Конспект урока по теме "Решение логарифмических уравнений с переменной в основании" 10 класс
план-конспект урока по алгебре (10 класс)
Урок в 10 классе по теме "Решение логарифмических уравнений с переменной в основании"
Скачать:
Вложение | Размер |
---|---|
konspekt_uroka_po_algebre_i_nachalam_analiza_10_klass_moy.docx | 29.65 КБ |
Предварительный просмотр:
Конспект урока по алгебре и началам анализа 10 класс.
Тема урока: «Решение логарифмических уравнений с переменной в основании»
Тип урока: комбинированный
Цель: систематизировать, расширить знания по данной теме.
Задачи:
- Способствовать развитию умения сравнивать, обобщать, классифицировать, анализировать, делать выводы.
- Побуждать учащихся само- и взаимоконтролю, воспитывать познавательную активность, самостоятельность, упорство в достижении цели.
Образовательные результаты, на достижение которых направлено содержание урока: изучить понятие логарифм, в результате чего ученик должен:
Личностные: четко выражать и объяснять свои мысли (способы решений), умение слушать и вступать в диалог, участвовать в коллективном обсуждении проблем, воспитывать ответственность и аккуратность;
Метапредметные: уметь воспроизводить смысл понятия логарифм, умение обрабатывать информацию и ранжировать ее по указанным основаниям; выбирать способы решения задач в зависимости от конкретных условий; рефлексия способов и условий действия, контроль и оценка процесса и результатов деятельности;
Предметные: уметь в процессе реальной ситуации использовать определения следующих понятий: « логарифм», «свойства логарифмов», «свойства логарифмической функции», «алгоритм решения логарифмических уравнений»; решать логарифмические уравнения
Методы обучения: словесные (диалог, полилог, беседа);
Наглядные( работа с презентацией);
Частично-поисковые (решение проблемной ситуации);
Индуктивные (развитие умения общаться, высказывать своё мнение, доказывать его);
Дедуктивные (анализ изученного, применение знаний к решению задач, обобщение)
Формы обучения: парная и групповая
Форма контроля: самоконтроль, взаимоконтроль.
Предполагаемый результат: освоение темы, мотивирование на новые способы решения логарифмических уравнений, умение работать в группах и парах.
Ход урока:
«Если вы хотите научиться плавать, то смело входите
в воду, а если хотите научиться решать задачи,
то решайте их! Трудность решения в какой-то мере
входит в само понятие задачи: там, где нет
трудности, нет и задачи». Д. Пойа
«Решение трудной математической проблемы
можно сравнить с взятием крепости».
Н.Я. Виленкин
- Организационный момент (психологический настрой на урок)
- Устный счет. (готовит и проводит ученик)
|
|
(что-то типа такого)
- Проверка домашнего задания (2 группы)
1 группа – из истории логарифмов
2 группа – логарифмы в жизни
(презентации)
- Устная работа.
Закрепление понятия логарифма, повторение его основных свойств и свойств логарифмической функции:
1. Дайте определение логарифма.
2. От любого ли числа можно найти логарифм?
3. Какое число может стоять в основании логарифма?
4. Функция y=log0,8 x является возрастающей или убывающей? Почему?
5. Какие значения может принимать логарифмическая функция?
6. Какие логарифмы называют десятичными, натуральными?
7. Проверьте друг у друга знание свойств логарифмов ( работа в парах)
5. Новый материал.
- Какие уравнения называют логарифмическими?
- Какие вы знаете методы решения логарифмических уравнений? (использование определения логарифма, использование свойств логарифмов, использование замены, с помощью разложения на множители, логарифмирование левой и правой части, графический метод)
- О чем необходимо помнить при решении логарифмических уравнений? ( об ОДЗ)
- Решите уравнение: log62 х + log6 х +14 = (√16 – х2)2 +х2
(один у доски с объяснением, остальные в тетрадях)
- Еще одно уравнение: logxx2 = logx(8x-7).
- Чем оно отличается от предыдущих? (переменная в основании логарифма)
- Встречались мы с такими раньше? (нет)
- Нужно ли нам понять, как они решаются? (да)
- Зачем? (встретятся на ЕГЭ)
- Какая цель нашего урока сегодня? (понять, как решаются логарифмические уравнения с переменной в основании)
- Как же нам решить такое уравнение? Подойдут ли для его решения методы, которые мы знаем? (да)
- На что же тогда нам обратить особое внимание? (на то, что в ОДЗ надо включить условие: основание должно быть больше нуля и не равно 1)
- Давайте решим.(решение с обсуждением)
6. Работа в группах.
Класс делится на четыре группы. Первой и второй группе дается первая задача и решение второй задачи, третьей и четвертой группе дается решение первой задачи и вторая задача. Каждая группа независимо от других решает свою задачу. Затем первой и второй группам задается вопрос, и тот, кто из них ответит быстрее, будет выбирать, кому показывать решение первой задачи, а кому быть оппонентом. Один учащийся у доски показывает полное решение задачи со всеми обоснованиями, а другой учащийся – его оппонент – внимательно слушает, а затем или оспаривает решение, или соглашается с ним, также обосновывая свои действия. Третья и четвертая группы при этом являются экспертами, которые затем высказывают свое мнение о ходе дискуссии, опираясь на готовое решение задачи. После этого группы меняются ролями и приступают к обсуждению решения второй задачи. (Проверка с помощью документ-камеры)
7. Самостоятельная работа. (в парах) На пару карточка с заданиями, которые они решают сообща.
1.
2.
3.
4.
5.
8. Итоги урока.
- Какова была цель нашего урока? ( понять , как решаются уравнения с переменной в основании)
- Мы достигли этой цели?
- Что нам необходимо еще сделать, чтобы окончательно добиться нашей цели?
9. Домашнее задание. (Задает 3 группа, которой было поручено найти уравнения, встречающиеся в ЕГЭ, раздает заготовленные дома карточки)
- Если вы уверены в своих силах, разобрались в том, как решаются сложные логарифмические уравнения, то возьмите розовую карточку. Если в общем поняли, но еще нужно поработать, то зеленую. Если же вы пока не уверены в своих силах и можете пока решать только простейшие логарифмические уравнения, то возьмите белую.
- Вы хорошо поработали сегодня. Спасибо за урок! Выдохните)
По теме: методические разработки, презентации и конспекты
План-конспект урока по алгебре «Логарифмические уравнения»
План-конспект урока по алгебреII курс НПОТема урока: «Логарифмические уравнения»...
ПЛАН-КОНСПЕКТ УРОКА "Системы двух линейных уравнений с двумя переменными как математические модели реальных ситуаций, урок №3»
Номинация: урок с использованием мультимедийного приложения к УМК нового поколения .Тема работы: «Системы двух линейных уравнений с двумя переменными как математи...
Урок алгебры в 11 классе с углубленным изучением математики по теме: «Решение показательных и логарифмических уравнений с переменным основанием. Введение сложной экспоненты».
Форма: урок-практикум.Задачи: путем введения сложной экспоненты научить решать показательные и логарифмические уравнения с переменным основанием.Цели урока:Образовательные: -...
конспект урока по теме "Логарифмические уравнения"
Учебник "Алгебра и начала анализа" 10-11 класс" под редакцией Алимова Ш.А. Урок объяснения нового материала. Первый урок по теме "Логарифмические уравнения", девятый урок в раз...
Конспект урока по теме: "Решение уравнений, содержащих переменную под знаком модуля"
Конспект урока алгебры 7 класса по теме "Решеие уравнений, содержащих переменную под знаком модуля"...
Конспект урока "Методы решения логарифмических уравнений"
Тип урока: урок ознакомления с новым материалом....
Конспект урока:" Решение логарифмических уравнений и неравенств"10-11 класс
Обобщение и закрепление понятия логарифма, свойств логарифмов, понятия логарифмической функции, ее свойств, ее графика..На уроке создаются условия для активной работы учащихся с различной математическ...