по вертикали, горизонтали и диагонали получается одинаковой.

Задача. Расположите числа от 1 до 9 так, чтобы по вертикали, горизонтали и диагонали получилась одинаковая сумма чисел, равная 15.

Решение.

Хотя общих правил для решения нестандартных задач нет (поэтому эти задачи и называются нестандартными), однако мы постарались дать ряд общих указаний - рекомендаций, которыми следует руководствоваться при решении нестандартных задач разных видов.

Каждая нестандартная задача оригинальна и неповторима в своём решении. В связи с этим разработанная методика обучения поисковой деятельности при решении нестандартных задач не формирует навыки решения нестандартных задач, речь может идти лишь об отработке определённых умений:

· умения понимать задачу, выделять главные (опорные) слова;

· умения выявлять условие и вопрос, известное и неизвестное в задаче;

· умения находить связь между данным и искомым, то есть проводить анализ текста задачи, результатом которого является выбор арифметического действия или логической операции для решения нестандартной задачи;

· умения записывать ход решения и ответ задачи;

· умения проводить дополнительную работу над задачей;

· умение отбирать полезную информацию, содержащуюся в самой задаче, в процессе её решения, систематизировать эту информацию, соотнося с уже имеющимися знаниями.

Нестандартные задачи развивают пространственное мышление, которое выражается в способности воссоздавать в уме пространственные образы объектов и выполнять над ними операции. Пространственное мышление проявляется при решении задач типа: «Сверху на кромке круглого торта поставили 5 точек из крема на одинаковом расстоянии друг от друга. Через все пары точек сделали разрезы. Сколько всего получилось кусочков торта?»

Практический метод можно рассмотреть для нестандартных задач на деление.

Задача. Палку нужно распилить на 6 частей. Сколько потребуется распилов?

Решение: Распилов потребуется 5.

При изучении нестандартных задач на деление надо понять: чтобы разрезать отрезок на Р частей, следует сделать (Р - 1) разрез. Этот факт нужно установить с детьми индуктивным путём, а затем использовать при решении задач.

Задача. В трёхметровом бруске - 300 см. Его надо разрезать на бруски длиной 50 см каждый. Сколько надо сделать разрезов?

Решение: Получаем 6 брусков 300 : 50 = 6 (брусков)

Рассуждаем так: чтобы разделить брусок пополам, т. е. на две части, надо сделать 1 разрез, на 3 части - 2 разреза и так далее, на 6 частей - 5 разрезов.

Итак, надо сделать 6 - 1 = 5 (разрезов).

Ответ: 5 разрезов.

Итак, одним из основных мотивов, побуждающих школьников учиться, является интерес к предмету. Интерес - это активная познавательная направленность человека на тот или иной предмет, явление и деятельность, созданная с положительным эмоциональным отношением к ним. Одним из средств развития интереса к математике являются нестандартные задачи. Под нестандартной задачей понимают такие задачи, для которых в курсе математики не имеется общих правил и положений, определяющих точную программу их решения. Решение таких задач позволяет учащимся активно включиться в учебную деятельность. Существуют различные классификации задач и методов их решения. Самыми часто используемыми являются алгебраический, арифметический, практический методы и метод перебора, рассуждения и предположения.


По теме: методические разработки, презентации и конспекты

Развитие образно-логического мышления учащихся с помощью решения нестандартных задач . 5-6 классы.

Методическая разработка. Можно использовать при работе кружка по математике в 5-6 классах....

Эссе по теме:Задача как цель и средство в обучении математике. Что влияет на результативность поисковой деятельности учащихся в процессе решения трудных нестандартных задач?

Задача как цель и средство в обучении математике. Что влияет на результативность поисковой деятельности учащихся в процессе решения трудных нестандартных задач?...

Программа элективного курса «Решение нестандартных задач. Исследовательские задачи с параметрами»

Курс строится как углубленное изучение вопросов, предусмотренных программой основного курса. Углубление реализуется на базе обучения приемам и методам решения математических  задач  с параме...

Статья. Нестандартные задачи для самостоятельного решения.

Примеры нестандартных задач для самостоятельного решения...

Статья статьи «Проектная деятельность по составлению нестандартных задач с использованием исторического содержания родного края»

В статье представлена проектная раьота по составлению нестандартных задач по математике с использование исторического содержания родного края....

Разработка открытого занятия кружка по теме: "Методика работы с текстовой задачей. Поиск решения нестандартных задач".6-7 классы.

Методика  раскрывается на примере задач на однокруговые турниры.В задачах этого занятия турниры исследуются алгебраическими методами. Обучение алгебре состоит не только и не столько в обучении ме...