Экономические задачи ЕГЭ
методическая разработка по алгебре (11 класс) на тему
Экономические задачи.
Папка "Экономические задачи" содержит статьи Д.Д. Гущина, А. А.Прокофьева и других авторов. Приведенны разные способы, приёмы решения задач
Скачать:
Вложение | Размер |
---|---|
ekonom_zadachi.zip | 1.95 МБ |
Предварительный просмотр:
Решение «банковских» задач в новой версии ЕГЭ-2015 по математике.
1.Задача №1. Нахождение количества лет выплаты кредита.
Максим хочет взять в банке кредит 1,5 миллиона рублей. Погашение кредита происходит раз в год равными платежами (кроме, может быть, последней) после начисления процентов. Процентная ставка- 10% годовых. На какое минимальное количество лет может Максим взять кредит, чтобы ежегодные выплаты были не более 350 тысяч рублей?
Решение.
1)В конце первого года долг составит:
1500000 ∙ 1,1 – 350000 =1300000 (руб)
2) В конце второго года долг составит:
1300000 ∙ 1,1 – 350000 = 1080000 (руб)
3)В конце третьего года долг составит:
1080000 ∙ 1,1 – 350000 = 838000 (руб)
4)В конце четвертого года долг составит:
838000 ∙ 1,1 – 350000 = 571800 (руб)
5)В конце пятого года долг составит:
571800 ∙ 1,1 – 350000 = 278980 (руб)
6) В конце шестого года долг составит:
278900 ∙ 1,1 =306878 (руб)
Эта сумма менее 350000 руб. Значит, кредит будет погашен за 6 лет.
Ответ: 6 лет
2.Задача №2. Вычисление процентной ставки по кредиту.
31 декабря 2014 года Валерий взял в банке 1000000 рублей в кредит. Схема выплаты кредита следующая. 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга, затем Валерий переводит в банк очередной транш. Валерий выплатил кредит за два транша, то есть за два года. В первый раз Валерий перевел в банк 660000 рублей, во второй раз – 484000 рублей. Под какой процент банк выдал кредит Валерию?
Решение. Пусть а - процентная ставка по кредиту.
1)В конце первого года долг составит:
1000000 ∙ (1 + 0,01∙ а) – 660000 = 340000 + 10000∙а
2) В конце второго года долг составит:
(340000 + 10000∙а) ∙ (1 + 0,01∙а) – 484000.
По условию задачи кредит будет погашен за два года. Составляем уравнение: (340000 + 10000∙а) ∙ (1 + 0,01∙а) – 484000 = 0;
+ 134∙а – 1440 = 0
Решая уравнение, получаем, что а = 10.
Ответ: 10%
3.Задача №3 Нахождение суммы кредита.
31 декабря 2014 года Максим взял в банке некоторую сумму денег в кредит под 10% годовых. Схема выплаты кредита следующая: 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга, затем Михаил переводит в банк 2928200 рублей. Какую сумму взял Михаил в банке, если он выплатил долг четырьмя равными платежами, то есть за 4 года?
Решение. Пусть S – сумма кредита.
1)В конце первого года долг составит: (1,1х – 2928200) рублей
2) В конце второго года долг (в рублях) составит:
(1,1х – 2928200)∙1,1 – 2928200 = 1,21х – 3221020 – 2928200 = 1,21х – 6149220
3) В конце третьего года долг (в рублях) составит:
(1,21х – 6149220)∙1,1 – 2928200 = 1,331х – 6764142 – 2928200 =
=1,331х – 9692342
4) В конце четвертого года долг (в рублях) составит 2928200 рублей:
(1,331х – 9692342)∙1,1 = 2928200;
1,4641х – 10661576 = 2928200;
1,4641х = 13589776;
х = 9281999,8.
Значит, сумма кредита равна 9282000 рублей.
Ответ: 9282000 руб
4.Задача №4. Нахождение ежегодного транша.
31 декабря 2014 года Роман взял в банке 8599000 рублей в кредит под 14% годовых. Схема выплаты кредита следующая – 31 декабря каждого следующего года банк начисляет проценты на оставшуюся сумму долга(то есть увеличивает долг на 14%), затем Роман переводит в банк Х рублей. Какой должна быть сумма Х, чтобы Роман выплатил долг тремя равными платежами (то есть за 3 года)?
Решение.
1)В конце первого года долг составит:
8599000∙1,14 – Х = 9802860 – Х
2) В конце второго года долг составит:
(9802860 - Х)∙1,14 – Х=11175260 – 2,14∙Х
3) В конце третьего года долг (в рублях) составит:
(11175260 – 2,14∙Х) ∙1,14 – Х=12739796 – 3,4396∙Х.
Составим уравнение:
12739796 – 3,4396∙Х= 0
Х=3703860 рублей
Ответ: ежегодный транш составит 3703860 рублей.
По теме: методические разработки, презентации и конспекты
Использование элементов исследования на уроках математики при решении экономических задач
Мастер - класс по применению элементов исследовательской деятельности на уроках математики....
Экономические задачи к разделам Экономики 10 класса к учебнику Липсица (3 уровня сложности)
Публикация содержит задачи ко всем разделам предмета Экономика по 3 уровням сложности...
Решение экономических задач с помощью арифметической и геометрической прогрессии
Предлагаю вашему вниманию урок, который я провожу при изучении темы «Арифметическая и геометрическая прогрессии» в 9 классе. Материал урока позволяет показать способ решения экономических задач ...
Урок по теме "Решение экономических задач с помощью электронных таблиц" "
Урок проводится в профильном информационно-технологическом 11 классе при изучении темы "Электронные таблицы"В ходе урока выполняются задачи:Развитие экономической и информационной компетентности...
экономические задачи для 11 класса
(для тех, кто сдаёт ЕГЭ)...
Решение экономических задач на проценты
Комбинированный урок с применением дидактической игры....
Урок по алгебре в 9 классе: «Применение математики в реальной жизни на примере решения экономических задач, задач по статистике и теории вероятностей»
Документ содержит план-урока для 9-го класса в рамках подготовки к ОГЭ по математике....