Решение текстовых задач
рабочая программа по алгебре (8 класс)
Рабочая программа элективного курса по алгебре 8 класса(подготовка к ОГЭ)
Скачать:
Вложение | Размер |
---|---|
rabochaya_programma_fakultativ_8_klass.docx | 54.68 КБ |
Предварительный просмотр:
Пояснительная записка.
Большинство учащихся не в полной мере владеют техникой решения текстовых задач, об этом можно судить по статистическим данным анализа результатов проведения ОГЭ для выпускников 9-х классов. Задания первой и второй части теста содержат текстовую задачу, которая оценивается максимумом баллов. За нетрадиционной формулировкой этой задачи учащимся необходимо увидеть типовые задачи, которые были достаточно хорошо отработаны на уроках в рамках школьной программы. По этим причинам возникла необходимость более глубокого изучения традиционного раздела элементарной математики: решение текстовых задач. Полный минимум знаний, необходимый для решения всех типов текстовых задач, формируется в течение первых девяти лет обучения учащихся в школе, поэтому представленный факультатив «Решение текстовых задач» рекомендуется вводить с 8-го класса.
Цель данного курса:
- подготовка учащихся к итоговой аттестации, продолжению образования, повышение уровня их математической культуры.
Задачи:
- сформировать у учащихся полное представление о решении текстовых
- сформировать высокий уровень мышления, проявляющейся в продуцировании большого количества разных идей, возникновении нескольких вариантов решения задач, проблем;
- развить интерес к математике,
- способствовать выбору учащимися путей− дальнейшего продолжения образования;
- способствовать профориентации.
Данный курс имеет общеобразовательный, межпредметный характер, освещает роль и место математики в современном мире. Всего на проведение занятий отводится 34 часа. На изучение методов решения типовых задач выделено 7 часов. Провести их можно в форме обзорных лекций с разбором ключевых задач. Основная деятельность учащихся на этом этапе – предварительная подготовка и самостоятельный поиск материалов, с последующим обсуждением на занятиях.
Курс состоит из семи тем. Темы занятий независимы друг от друга и могут изучаться в любом разумном порядке. Изучаемый материал примыкает к основному курсу, дополняя его историческими сведениями, сведениями важными в общеобразовательном или прикладном отношении, материалами занимательного характера при минимальном расширении теоретического материала. Сложность задач нарастает постепенно. Прежде, чем приступать к решению трудных задач, надо рассмотреть решение более простых, входящих как составная часть в решение сложных.
На практические занятия и отработку умений и навыков отведено 27 часов. В ходе изучения материала данного курса целесообразно сочетать такие формы организации учебной работы, как практикумы по решению задач, лекции, тестирование, частично-поисковая деятельность. Развитию математического интереса способствуют математические игры (дидактическая, ролевая), викторины, головоломки. Необходимо использовать элементы исследовательской деятельности. После рассмотрения полного курса учащиеся должны иметь следующие результаты обучения: уметь определять тип текстовой задачи, знать особенности методики её − решения, используя при этом разные способы; уметь применять полученные математические знания в решении − жизненных задач; уметь использовать дополнительную математическую литературу с целью − углубления материала основного курса, расширения кругозора и формирования мировоззрения, раскрытия прикладных аспектов математики. Инструментарием для оценивания результатов является письменный зачет после каждого блока.
Учебный план
№ п/п | Тема | Кол-во часов | Из них | Зачет | |
Лекция | Практика | ||||
1 | Введение | 1 | 1 | ||
2 | Задачи на движение | 5 | 1 | 3 | 1 |
3 | Задачи на работу | 5 | 1 | 3 | 1 |
4 | Задачи на проценты | 5 | 1 | 3 | 1 |
5 | Задачи на сплавы, смеси | 5 | 1 | 3 | 1 |
6 | Задачи на статистику и комбинаторику | 5 | 1 | 3 | 1 |
7 | Геометрические задачи | 5 | 1 | 3 | 1 |
8 | Обобщение | 3 | 2 | 1 | |
ИТОГО | 34 | 7 | 20 | 7 |
Содержание программы.
I. Введение. Текстовые задачи и техника их решения (1ч).
Текстовая задача. Виды текстовых задач и их примеры. Решение текстовой задачи. Этапы решения текстовой задачи. Решение текстовых задач арифметическими приёмами (по действиям). Решение текстовых задач методом составления уравнения, неравенства или их системы. Значение правильного письменного оформления решения текстовой задачи. Чертёж к текстовой задаче и его значение для построения математической модели.
II. Задачи на движение (5ч). Движение тел по течению и против течения. Равномерное и равноускоренное движения тел по прямой линии в одном направлении и навстречу друг другу. Движение тел по окружности в одном направлении и навстречу друг другу. Формулы зависимости расстояния, пройденного телом, от скорости, ускорения и времени в различных видах движения. Графики движения в прямоугольной системе координат. Чтение графиков движения и применение их для решения текстовых задач. Решение текстовых задач с использованием элементов геометрии. Особенности выбора переменных и методики решения задач на движение. Составление таблицы данных задачи на движение и её значение для составления математической модели.
III. Задачи на работу (5 ч).Формула зависимости объёма выполненной работы от производительности и времени её выполнения. Особенности выбора переменных и методики решения задач на работу. Составление таблицы данных задачи на работу и её значение для составления математической модели.
IV. Задачи на проценты (5 ч.) Формулы процентов. Особенности выбора переменных и методики решения задач с экономическим содержанием.
V. Задачи на сплавы, смеси, растворы (5ч). Формула зависимости массы или объёма вещества в сплаве, смеси, растворе («часть») от концентрации («доля») и массы или объёма сплава, смеси, раствора («всего»). Особенности выбора переменных и методики решения задач на сплавы, смеси, растворы. Составление таблицы данных задачи на сплавы, смеси, растворы и её значение для составления
VI. Задачи на статистику и комбинаторику (5ч). Простейшие комбинаторные задачи методом перебора, вычислять в простейших случаях вероятности событий на основе подсчета числа исходов; использовать приобретенные знания и умения в практической деятельности и повседневной жизни; анализировать числовые данные, представленные в виде диаграмм;
VII. Геометрические задачи (5ч). Решение геометрических задач, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, правила симметрии; уметь проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования.
VIII. Обобщение (3ч). Текстовые задачи из ОГЭ за курс 9 класса
Литература.
1. В.Н. Студенецкая, З.С. Гребнева. Готовимся к ЕГЭ. Учебное пособие. Часть 1,2. – Волгоград: «Учитель», 2003г.
2. М.А. Иванов. Математика без репетитора. 800 задач с ответами и решениями для абитуриентов. Учебное пособие. – М.: Издательский центр «Вентана – Граф», 2002г.
3. Ю.В. Садовничий. Математика. Конкурсные задачи по алгебре с решениями. Часть 6. Решение текстовых задач. Учебное пособие.– 3-е изд., стер. – М.: Издательский отдел УНЦ ДО, 2003г. (серия «В помощь абитуриенту»).
4. М.В. Лурье, Б.И. Александров. Задачи на составление уравнений. Учебное руководство. – М.: Наука. Главная редакция физико-математической литературы,
5. Г.В. Дорофеев, М.К. Потапов, Н.Х. Розов. Пособие по математике для поступающих в вузы (избранные вопросы элементарной математики). – М.: Наука. Главная редакция физико-математической литературы, 1976г.
6. Б.Ф. Бутузов, Ю.М. Колягин, Ю.В. Сидоров и др. Математика. Учебник для экономистов 10 – 11 классов. – М.: Сантакс - Пресс, 1996г.
7. Г.Н. Тимофеев Математика для поступающих в вузы. Учебное пособие.– Йошкар-
8. Н.И. Попов, А.Н. Марасанов. Задачи на составление уравнений. Учебное пособие. Йошкар-Ола: Мар. гос. ун-т, 2003г.
9. А. Тоом Как я учу решать текстовые задачи. - Еженедельная учебно-методическая газета «Математика», №46, 47, 2004г.
10. А. Прокофьев, Т. Соколова, В. Бардушкин, Т. Фадеичева. Текстовые задачи. Еженедельная учебно-методическая газета «Математика», №9, 2005г.
11. В. Булынин Применение графических методов при решении текстовых задач. – Еженедельная учебно-методическая газета «Математика», №14, 2005г.
ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ - 8 КЛАСС
№ урока | ТЕМА | Кол-во час. | Класс |
ТЕМА 1: «Введение» (1 ч.) | |||
1. | Виды текстовых задач и их примеры | 1 ч. | |
ТЕМА 2: «Задачи на движение».( 5 ч.) | |||
2 | Движение по течению и против течения | 1 ч. | |
3 | Движение тел по прямой, окружности | 1 ч. | |
4-5 | Практикум | 2 ч. | |
6 | Зачет | 1 ч. | |
ТЕМА 3: «Задачи на работу».( 5 ч.) | |||
7 | Виды задач | 1 ч. | |
8-10 | Практикум | 3 ч. | |
11 | Зачет | 1 ч. | |
ТЕМА 4: «Задачи на проценты».( 5 ч.) | |||
12 | Виды задач | 1 ч. | |
13-15 | Практикум | 3 ч. | |
16 | Зачет | 1 ч. | |
ТЕМА 5: «Задачи на сплавы, смеси».( 5 ч.) | |||
17 | Виды задач | 1 ч. | |
18-20 | Практикум | 3 ч. | |
21 | Зачет | 1 ч. | |
ТЕМА 6: «Задачи на статистику и комбинаторику».( 5 ч.) | |||
22 | Метод перебора | 1 ч. | |
23 | Случайные события и их вероятности | 1 ч. | |
24-25 | Практикум | 2 ч. | |
26 | Зачет | 1 ч. | |
ТЕМА 7: «Геометрические задачи».( 5 ч.) | |||
27 | Виды задач | 1 ч. | |
28-30 | Практикум | 3 ч. | |
31 | Зачет | 1 ч. | |
32-33 | Обобщение | 2 ч. | |
34 | Итоговый зачет | 1 ч. |
Дидактический материал
Задачи на движение
- Моторная лодка прошла против течения реки 255 км и вернулась в пункт отправления, затратив на обратный путь на 2 часа меньше. Найдите скорость лодки в неподвижной воде, если скорость течения равна 1 км/ч. Ответ дайте в км/ч.
- Теплоход проходит по течению реки до пункта назначения 200 км и после стоянки возвращается в пункт отправления. Найдите скорость течения, если скорость теплохода в неподвижной воде равна 15 км/ч, стоянка длится 10 часов, а в пункт отправления теплоход возвращается через 40 часов после отплытия из него. Ответ дайте в км/ч.
- Баржа в 10:00 вышла из пункта А в пункт В, расположенный в 15 км от А. Пробыв в пункте В 1 час 20 минут, баржа отправилась назад и вернулась в пункт А в 16:00. Определите (в км/час) скорость течения реки, если известно, что собственная скорость баржи равна 7 км/ч.
- Из пункта A в пункт B одновременно выехали два автомобиля. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью 24 км/ч, а вторую половину пути — со скоростью, на 16 км/ч большей скорости первого, в результате чего прибыл в пункт В одновременно с первым автомобилем. Найдите скорость первого автомобиля. Ответ дайте в км/ч.
- Велосипедист выехал с постоянной скоростью из города А в город В, расстояние между которыми равно 98 км. На следующий день он отправился обратно со скоростью на 7 км/ч больше прежней. По дороге он сделал остановку на 7 часов. В результате он затратил на обратный путь столько же времени, сколько на путь из А в В. Найдите скорость велосипедиста на пути из А в В. Ответ дайте в км/ч.
- Два велосипедиста одновременно отправились в 143-километровый пробег. Первый ехал со скоростью, на 2 км/ч большей, чем скорость второго, и прибыл к финишу на 2 часа раньше второго. Найти скорость велосипедиста, пришедшего к финишу вторым. Ответ дайте в км/ч.
- Моторная лодка прошла против течения реки 195 км и вернулась в пункт отправления, затратив на обратный путь на 2 часа меньше. Найдите скорость течения, если скорость лодки в неподвижной воде равна 14 км/ч. Ответ дайте в км/ч.
- Теплоход проходит по течению реки до пункта назначения 308 км и после стоянки возвращается в пункт отправления. Найдите скорость теплохода в неподвижной воде, если скорость течения равна 4 км/ч, стоянка длится 8 часов, а в пункт отправления теплоход возвращается через 44 часа после отплытия из него. Ответ дайте в км/ч.
- От пристани A к пристани B, расстояние между которыми равно 182 км, отправился с постоянной скоростью первый теплоход, а через 1 час после этого следом за ним, со скоростью на 1 км/ч большей, отправился второй. Найдите скорость первого теплохода, если в пункт B оба теплохода прибыли одновременно. Ответ дайте в км/ч.
- Из пункта А в пункт В, расстояние между которыми 30 км, одновременно выехали автомобилист и велосипедист. Известно, что в час автомобилист проезжает на 30 км больше, чем велосипедист. Определите скорость велосипедиста, если известно, что он прибыл в пункт В на 1 час 20 минут позже автомобилиста. Ответ дайте в км/ч.
- Пристани A и B расположены на озере, расстояние между ними равно 234 км. Баржа отправилась с постоянной скоростью из A в B. На следующий день после прибытия она отправилась обратно со скоростью на 4 км/ч больше прежней, сделав по пути остановку на 8 часов. В результате она затратила на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость баржи на пути из A в B. Ответ дайте в км/ч.
Задачи на смеси и сплавы
- Имеется два сплава. Первый сплав содержит 10% никеля, второй - 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава меньше массы второго сплава?
- В сосуд, содержащий 180 г 70%-го водного раствора уксуса добавили 320 г воды. Найдите концентрацию уксусной кислоты в получившемся растворе.
- Имеются два сплава, состоящие из золота и меди. В первом сплаве отношение масс золота и меди равно 8:3, а во втором - 12:5. Сколько килограммов золота и меди содержится в сплаве, приготовленном из 121 кг первого сплава и 255 кг второго сплава?
- Смешали 10%-й раствор серной кислоты с 30%-м раствором той же кислоты. В результате получили 600 г 15%-го раствора серной кислоты. Сколько взяли того и другого раствора?
- Смешав 40% и 15% растворы кислоты, добавили 3 кг чистой воды и получили 20% раствор кислоты. Если бы вместо 3 кг воды добавили 3 кг 80% раствора той же кислоты, то получили бы 50%-ый раствор кислоты. Сколько килограммов 40% -го и 15% растворов кислоты было смешано?
- Сколько нужно добавить воды в сосуд, содержащий 150 г 70% -го раствора уксусной кислоты, чтобы получить 6 % раствор уксусной кислоты?
- К 12 кг сплава меди и олова добавили 8 кг другого сплава, содержащего те же металлы в обратной пропорции, получив в итоге сплав, содержащий 55% меди. Сколько процентов меди было в каждом из исходных сплавов?
- Раствор соли массой 40 кг разлили в два сосуда так, что во 2-ом сосуде чистой соли оказалось на 2 кг больше, чем в 1-ом. Если бы во 2-ой сосуд добавили ещё 1 кг соли, то количество соли в нём стало бы вдвое больше, чем в 1-ом сосуде. Сколько раствора было в 1-ом сосуде?
- Имеется два слитка золота с серебром. Процентное содержание золота в первом слитке 2,5 раза больше, чем процентное содержание золота во втором слитке. Если сплавить оба слитка вместе, то получится слиток, в котором будет 40% золота. Определить, во сколько раз первый слиток тяжелее второго, если известно, что при сплавке равных по весу частей первого и второго слитков получается слиток, в котором содержится 35% золота.
- Имеется два раствора серной кислоты в воде: первый 40% и второй 60%. Эти растворы смешали, после чего добавили 5 кг чистой воды и получили 20%-ый раствор. Если бы вместо 5 кг чистой воды добавили 5 кг 80%-го раствора, то получили бы 70%-ый раствор. Сколько было 40%-го и 60%-го растворов?
Задачи на работу
- Заказ на 110 деталей первый рабочий выполняет на 1 час быстрее, чем второй. Сколько деталей в час делает второй рабочий, если известно, что первый за час делает на 1 деталь больше?
- Двое рабочих, работая вместе, могут выполнить работу за 12 дней. За сколько дней, работая отдельно, выполнит эту работу первый рабочий, если он за два дня выполняет такую же часть работы, какую второй — за три дня?
- Первая труба пропускает на 1 литр воды в минуту меньше, чем вторая. Сколько литров воды в минуту пропускает первая труба, если резервуар объемом 110 литров она заполняет на 2 минуты дольше, чем вторая труба заполняет резервуар объемом 99 литров?
- На изготовление 16 деталей первый рабочий тратит на 6 часов меньше, чем второй рабочий на изготовление 40 таких же деталей. Известно, что первый рабочий за час делает на 3 детали больше, чем второй. Сколько деталей в час делает второй рабочий?
- Первая труба пропускает на 3 литра воды в минуту меньше, чем вторая. Сколько литров воды в минуту пропускает первая труба, если резервуар объемом 378 литров она заполняет на 3 минуты дольше, чем вторая труба?
- Заказ на 153 детали первый рабочий выполняет на 8 часов быстрее, чем второй. Сколько деталей в час делает второй рабочий, если известно, что первый за час делает на 8 деталей больше?
- На изготовление 459 деталей первый рабочий затрачивает на 10 часов меньше, чем второй рабочий на изготовление 567 деталей. Известно, что первый рабочий за час делает на 6 деталей больше, чем второй. Сколько деталей в час делает первый рабочий?
- Двое рабочих, работая вместе, могут выполнить работу за 15 дней. За сколько дней, работая отдельно, выполнит эту работу первый рабочий, если он за 2 дня выполняет такую же часть работы, какую второй — за 3 дня?
- Десять работников должны были выполнить работу за 8 дней. Когда они проработали 2 дня, то оказалось, что закончить работу необходимо уже через 3 дня. Сколько еще нужно взять работников, если известно, что производительность труда у работников одинаковая?
- Студенческая бригада подрядилась выложить плиткой пол площадью 210 м. Приобретая опыт, студенты в каждый последующий день, начиная со второго, выкладывали на 1,5 м больше, чем в предыдущий, и запасов плитки им хватило ровно на 9 дней работы. Планируя, что производительность труда будет увеличиваться таким образом, бригадир определил, что для завершения работы понадобится еще 6 дней. Сколько коробок с плитками ему надо заказать, если одной коробки хватает на 1,3 м, а для замены некачественных плиток понадобится 2 коробки?
Задачи на проценты и сложные проценты
1. В 2008 году в городском квартале проживало 20000 человек. В 2009 году, в результате строительства новых домов, число жителей выросло на 9%, а в 2010 году — на 4% по сравнению с 2009 годом. Сколько человек стало проживать в квартале в 2010 году?
2. В четверг акции компании подорожали на некоторое число процентов, а в пятницу подешевели на то же самое число процентов. В результате они стали стоить на 36% дешевле, чем при открытии торгов в четверг. На сколько процентов подорожали акции компании в четверг?
3. Восемь рубашек дешевле куртки на 2%. На сколько процентов двенадцать рубашек дороже куртки?
4. Семья состоит из мужа, жены и их дочери студентки. Если бы зарплата мужа увеличилась втрое, общий доход семьи вырос бы на 108%. Если бы стипендия дочери уменьшилась втрое, общий доход семьи сократился бы на 4%. Сколько процентов от общего дохода семьи составляет зарплата жены?
5. Дима, Артем, Гриша и Игорь учредили компанию с уставным капиталом 150000 рублей. Дима внес 24% уставного капитала, Артем — 60000 рублей, Гриша — 0,22 уставного капитала, а оставшуюся часть капитала внес Игорь. Учредители договорились делить ежегодную прибыль пропорционально внесенному в уставной капитал вкладу. Какая сумма от прибыли 600000 рублей причитается Игорю? Ответ дайте в рублях.
6. Акционерное общество «МММ-лимитед» объявило котировку своих акций на ближайшие 3 месяца с приростом в процентах последовательно по месяцам на 243 %, 412 % и 629 % по отношению к каждому предыдущему месяцу. Каков средний ежемесячный рост котировок акций за указанный период?
7. Себестоимость изделия понизилась за 1 полугодие на 10 %, а за второе – на 20 %. Определить первоначальную себестоимость изделия, если новая себестоимость стала 576 руб.
8. Пусть вкладчик положил на счет в банке 25000р. и в течение 3-х лет не будет снимать деньги со счета. Подсчитаем, сколько денег будет на счете вкладчика через 3 года, если банк выплачивает 30% в год, и проценты после каждого начисления присоединяются к начальной сумме 25000р., т.е. капитализируются.
9. Зарплата служащему составляла 20000р. Затем зарплату повысили на 20%, а вскоре понизили на 20%. Сколько стал получать служащий?
10. На товар снизили цену сначала на 20%, а затем еще на 15%. При этом он стал стоить 23,8 тыс.р. Какова была первоначальная цена товара?
11. Завод увеличивал объем выпускаемой продукции ежегодно на одно и то же число процентов. Найти это число, если известно, что за 2 года объем выпускаемой продукции увеличивался на 21%.
12. Цену товара первоначально понизили на 20%, затем новую цену снизили еще на 30% и, наконец, после пересчета произвели снижение на 50%. На сколько процентов всего снизили первоначальную цену товара?
Графы и таблицы
- В финал турнира по шашкам вышли два российских игрока, два немецких и два американских. Сколько партий будет в финале, если каждый играет с каждым по одному разу и представители одной страны между собой не играют?
- В зале лежали конфеты четырех сортов. Каждый ребенок взял по 2 конфеты. И у всех оказались отличающиеся наборы конфет. Сколько могло быть детей?
- Сколько разностей можно составить из чисел 30, 25, 17, 9, если для их составления брать по 2 числа? Будут ли среди них разности, значения которых равны?
- Четыре подружки вечером по телефону созваниваются друг с другом. Сколько звонков было сделано, если каждая подружка поговорила с каждой по одному разу?
- В магазине продаются елочные шары четырех видов. Сколько отличающихся наборов, состоящих из двух разных шаров, можно с, состоящих из двух разных шаров, можно составить?
- На фабрике есть стержни для ручек четырех цветов: красного, синего, зеленого и черного. Сколько различных трехцветных ручек можно при этом собрать?
- У девочки есть бумага зеленого и желтого цвета. Из нее она вырезает круги, квадраты и треугольники, делая их большими и маленькими. Сколько различных вариантов у нее получится?
- Шерлоку Холмсу нужно открыть сейф, для этого он должен отгадать код. Он знает, что код – это трехзначное число, составленное из цифр 1, 2, 3, 4 и большее числа 400. Какие числа должен проверить Шерлок Холмс, чтобы найти код?
Тесты для входного контроля.
Тест №1.
- Дневная норма потребления витамина С составляет 60 мг. Один мандарин в среднем содержит 35 мг витамина С. Сколько примерно процентов дневной нормы витамина получил человек, съевший один мандарин?
а) 170% б) 58% в) 17% г) 0,58%
- В сентябре 1 кг винограда стоил 60 рублей, в октябре виноград подорожал на 25% , а в ноябре еще на 20% . Сколько рублей стоил 1 кг винограда после подорожания в ноябре?
Ответ________
- Флакон шампуня стоит 75 рублей. Какое наибольшее число флаконов можно купить на 500 рублей во время распродажи, когда скидка составляет 20%?
Ответ________
- В декабре виноград подорожал на 25% и стал стоить 200 рублей за килограмм. Сколько рублей стоил 1 кг винограда до подорожания в декабре?
Ответ: _______________________
- Известно, что стул стоит 1000 рублей и составляет 20 % от цены компьютерного стола. Сколько рублей заплатит покупатель за комплект, состоящий из стола и стула?
Ответ_____________
Тест №2
- Цена килограмма орехов а рублей. Сколько рублей надо заплатить за 300 граммов этих орехов?
а) б) 300а в) 0,3а г)
- Шарик стоит 3 руб. 40 коп. Какое наибольшее число шариков можно купить на 40 рублей?
Ответ________
- В коробке 110 кусков мела. За месяц в школе расходуется 400 кусков мела. Какое наименьшее количество коробок мела нужно купить в школу на 6 месяцев?
Ответ________
- В кафе проходит рекламная акция: покупая три чашки кофе, покупатель получает четвёртую чашку в подарок. Чашка кофе стоит 45 рублей. Какое наибольшее число чашек кофе получит покупатель за 250 рублей? Ответ________
- В магазин привезли учебники по биологии для 7 - 9-х классов, по 50 штук для каждого класса. В шкафу 4 полки, на каждой полке помещается 30 книг. Сколько шкафов можно полностью заполнить новыми книгами по биологии, если все книги имеют одинаковый формат? Ответ________
- Майка стоит 180 рублей. Какое наибольшее число маек можно купить на 600 рублей во время распродажи, когда скидка составляет 20%? Ответ________
- Оптовая цена рулона обоев 80 рублей. Розничная цена на 30% выше оптовой. Какое наибольшее число таких рулонов можно купить по розничной цене на 800 рублей? Ответ________
- Телевизор стоил 8400 рублей. После снижения цены он стал стоить 6720 рублей. На сколько процентов была снижена цена на телевизор?
Ответ________
- Кириллу нужно 120 000 руб. для поступления в платную аспирантуру. Он взял в банке кредит на год под 12%. Для погашения кредита необходимо ежемесячно вносить в банк одинаковую сумму денег, с тем чтобы через год выплатить всю сумму, взятую в кредит, вместе с процентами. Сколько рублей Кирилл должен вносить в банк ежемесячно?
Ответ________
- Автолюбитель за месяц проехал 600 км. Стоимость 1 л бензина 24 руб. Средний расход бензина на 100 км составляет 6 л. Сколько рублей потратил автолюбитель на бензин за этот месяц?
Ответ_______
Тест №3.
- Какое уравнение соответствует условию задачи, если буквой х обозначена скорость велосипедиста (в км/ч)?
а) б) в)1,5(х+8)=4х г) 4(х-8)=1,5х
- Решить уравнение:
3-2х = 6 - 4(х+2)
Ответ_______
- Турист во время прохождения своего маршрута шёл пешком и ехал на велосипеде. Известно, что 30 % пути он прошёл пешком, что составило 6 км.
Найдите расстояние, которое турист проехал на велосипеде?
Ответ_____________________
- Путь от поселка до железнодорожной станции пешеход прошел за 4 часа, а велосипедист проехал за 1,5 ч. Скорость велосипедиста на 8 км/ч больше скорости пешехода. С какой скоростью ехал велосипедист?
Ответ________
- Грузовик сначала едет 3 минуты с горы, а затем 9 минут в гору. На обратный путь он тратит те же 12 минут. Во сколько раз скорость грузовика при движении с горы больше, чем скорость в гору?
Ответ: _______________________
- Из двух лодочных станций, расположенных на реке, одновременно навстречу друг другу вышли две моторные лодки с одинаковой собственной скоростью. Началась гроза, и одна из лодок вернулась на станцию, пройдя по течению 20 минут, а другая повернула обратно через 30 минут после выхода со станции. Обратный путь обеих лодок в сумме занял 50 минут. Во сколько раз скорость лодки по течению больше скорости лодки против течения? (записать подробное решение задачи)
Итоговая зачетная работа.
- Собрали 100 кг грибов. Оказалось, что их влажность 99% . Когда грибы подсушили, влажность снизилась до 98% . Какой стала масса грибов после подсушивания?
а)55 кг б) 60 кг в) 45 кг г) 50 кг
- Я иду от дома до школы 30 мин. а мой брат – 40 мин. Через сколько минут я догоню брата, если он вышел из дома на 5 мин раньше меня?
а) 14 мин б) 15 мин в) 10 мин г) 16 мин
- Даны два положительных числа. Одно из них увеличили на 1%, другое – на 4%. Могла ли их сумма увеличиться на 3%? Чему равны эти числа?
а) 100 и 200 б) 200 и 300 в) 100 и 300 г) 200 и 150
- Школьник прочитал книгу за 3 дня. В первый день он прочитал 0,2 всей книги и еще 16 страниц, во второй день – 0,3 остатка и еще 20 страниц, а в третий день -0,75 нового остатка и последние 30 страниц. Сколько страниц в книге?
а) 270 б) 230 в) 250 г) 420
- Сумма двух чисел равна 13,5927. Если в большем из них перенести запятую на один знак влево, то получим меньшее число. Чему равны эти числа?
а) 1,2354 и 12,357 б) 1,2357 и 12,357 в) 1,3357 и 13,357 г) -1,2357 и 12,357
- Малыш может съесть банку варенья за 6 минут, а Карлсон – в 2 раза быстрее. За какое время они съедят это варенье вместе?
а) За 4 мин б) За 3 мин в) За 2 мин г) За 1 мин
- Решить уравнение .
- Теплоход прошел 4 км против течения реки и затем прошел еще 33 км по течению, затратив на весь путь 1 ч. Найдите скорость теплохода в стоячей воде, если скорость течения реки равна 6,5 км/ч.
- Два экскаватора, работая совместно, могут вырыть котлован за 48 ч. За какое время каждый из них может вырыть котлован, работая в отдельности, если первому нужно на40 ч больше, чем второму?
- Расстояние между городами А и В равно 435 км. Из города А в город В со скоростью 60 км/ч выехал первый автомобиль, а через час после этого навстречу ему из города В выехал со скоростью 65 км/ч второй автомобиль. На каком расстоянии от города А автомобили встретятся?
По теме: методические разработки, презентации и конспекты
Сборник задач."Использование дробей при решении текстовых задач в 5-8классах"
Сборник предназначен для использования при повторении пройденных тем по дробям, и особенно, по решению задач. В ней даются в виде математических моделей: схем, таблиц, числовых и буквенных выраж...
Учебный модуль по теме " Уравнение. Решение уравнений.Решение текстовых задач с помощью уравнений."
Данный учебный модуль разработан в рамках персонализированного обучения .Модуль расчитан на 12 часов. Содержитз адания для прохождения уровней цели 2.0,,3.0 и 4.0.В модуле представле...
Решение текстовых задач: задач на смеси, сплавы и растворы при подготовке к ГИА по математике. ( рекомендации учащимся)
Решение задач на смеси, сплавы, растворы требует определенной теоретической базы.Это различные определения, такие как концентрация, процентное содержание и др., а также и всевозможные допущения, напри...
Практическая задача по математике для 5 класса. Тема: Решение текстовых задач.
Цели: формирование функциональной математической грамотности: умения распознавать математические объекты в реальных жизненных ситуациях, применять освоенные умения для решения практико-ориентированных...
Приемы решения уравнений в 5-6 классах и обучение учащихся решению текстовых задач методом составления уравнений
Приемы решения уравнений в 5-6 классах и обучение учащихся решению текстовых задач методом составления уравнений...
Урок в 5-ом классе по теме «Решение текстовых задач. Использование при решении задач таблиц и схем» по ФГ
Содержание урока в 5-ом классе по теме «Решение текстовых задач. Использование при решении задач таблиц и схем» направлено на формирование у обучающихся понятия расходы, п...
Решение текстовых задач прикладного характера. Задачи на движение
Необходимость рассмотрения техники решения текстовых задач прикладного характера обусловлена тем, что умение решать задачу является высшим этапом в познании математики и развитии учащихся. С помощью т...