Рабочая программа поалгебре в 8 классе.
календарно-тематическое планирование по математике (8 класс)

Атабиева Фатимат Владимировна

Программа соответствует всем стандартам ФГОС.

Скачать:

ВложениеРазмер
Файл 8_klass_algebra.docx85.73 КБ

Предварительный просмотр:

Муниципальное казенное  общеобразовательное  учреждение «Средняя общеобразовательная школа имени А.Р. Чубакова с.п. Верхняя Жемтала»

          «Рассмотрено»

на заседании педсовета

Протокол № 1

 27.08. 2018г.

            «Согласовано»

Зам.директора по УВР

 « 28 » августа 2018г.

__________ Атабиева Ф.В.

             «Утверждаю»            

   Директор МКОУ

СОШ с. п. В.Жемтала

Приказ №  105/а

от «28» августа 2018г.

___________/Кудаев М.А./

РАБОЧАЯ ПРОГРАММА

учебного курса

«Математика»

Основное  общее образование.

(5 часов в неделю)

                                                                                                               

        Класс: 8

        Учитель: Атабиева Фатимат Владимировна.

     

                                                                  2018-2019 учебный год.

Пояснительная записка.

Настоящая  программа составлена на основе авторской программы по алгебре для 8 класса. Авторы Ю.Н. Макарычев, Н.Г.Миндюк, К.И.Нешков, С.Б.Суворова. Сборник «Программы общеобразовательных учреждений. Алгебра. 7-9 классы. Составитель: Бурмистрова Т.А.-  М: «Просвещение», 2009,с.50 Программа отвечает требованиям Государственного стандарта основного общего образования, базового учебного плана общеобразовательных учреждений РФ, учитывает основные требования,  предъявляемые к современным УМК по алгебре

  1. Место предмета в учебном плане

Согласно федеральному базисному плану, на изучение алгебры  в 8 классе отводится 105 часов. Количество учебных часов в учебном плане школы – 105 (3 часа в неделю).

1.2. Обоснование актуальности и ведущие идеи курса алгебры

 Сознательное овладение учащимися системой алгебраических знаний и умений необходимо в повседневной жизни для изучения смежных дисциплин и продолжения образования.

Практическая значимость школьного курса алгебры обусловлена тем, что её объектом являются количественные отношения действительного мира. Математическая подготовка необходима для понимания принципов устройства и использования современной техники, восприятия научных и технических понятий и идей. Математика является языком науки и техники. С её помощью моделируются и изучаются явления и процессы, происходящие в природе.

Алгебра является одним из опорных предметов основной школы: она обеспечивает изучение других дисциплин. В первую очередь это относится к предметам естественно - научного цикла, в частности к физике. Развитие логического мышления учащихся при обучении алгебре способствует усвоению предметов гуманитарного цикла. Практические умения и навыки алгебраического характера необходимы для трудовой и профессиональной подготовки школьников.

Развитие у учащихся правильных представлений о сущности и происхождении алгебраических абстракций, соотношении реального и идеального, характере отражения математической наукой явлений и процессов реального мира, месте алгебры в системе наук и роли математического моделирования в научном познании и в практике способствует формированию научного мировоззрения учащихся и качеств мышления, необходимых для адаптации в современном информационном обществе.

Требуя от учащихся умственных и волевых усилий, концентрации внимания, активности развитого воображения, алгебра развивает нравственные черты личности (настойчивость, целеустремлённость, творческую активность, самостоятельность, ответственность, трудолюбие, дисциплину и критичность мышления) и умение аргументировано отстаивать свои взгляды и убеждения, а также способность принимать самостоятельные решения.

Изучение алгебры, функций, вероятности и статистики существенно расширяет кругозор учащихся, знакомя с индукцией и дедукцией, обобщением и конкретизацией, анализом и синтезом, классификацией и систематизацией, абстрагированием, аналогией. Активное использование задач на всех этапах развивает творческие способности школьников.

Изучение алгебры позволяет формировать умения и навыки умственного труда – планирование своей работы, поиск рациональных путей её выполнения, критическая оценка результатов. В процессе изучения алгебры школьники должны научиться излагать свои мысли ясно и исчерпывающе, лаконично и ёмко, приобрести навыки чёткого, аккуратного и грамотного выполнения математических записей.

  1. Цели и задачи.

Изучение математики в основной школе направлено на достижение следующих целей:

  1. в направлении личностного развития

- развитие интереса к математическому творчеству и математических способностей,  интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;

- формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими;

- формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;

- воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;

- формирование качеств мышления, необходимых для адаптации в современном информационном обществе;

-  воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;

  1. В метапредметном направлении

-  формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;

-  развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;

- формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности.

- овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

-  формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

- формирование учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий

Изучение математики в 8 классе направлено на формирование следующих  компетенций:

  • учебно-познавательной;
  • ценностно-ориентационной;
  • рефлексивной;
  • коммуникативной;
  • информационной;
  • социально-трудовой.

Математическое образование в школе строится с учетом принципов непрерывности (изучение математики на протяжении всех лет обучения в школе), преемственности (учет положительного опыта, накопленного в отечественном и за рубежном математическом образовании), вариативности (возможность реализации одного и того же содержания на базе  различных научно-методических подходов),  дифференциации (возможность для учащихся получать математическую подготовку разного уровня в соответствии с их индивидуальными особенностями).

Планируется использование таких педагогических технологий в преподавании предмета, как дифференцированное обучение, проблемное обучение,  технология развивающего обучения, тестирование, технология критического мышления, ИКТ. Использование этих технологий позволит более точно реализовать потребности учащихся в математическом образовании и поможет подготовить учащихся к государственной итоговой аттестации.

Контроль результатов  обучения   осуществляется  через использование следующих видов оценки и  контроля: входящий, текущий, тематический, итоговый. При этом используются  различные формы оценки и  контроля: контрольная работа, домашняя контрольная работа, самостоятельная работа, домашняя  практическая работа, домашняя самостоятельная работа, тест, контрольный тест,  устный опрос.

Важнейшей задачей школьного курса алгебры является развитие логического мышления учащихся. сами объекты математических умозаключений и принятые в алгебре правила их конструирования способствуют формированию умений обосновывать и доказывать суждения, приводить чёткие определения, развивают логическую интуицию, кратко и наглядно раскрывают механизм логических построений и учат их применению. Тем самым алгебра занимает одно из ведущих мест в формировании научно-теоретического мышления школьников. Раскрывая внутреннюю гармонию математики, формируя понимание красоты и изящества математических рассуждений, алгебра вносит значительный вклад в эстетическое воспитание учащихся.

1.3. Учебно-методическое и материально-техническое обеспечение

1.Авторская программа по алгебре 8 класс. Авторы   Ю.Н. Макарычев и др. М.: «Просвещение», 2009 г. Сборник «Программы общеобразовательных учреждений. Алгебра. 7-9 классы. (базовый уровень)». Составитель Бурмистрова Т.А.-  М: «Просвещение», 2011г..

2. Учебник. «Алгебра 8 класс» Автор Ю.Н. Макарычев и др.. М.; ''Просвещение'' -  2009 год.

3. Алгебра . 8 класс: поурочные планы по учебнику Ю.Н. Макарычева  и др. Авторы-составители Т.Л. Афанасьева, Л.А.Тапилина, Волгоград; Учитель ,2007

4. Дидактические материалы по алгебре для 8 класса / В.И. Жохов, Ю.Н. Макарычев, Н.Г. Миндюк. – М.: Просвещение, 2006. – 144 с.

5.Живая математика. Учебно-методический комплект. Версия 4.3. Программа. Компьютерные альбомы. М: ИНТ.

6. Нестандартные уроки алгебры. 8 класс. / Сост. Н.А. Ким. – Волгоград: ИТД «Корифей», 2006. – 112 с.

7.Алгебра: тесты для 7-9 классов общеобразовательных учреждений. Мордкович, А. Г. М:  «Мнемозина»,2007

8.http://school-collection.edu.ru/ – единая коллекция цифровых образовательных ресурсов.

9. Виртуальная школа Кирилла и Мефодия  7-11 класс

10. Демонстрационные таблицы, портреты математиков

11. Технические средства обучения: видеопроекторы, ноутбук, принтер, интерактивная доска.

  1. Планируемые предметные результаты освоения предмета.

        Программа обеспечивает достижение следующих результатов освоения образовательной программы основного общего образования:

личностные:

  1. сформированность ответственного отношения к учению, готовность и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учетом устойчивых познавательных интересов;
  2. сформированность целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;
  3. сформированность коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими, в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;
  4. умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументация, приводить примеры и контпримеры;
  5. представление о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости, для развития цивилизации;
  6. критичность мышления, умение распознать логически некорректные высказывания, отличать гипотезу от фактов;
  7. креативность мышления, инициатива, находчивость, активность при решении алгебраических задач;
  8. умение контролировать процесс и результат учебной математической деятельности;
  9. способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.

метапредметные:

  1. умение самостоятельно планировать альтернативные пути достижение целей, осознанно выбирать наиболее эффективные способы решений учебных и познавательных задач;
  2.  умение осуществлять контроль по результатам и по способу действий на уровне произвольного внимания и вносить необходимые коррективы;
  3. умение адекватно оценивать правильность и ли ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;
  4. осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовидовых связей;
  5. умение устанавливать причинно-следственные связи; строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;
  6. умение создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;
  7. умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределение функций и ролей участников, взаимодействие и общие способы работы; умение работать в группе: находить общие решения и разрешать конфликты на основе согласования позиций и учета интересов; слушать партнера; формулировать, аргументировать и отстаивать свое мнение;
  8. сформированность учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);
  9. первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;
  10. умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
  11. умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решения в условиях неполной и избыточной, точной и вероятностной информации;
  12. умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации,  аргументации;
  13. умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
  14. умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
  15. понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
  16. умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
  17. умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.

предметные:

  1. умение работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики ( словесный, символический, графический), обосновывать суждения, проводить классификацию, доказывать математические утверждения;
  2. владение базовой понятийным аппаратом: иметь представление о числе, владение символьным языком алгебры, знание элементарных функциональных зависимостей, формирование представлений о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
  3. умение выполнять алгебраические преобразования рациональных выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;
  4. умение пользоваться математическими формулами и самостоятельно составлять формулы зависимостей между величинами на основе обобщения частных случаев и эксперимента;
  5. умение решать линейные и квадратные уравнения и неравенства, а также приводимые к ним уравнения, неравенства, системы; применять графические представления для решения и исследования уравнений, неравенств, систем; применять полученные умения для решения задач из математики, смежных предметов, практики;
  6. овладение системой функциональных понятий, функциональным языком и символикой, умение строить графики функций, описывать их свойства, использовать функционально-графические представления для описания и анализа математических задач и реальных зависимостей;
  7. овладение основными способами представления и анализа статистических данных; умения решать задачи на нахождение частоты и вероятности случайных событий;
  8. умение применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов.

РАЦИОНАЛЬНЫЕ ЧИСЛА

Обучающийся научится:

1)понимать особенности десятичной системы счисления;

2)владеть понятиями, связанными с делимостью натуральных чисел;

3)выражать числа в эквивалентной форме, выбирая наиболее подходящую в зависимости от конкретной ситуации;

4) сравнивать и упорядочивать рациональные числа;

5) выполнять вычисления с рациональными числами, сочетая устные и письменные приемы вычислений, применение калькулятора;

Обучающийся получит возможность:

6) познакомиться с позиционными системами счисления с основаниями, отличными от 10;

7)углубить и развить представления о натуральных числах и свойствах делимости;

8) научиться использовать приёмы, рационализирующие вычсиления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.

ДЕЙСТВИТЕЛЬНЫЕ ЧИСЛА

Обучающийся научится:

1)использовать начальные представления о множестве действительных чисел;

2) Владеть понятием квадратного корня, применять его в вычислениях

Обучающийся получит возможность:

3)развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в человеческой практике;

4)развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).

ИЗМЕРЕНИЯ, ПРИБЛИЖЕНИЯ, ОЦЕНКИ

Обучающийся научится:

1)использовать в ходе решения задач элементарные представления, связанные с приближенными значениями величин.

Обучающийся получит возможность:

2) понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближенными, что по записи приближенных значений, содержащихся в информационных источниках можно судить о погрешности приближения;

3) понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных

АЛГЕБРАИЧЕСКИЕ ВЫРАЖЕНИЯ

Обучающийся научится:

1)владеть понятиями «тождество», «тождественные преобразования», решать задачи, содержащие буквенные данные, работать с формулами;

2)выполнять преобразования выражений, содержащих степени с целыми показателями и квадратные корни;

3)выполнять тождественные преобразования рациональных выражений на основе правил над алгебраическими дробями

Обучающийся получит возможность:

4)научиться выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приемов;

5)применять тождественные преобразования для решения задач из различных разделов курса.

УРАВНЕНИЯ

Обучающийся научится:

1)решать квадратные и дробные рациональные уравнения с одной переменной

2) понимать уравнения как важнейшую математическую модель дл описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом

3) применять графические представления для исследования уравнений

Обучающийся получит возможность:

4)овладеть специальными приемами решения уравнений, уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики

5) применять графические представления для исследования уравнений, содержащих буквенные коэффициенты.

НЕРАВЕНСТВА

Обучающийся научится:

1)понимать и применять терминологию и символику, связанные с отношением неравенства, свойства числовых неравенств;

2)решать линейные неравенства с одной переменной и их системы

3) применять аппарат неравенства для решения задач из различных разделов курса

Обучающийся получит возможность научиться:

4)разнообразным приемам доказательства неравенства; уверенно применять аппарат неравенств для решения разнообразных математических задач и задач из смежных предметов, практики;

5)применять  координатную прямую  для изображения множества решений линейного неравенства.

ОСНОВНЫЕ ПОНЯТИЯ,ЧИСЛОВЫЕ ФУНКЦИИ

Обучающийся научится:

1)понимать и использовать функциональные понятия и язык (термины, символические обозначения);

2) строить графики функций    ,  , исследовать свойства числовых функций на основе изучения поведения их графиков;

3)понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами.

Обучающийся получит возможность научиться:

4)проводить исследования, связанные с изучением свойств функции на основе графиков изученных функций

5)использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса.

ОПИСАТЕЛЬНАЯ СТАТИСТИКА

Обучающийся научится использовать простейшие способы представления и анализа статистических данных.

Обучающийся получит возможность приобрести опыт проведения случайных экспериментов, в том числе с помощью компьютерного моделирования, интерпретации их результатов

  1. Содержание учебного предмета.

Глава 1. Рациональные дроби (23 часа)

        Рациональная дробь. Основное свойство дроби, сокращение дробей. Тождественные преобразования рациональных выражений. Функция у = и её график.

Цель: выработать умение выполнять тождественные преобразования рациональных выражений.

        Так как действия с рациональными дробями существенным образом опираются на действия с многочленами, то в начале темы необходимо повторить с обучающимися преобразования целых выражений.

        Главное место в данной теме занимают алгоритмы действий с дробями. Учащиеся должны понимать, что сумму, разность, произведение и частное дробей всегда можно представить в виде дроби. Приобретаемые в данной теме умения выполнять сложение, вычитание, умножение и деление дробей являются опорными в преобразованиях дробных выражений. Поэтому им следует уделить особое внимание. Нецелесообразно переходить к комбинированным заданиям на все действия с дробями прежде, чем будут усвоены основные алгоритмы. Задания на все действия с дробями не должны быть излишне громоздкими и трудоемкими.

        При нахождении значений дробей даются задания на вычисления с помощью калькулятора. В данной теме расширяются сведения о статистических характеристиках. Вводится понятие среднего гармонического ряда положительных чисел.

        Изучение темы завершается рассмотрением свойств графика функции

 у =. 

Глава 2. Квадратные корни (18 часов)

        Понятие об иррациональных числах. Общие сведения о действительных числах. Квадратный корень. Понятие о нахождении приближенного значения квадратного корня. Свойства квадратных корней. Преобразования выражений, содержащих квадратные корни. Функция у = , её свойства и график.

Цель: систематизировать сведения о рациональных числах и дать представление об иррациональных числах, расширив тем самым понятие о числе; выработать умение выполнять преобразования выражений, содержащих квадратные корни.

В данной теме учащиеся получают начальное представление о понятии действительного числа. С этой целью обобщаются известные обучающимся сведения о рациональных числах. Для введения понятия иррационального числа используется интуитивное представление о том, что каждый отрезок имеет длину и потому каждой точке координатной прямой соответствует некоторое число. Показывается, что существуют точки, не имеющие рациональных абсцисс.

        При введении понятия корня полезно ознакомить обучающихся с нахождением корней с помощью калькулятора.

Основное внимание уделяется понятию арифметического квадратного корня и свойствам арифметических квадратных корней. Доказываются теоремы о корне из произведения и дроби, а также тождество =, которые получают применение в преобразованиях выражений, содержащих квадратные корни. Специальное внимание уделяется освобождению от иррациональности в знаменателе дроби в выражениях вида , . Умение преобразовывать выражения, содержащие корни, часто используется как в самом курсе алгебры, так и в курсах геометрии, алгебры и начал анализа.

Продолжается работа по развитию функциональных представлений обучающихся. Рассматриваются функция у=, её свойства и график. При изучении функции у=, показывается ее взаимосвязь с функцией у = х2, где х ≥ 0.

         Глава 3. Квадратные уравнения (22 часа)

        Квадратное уравнение. Формула корней квадратного уравнения. Решение рациональных уравнений. Решение задач, приводящих к квадратным уравнениям и простейшим рациональным уравнениям.

Цель: выработать умения решать квадратные уравнения и простейшие рациональные уравнения и применять их к решению задач.

В начале темы приводятся примеры решения неполных квадратных уравнений. Этот материал систематизируется. Рассматриваются  алгоритмы  решения  неполных  квадратных уравнений различного вида.

Основное внимание следует уделить решению уравнений вида ах2 + bх + с = 0, где, а  0, с использованием формулы корней. В данной теме учащиеся знакомятся с формулами Виета, выражающими связь между корнями квадратного уравнения и его коэффициентами. Они используются в дальнейшем при доказательстве теоремы о разложении квадратного трехчлена на линейные множители.

Учащиеся овладевают способом решения дробных рациональных уравнений, который состоит в том, что решение таких уравнений сводится к решению соответствующих целых уравнений с последующим исключением посторонних корней.

Изучение данной темы позволяет существенно расширить аппарат уравнений, используемых для решения текстовых задач.

Глава 4. Неравенства (20 часов)

        Числовые неравенства и их свойства. Почленное сложение и умножение числовых неравенств. Погрешность и точность приближения. Линейные неравенства с одной переменной и их системы.

Цель: ознакомить обучающихся с применением неравенств для оценки значений выражений, выработать умение решать линейные неравенства с одной переменной и их системы.

Свойства числовых неравенств составляют ту базу, на которой основано решение линейных неравенств с одной переменной. Теоремы о почленном сложении и умножении неравенств находят применение при выполнении простейших упражнений на оценку выражений по методу границ. Вводятся понятия абсолютной Погрешности и точности приближения, относительной погрешности.

Умения проводить дедуктивные рассуждения получают развитие, как при доказательствах указанных теорем, так и при выполнении упражнений на доказательства неравенств.

В связи с решением линейных неравенств с одной переменной дается понятие о числовых промежутках, вводятся соответствующие названия и обозначения. Рассмотрению систем неравенств с одной переменной предшествует ознакомление обучающихся с понятиями пересечения и объединения множеств.

При решении неравенств используются свойства равносильных неравенств, которые разъясняются на конкретных примерах. Особое внимание следует уделить отработке умения решать простейшие неравенства вида ах > b, ах < b, остановившись специально на случае, когда, а<0.

В этой теме рассматривается также решение систем двух линейных неравенств с одной переменной, в частности таких, которые записаны в виде двойных неравенств.

Глава 5. Степень с целым показателем. Элементы статистики (11 часов)

        Степень с целым показателем и ее свойства. Стандартный вид числа. Начальные сведения об организации статистических исследований.

Цель: выработать умение применять свойства степени с целым показателем в вычислениях и преобразованиях, сформировать начальные представления о сборе и группировке статистических данных, их наглядной интерпретации.

В этой теме формулируются свойства степени с целым показателем. Метод доказательства этих свойств показывается на примере умножения степеней с одинаковыми основаниями. Дается понятие о записи числа в стандартном виде. Приводятся примеры использования такой записи в физике, технике и других областях знаний.

Учащиеся получают начальные представления об организации статистических исследований. Они знакомятся с понятиями генеральной и выборочной совокупности. Приводятся примеры представления статистических данных в виде таблиц частот и относительных частот. Обучающимся предлагаются задания на нахождение по таблице частот таких статистических характеристик, как среднее арифметическое, мода, размах. Рассматривается вопрос о наглядной интерпретации статистической информации. Известные обучающимся способы наглядного представления статистических данных с помощью столбчатых и круговых диаграмм расширяются за счет введения таких понятий, как полигон и гистограмма.

        6. Повторение (8 часов)

Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс алгебры 8 класса.

Контрольные работы

Контрольная работа № 1 «Рациональные выражения. Сложение и вычитание дробей»

Контрольная работа № 2 «Произведение и частное дробей»

Контрольная работа № 3 «Квадратные корни»

Контрольная работа № 4 «Применение свойств арифметического квадратного корня»

Контрольная работа № 5 «Квадратные уравнения»

Контрольная работа № 6 «Дробные рациональные уравнения»

Контрольная работа № 7 «Числовые неравенства и их свойства»

Контрольная работа № 8 «Неравенства с одной переменной и их системы»

Контрольная работа № 9 «Степень с целым показателем»

Итоговая контрольная работа № 10.

Способы и формы оценки их достижения

        В данном классе ведущими методами обучения предмету являются: объяснительно-иллюстративный и репродуктивный, хотя используется и частично-поисковый. На уроках используются элементы следующих технологий: дифференцированное обучение, обучение с применением текстовых заготовок, ИКТ.

Формы контроля:

  • Дифференцированные самостоятельные работы, содержащие задания обязательного и повышенного уровня, рассчитанные на 5-20 минут, оцениваемые отметкой «2» - не сделан обязательный уровень, «3» - правильно выполнен обязательный уровень, «4» - если допущена одна ошибка или несколько неточностей , «5» - правильно выполнены все задания или допущена неточность, не приведшая к неправильному решению.
  • Дифференцированные контрольные работы, содержащие задания обязательного и повышенного уровня, время выполнения – 40 минут,  оцениваемые отметкой «2» - не сделан обязательный уровень, «3» - правильно выполнен обязательный уровень, «4» - если допущена одна ошибка или несколько неточностей, «5» - правильно выполнены все задания или допущена неточность, не приведшая к неправильному решению.

           Формы организации учебного процесса:

  •  индивидуальные, групповые, индивидуально-групповые, фронтальные,
  •  классные и внеклассные.

   Система уроков условна, но все  же выделяются следующие виды:

  • Урок-лекция. Предполагаются  совместные усилия учителя и учеников для решения общей проблемной познавательной задачи. На таком уроке используется демонстрационный материал на компьютере, разработанный учителем или учениками, мультимедийные продукты.
  • Урок-практикум. На уроке учащиеся работают над различными заданиями в зависимости от своей подготовленности. Виды работ могут быть самыми разными: письменные исследования,  решение различных задач, изучение свойств различных функций, практическое применение различных методов решения задач. Компьютер на таких уроках используется как электронный калькулятор, тренажер устного счета, виртуальная лаборатория, источник справочной информации.
  • Урок-исследование. На уроке учащиеся решают проблемную задачу исследовательского характера аналитическим методом и с помощью компьютера с использованием различных лабораторий.
  • Комбинированный урок предполагает выполнение работ и заданий разного вида. Урок–игра. На основе игровой деятельности учащиеся познают новое, закрепляют изученное, отрабатывают различные учебные навыки.
  • Урок решения задач. Вырабатываются у учащихся умения и навыки решения задач на уровне обязательной и возможной подготовке. Любой учащийся может использовать компьютерную информационную базу по методам решения различных задач, по свойствам элементарных функций и т.д.
  • Урок-тест. Тестирование проводится с целью диагностики пробелов знаний, контроля уровня обученности  учащихся, тренировки технике тестирования. Тесты предлагаются как в печатном,  так и в компьютерном варианте. Причем в компьютерном варианте всегда с ограничением времени.
  • Урок-зачет. Устный опрос учащихся  по заранее составленным вопросам, а также решение задач разного уровня по изученной теме.
  • Урок-самостоятельная работа.  Предлагаются разные виды самостоятельных работ.
  • Урок-контрольная работа. Проводится на двух уровнях: уровень обязательной подготовки - «3», уровень возможной подготовки - «4» и «5».

    Компьютер нашел свое место в каждой школе. Материально- техническая сторона компьютерной базы школ непрерывно улучшается. Все большее число учащихся осваивают первоначальные навыки пользователя компьютером. Однако в настоящее время недостаточное внимание уделяется разработке методик применения современных информационных технологий, компьютерных и мультимедийных продуктов в учебный процесс и вооружению частными приемами этой методики преподавателей каждого предметного профиля для каждодневной работы с учащимися.

  • Компьютерное обеспечение уроков

 В разделе рабочей программы «Компьютерное обеспечение» спланировано применение имеющихся компьютерных продуктов: демонстрационный материал, задания для устного опроса учащихся, тренировочные упражнения, а также различные электронные учебники.

  • Демонстрационный материал (слайды). Создается с целью обеспечения наглядности при изучении нового материала, использования при ответах учащихся. Применение анимации при создании такого компьютерного продукта позволяет рассматривать вопросы математической теории в движении, обеспечивает другой подход к изучению нового материала, вызывает  повышенное внимание и интерес у учащихся.  При решении любых задач использование графической интерпретации условия задачи, ее решения позволяет учащимся понять математическую идею решения, более глубоко осмыслить теоретический материал по данной теме.
  •  Задания для устного счета. Эти задания дают возможность в устном варианте отрабатывать различные вопросы теории и практики, применяя принципы наглядности, доступности. Их можно использовать на любом уроке в режиме учитель – ученик, взаимопроверки, а также в виде тренировочных занятий.
  • Тренировочные упражнения.Включают в себя задания с вопросами и наглядными ответами, составленными с помощью анимации. Они позволяют ученику самостоятельно отрабатывать различные вопросы математической теории и практики.
  •  Электронные учебники. Они используются в качестве виртуальных лабораторий при проведении практических занятий, уроков введения новых знаний. В них заключен большой теоретический материал, много тренажеров, практических и исследовательских заданий, справочного материала. На любом из уроков возможно использование компьютерных устных упражнений, применение тренажера устного счета, что активизирует мыслительную деятельность учащихся, развивает вычислительные навыки, так как позволяет осуществить иной подход к изучаемой теме.

   Использование компьютерных технологий  в преподавании математики позволяет непрерывно менять формы работы на уроке, постоянно чередовать устные и письменные упражнения, осуществлять разные подходы к решению математических задач, а это постоянно создает и поддерживает интеллектуальное напряжение учащихся, формирует у них устойчивый интерес  к изучению данного предмета.

  1. Тематическое планирование.

№ п\п

Разделы, темы

Количество часов

1

Повторение учебного материала за курс 7 класса

3

Глава I. Рациональные дроби

23

2

Рациональные дроби и их свойства

5

3

Сумма и разность дробей

7

4

Произведение и частное дробей

11

Глава II. Квадратные корни

18

5

Действительные числа

2

6

Арифметический квадратный корень

5

7

Свойства арифметического квадратного корня

4

8

Применение свойств арифметического квадратного корня

7

Глава III. Квадратные уравнения

                 22

9

Квадратное уравнение и его корни

11

10

Дробные рациональные уравнения

11

Глава IV.  Неравенства

20

11

Числовые неравенства и их свойства

9

12

Неравенства с одной переменной и их системы

11

Глава V. Степень с целым показателем. Элементы статистики

11

Повторение

8

Всего

105

 


  1. Календарно-тематическое планирование по алгебре 8 класс.

п/п

Тема урока

Домашнее задание

Дата проведения

План

Факт

1. ПОВТОРЕНИЕ ИЗУЧЕННОГО В 7 КЛАССЕ (2 ЧАСА)

1

 

Повторение курса 7кл. «многочлены»

Запись в тетради из дид. материалов

02.09

2

 

Повторение курса 7кл. Формулы
сокращен. умножения

Запись в тетради из дид. материалов

05.09

ГЛАВА I. РАЦИОНАЛЬНЫЕ ДРОБИ (23ч.)

Рациональные дроби и их свойства (5 ч.)

3

 

Рациональные выражения

§1,№2(а),  4(б),6, 7(б)

06.09

4

 

Рациональные выражения

С/р 10 мин

§1,№10(а,б),11(б,г,е),15(а)

08.09

5

 

Основное свойство алгебраической дроби.

§2 (до примера 2), № 24, 28 (а), 31 (б)

12.09

6

 

Сокращение дробей.

§2 №34(а.б)39(а,в,д), 41(б)

14.09

7

 

Сокращение дробей.

§2, №42(а,б)47,50(а,б,д)

15.09

Сумма и разность дробей (7 ч.)

8

 

Сложение и вычитание  дробей с одинаковыми знаменателями.

§3,№55 (а,б), 59(б), 61 (а,в,е)

19.09

9

 

Сложение и вычитание  дробей с одинаковыми знаменателями.

§3,№56, 62(а),66(а,б)

21.09

10

 

Сложение и вычитание  дробей с одинаковыми знаменателями.

§3,

№63 (б), 67(а,в)70

22.09

11

Сложение и вычитание  дробей с разными знаменателями

§4,№ 74(а,б), 78(а,б), 80 (б-з)

26.09

12

Сложение и вычитание  дробей с разными знаменателями

§4,№77(а,б), 81(а,б), 82(г-е)

28.09

13

Сложение и вычитание  дробей с разными знаменателями

§4,№90,93(б), 104

03.10

14

Контрольная работа №1  по теме: "Рациональные дроби и их свойства"          

Контрольные вопросы – с.28

05.10

Произведение  и частное дробей  (11 ч)

15

Умножение дробей.  

§5 (примеры 1-4), № 109 (б,г), 119(а,в,д) 123(а,в)

06.10

16

Возведение дроби в степень.

§5,№124(а), 126(б,г), 130

10.10

17

Возведение дроби в степень.

§5,№113 (а,б), 125(а), 131(а,б)

12.10

18

Деление дробей.

§6,№ 132(б-г), 137(в.г), 138(в-ж)

13.10

19

Деление дробей.

§6,№ 139(г), 141(б), 145

17.10

20

Преобразование рациональных выражений

§7,  № 148(б,г), 150,152 (а, в)

19.10

21

Преобразование рациональных выражений

§7, № 153(б,г), 155(б), 159(б), 165(а,б)

20.10

22

Преобразование рациональных выражений

§7, №168(а), 172, 244(б)

24.10

23

Функция , её свойства и график.

§8, №182, 186(а), 189, 195

26.10

24

Функция , её свойства и график.

§8, №185, 187, 196

27.10

25

Контрольная работа №2  по теме: "Операции с дробями. Дробно-рациональная функция"

контрольные вопросы – с. 49

07.11

ГЛАВА II. КВАДРАТНЫЕ КОРНИ (19 Ч)

Действительные числа (2ч)

26

Рациональные числа.

§10, №268, 270, 272(б)

09.11

27

Иррациональные числа.

§11, №282(а,б), 287,290

10.11

Арифметический квадратный корень (5 ч)

28

Квадратные корни. Арифметический квадратный корень.

§12, №300, 302(б),307

14.11

29

Уравнение x2 = а.

§13, № 322(а,б,г),

326(а,б),

329(б,г,з)

16.11

30

Нахождение приближённых значений квадратного корня.

§14, №339, 346, 348(а,в)

17.11

31

Функция . Её свойства и график.

§15, №354,356, 362

21.11

32

Функция . Её свойства и график.

§15, №360,364,368

23.11

Свойство арифметического квадратного корня (4 ч)

33

Квадратный корень из произведения и дроби.

§16,№370, 372(б,г), 377(б,г,е)

24.11

34

Квадратный корень из произведения и дроби.

§16, №374(а,д,ж), 380(а), 385(б,г,е,з)

28.11

35

Квадратный корень из степени.

§17, № 399(а), 402(б,г,е), 404(а,б), 406 (устно)

30.11

36

Контрольная работа №3  по теме: "Понятие арифметического квадратного корня и его свойства".

контрольные вопросы – с.96

01.12

Применение свойства арифметического квадратного корня (8 ч)

37

Вынесение множителя за знак корня. Внесение множителя под знак корня.

§18, № 408, 409 (в,д,ж), 412 (а,б,е)

05.12

38

Вынесение множителя за знак корня. Внесение множителя под знак корня.

§18, №410( а-в), 411, 415(а,в)

07.12

39

Вынесение множителя за знак корня. Внесение множителя под знак корня.

§18, №416, 419, 420(в)

08.12

40

Преобразование выражений, содержащих квадратные корни.

§19, №421(в,д), 424, 425(б)

12.12

41

Преобразование выражений, содержащих квадратные корни.

§19, № 427 (а,г,е), 428 (б,з,е), 429 (в)

14.12

42

Преобразование выражений, содержащих квадратные корни.

§19, №431(а,б,е,и), 434(б), 436 (б,г,д)

15.12

43

Преобразование выражений, содержащих квадратные корни.

§19, №437(а), 439, 441

19.12

44

Контрольная работа №4 по теме «Свойства квадратных корней»

контрольные вопросы – с.105

21.12

ГЛАВА III КВАДРАТНЫЕ УРАВНЕНИЯ (21 Ч )

Квадратные уравнения и его корни (11 ч)

45

Понятие квадратного уравнения

§21, №515(б,г,е), 517(в,д), 523(а,в)

22.12

46

Неполные квадратные уравнения.

§21, №522(в,д),  525, 528

26.12

47

Выделение квадрата двучлена.

§22, №535,536,538(б)

11.01

48

Формулы корней квадратного уравнения.

§22, №544(а,в),  546(в,г), 557(а)

12.01

49

Формулы корней квадратного уравнения.

§22, №539(а,в,д,з),  540(б-ж), 542(а,б,е,ж)

16.01

50

Решение задач с помощью квадратных уравнений.

§23, №561, 564, 568

18.01

51

Решение задач с помощью квадратных уравнений.

§23, №654(а,в,д),  571, 572

19.01

52

Решение задач с помощью квадратных уравнений.

§23, №574,  576(б), 661

23.01

53

Теорема Виета.

§24, №581(а,в), 583(б,в), 586

25.01

54

Теорема Виета.

§24, №590, 599

26.01

55

Контрольная работа № 5 по теме: Квадратные уравнения

контрольные вопросы – с. 139

30.01

Дробные рациональные уравнения (10ч)

56

Решение  дробных рациональных уравнений.

§25, №600(б,в, е,ж), 601(б,в), 603 (д,е)

01.02

57

Решение  дробных рациональных уравнений.

§25, №603(в), 605(б,в,е), 607(б,г)

02.02

58

Решение  дробных рациональных уравнений.

§25, №607(а,д), 608(б,г), 613

06.02

59

Решение  дробных рациональных уравнений.

§25, №606(а,в), 609(б,в)

08.02

60

Зачет по теме Решение  дробных рациональных уравнений

§25, №611(б), 690(а,в,ж), 696(а,б)

09.02

61

Решение задач с помощью дробных рациональных уравнений.

§26, №619,622,624

13.02

62

Решение задач с помощью дробных рациональных уравнений.

§26, №626, 627, 629

20.02

63

Решение задач с помощью дробных рациональных уравнен ий.

§26, №631,635, 636(а)

22.02

64

Графический способ решения уравнений

§27, №872, 611, 693,694

27.02

65

Контрольная работа № 6  по теме «Дробно-рациональные уравнения. Текстовые задачи»

контрольные вопросы – с. 148

01.03

66

Числовые неравенства

§28, №729, 731(в,г), 733

02.03

67

Числовые неравенства.

§28, №735(б), 737,743

06.03

68

Свойства числовых неравенств

§29, №750, 752, 754 (б,в,д)

09.03

69

Свойства числовых неравенств

§29, №759(а,б), 764(а,б), 915(б)

13.03

70

Сложение и умножение числовых неравенств

§30, №769,777,780

15.03

71

Сложение и умножение числовых неравенств

§30, №764. 770, 779

16.03

72

Сложение и умножение числовых неравенств

§30, №773, 781(б)

20.03

73

Погрешность и точность приближения

§31, №788, 792,796

22.03

74

Контрольная работа № 7 по теме: «Числовые неравенства и их свойства»

контрольные вопросы – с. 178

23.03

Неравенства с одной переменной и их системы (1 ч)

75

Пересечение и объединение множеств.

§32, № 802, 805,808

03.04

76

Числовые промежутки

§33, №814, 817,819

05.04

77

Числовые промежутки

§33, №822,825, 831

06.04

78

Решение неравенств с одной переменной

§34, №835(а,б), 836(л,м), 838

10.04

79

Решение неравенств с одной переменной

§34, №840,

841(в,г,з)

12.04

80

Решение неравенств с одной переменной

§34, №843(б), 844 (г-ж), 848(б)

13.04

81

Решение неравенств с одной переменной

§34, №849(а,б,з,и), 852(а,г,е)

17.04

82

Решение систем неравенств с одной переменной

§35, №876(а,б,е), 877(б,г), 880 (б,г)

19.04

83

Решение систем неравенств с одной переменной

§35, №888(а,б), 890(а), 894(а,б)

20.04

84

 Зачет по теме Решение систем неравенств с одной переменной

§35, №882(а,г), 886(в), 887(а,б)

24.04

85

Контрольная работа № 8 по теме: «Неравенства с одной переменной и их системы»

Контрольные вопросы с. 202

26.04

ГЛАВА V СТЕПЕНЬ С ЦЕЛЫМ ПОКАЗАТЕЛЕМ. ЭЛЕМЕНТЫ СТАТИСТИКИ (13 ЧАСОВ)

§ 12 Степень с целым показателем и ее свойства (7 ч)

86

Определение степени с целым отрицательным показателем

§37, №967,969, 977(б,г,е)

27.04

87

Определение степени с целым отрицательным показателем

§37, № 981,1079,1080

03.05

88

Свойства степени с целым показателем

§38, № 986, 991(а,в), 993 (а-в)

04.05

89

Свойства степени с целым показателем

§38, №998(а,в), 1002(а,д,е), 1006 (а,б)

08.05

90

Стандартный вид числа

§39, №1014(б,г,е),1017,1019,1022

10.05

91

Стандартный вид числа

§39, № 1015, 1020,1025

11.05

92

Контрольная работа № 9 по теме: «Степень с целым показателем и ее свойства»

С.225 контрольные вопросы

15.05

Элементы статистики (4 ч)

93

Сбор и группировка статистических данных.

§40, № 1029, 1030,1032

16.05

94

Сбор и группировка статистических данных.

§40, №1034,1057 (б), 1100

17.05

95

Наглядное представление статистической информации.

§41, №1043, 1045, 1048

18.05

96

Наглядное представление статистической информации.

§41, №1050,1053,1055,1061

ПОВТОРЕНИЕ (8 ч)

97

Дроби

№220,221

22.05

98

Квадратные корни

№477,481,485

24.05

99

Квадратные уравнения

№656,657,660

26.05

100

Неравенства

№916,941(б,г),  954 (б,в)

27.05

101

Контрольная работа № 10 (итоговая)

Без домашнего задания

28.05

102-105

Повторение

Без домашнего задания

29.05-31.05


По теме: методические разработки, презентации и конспекты

Рабочая программа по математике для 8класса

Рабочая программа по математике для 8 класса составлена на основе Примерной программы основного общего образования с учетом требований федерального компонента государственного стандарта общего...

Рабочая программа(8класс по программа Р.З.Хайдаровой).

Программа для учителей, работающих с использованием коммуникативной технологии...

Рабочая программа по химии 8класс УМК Новошинский И.И.

Рабочая программа включает в себя: пояснительную записку, содержание материала, ктп, требования к знаниям и умениям....

рабочая программа 7класс, 8класс

пояснительная записка,календарно-тематическое планирорвание,лист коррекции...

рабочая программа-химия-8класс по УМК О.С.Габриеляна

Рабочая программа создана на основе авторской программы О.С.Габриеляна, по учебнику "Химия-8", 2013г....

адаптированная рабочая программа для 8класса

Рабочая программа разработана на основе следующих документов:-          Программы общеобразовательных учреждений по алгебре 7–9 классы,  к учебн...

Рабочая программа для 8класса девочки

В основе программы лежит примерная программа авторского коллектива Казакевич В.М.Пичугина Г.В., Семенова Г.Ю....