Рабочая программа по алгебре и началам анализа в 10 классе по учебнику Никольского ФГОС
рабочая программа по алгебре (10 класс) на тему
Пояснительная записка и КТП с УУД
Скачать:
Вложение | Размер |
---|---|
a-10_fgos_poyasnitelnaya_zapiska.docx | 29.22 КБ |
Предварительный просмотр:
Пояснительная записка
Рабочая программа по предмету «Математика: алгебра и начала математического анализа» для 10 класса общеобразовательной школы (базовый уровень) составлена на основе Федерального государственного стандарта среднего общего образования, авторской программы С.М Никольского, М.К. Потапова, Н.Н. Решетникова, А.В. Шевкина "Алгебра и начала математического анализа, 10 класс” -М.: Просвещение, 2016 г.
Сроки реализации рабочей программы: 2018-2019 учебный год.
МЕСТО ПРЕДМЕТА «МАТЕМАТИКА: АЛГЕБРА И НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА» В УЧЕБНОМ ПЛАНЕ
Базисный учебный (образовательный) план для изучения предмета «Математика: алгебра и начала математического анализа» для 10 класса отводит на базовом уровне от 2,5 учебных часов в неделю, всего 85 часов.
Учебный план МОУ-СОШ №13 предусматривает изучение предмета «Математика: алгебра и начала математического анализа», входящего в предметную область «Математика и информатика», в 10-м классе в количестве 102 часов (34 учебные недели, 3 часа в неделю), из них 7 контрольных работ. Расширение рабочей программы предусматривает не только увеличение часов по некоторым темам, но и введение темы «Решение тригонометрических неравенств», использование которой предусмотрено при решении заданий №13 ЕГЭ с развернутым ответом.
ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА
Компетентностный подход определяет следующие особенности предъявления содержания образования: оно представлено в виде трех тематических блоков, обеспечивающих формирование компетенций. В первом блоке представлены дидактические единицы, обеспечивающие совершенствование математических навыков. Во втором — дидактические единицы, которые содержат сведения о способах добывания и практическом применении математических знаний. Это содержание обучения является базой для развития коммуникативно - информационной компетенции учащихся. В третьем блоке представлены дидактические единицы, отражающие основные достижения и обеспечивающие развитие учебно-познавательной и рефлексивной компетенции. Таким образом, календарно - тематическое планирование обеспечивает взаимосвязанное развитие и совершенствование ключевых, общепредметных и предметных компетенций.
Принципы отбора содержания связаны с преемственностью целей образования на различных ступенях и уровнях обучения, логикой внутрипредметных связей, а также с возрастными особенностями развития учащихся. Профильное изучение алгебры и начал анализа включает подготовку учащихся к осознанному выбору путей продолжения образования и будущей профессиональной деятельности.
Личностная ориентация образовательного процесса выявляет приоритет воспитательных и развивающих целей обучения. Способность учащихся понимать причины и логику развития математических процессов открывает возможность для осмысленного восприятия всего разнообразия мировоззренческих, социокультурных систем, существующих в современном мире. Система учебных занятий призвана способствовать развитию личностной самоидентификации, гуманитарной культуры школьников, усилению мотивации к социальному познанию и творчеству, воспитанию личностно и общественно востребованных качеств, в том числе гражданственности, толерантности.
Деятельностный подход отражает стратегию современной образовательной политики: необходимость воспитания человека и гражданина, интегрированного в современное ему общество, нацеленного на совершенствование этого общества. Система уроков сориентирована не столько на передачу "готовых знаний", сколько на формирование активной личности, мотивированной к самообразованию, обладающей достаточными навыками и психологическими установками к самостоятельному поиску, отбору, анализу и использованию информации. Это поможет выпускнику адаптироваться в мире, где объем информации растет в геометрической прогрессии, где социальная и профессиональная успешность напрямую зависят от позитивного отношения к новациям, самостоятельности мышления и инициативности, от готовности проявлять творческий подход к делу, искать нестандартные способы решения проблем, от готовности к конструктивному взаимодействию с людьми.
Изучение алгебры и начал математического анализа в старшей школе даёт возможность достижения обучающимися следующих результатов.
Личностные:
1) сформированность мировоззрения, соответствующего современному уровню развития науки; критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
2) готовность и способность вести диалог с другими людьми, достигать в нём взаимопонимания, находить общие цели и сотрудничать для их достижения;
3) навыки сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности;
4) готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
5) эстетическое отношение к миру, включая эстетику быта, научного и технического творчества;
6) осознанный выбор будущей профессии и возможностей реализации собственных жизненных планов; отношение к профессиональной деятельности как возможности участия в решении личных, общественных, государственных, общенациональных проблем.
Метапредметные:
1) умение самостоятельно определять цели деятельности и составлять планы деятельности; самостоятельно осуществлять, контролировать и корректировать деятельность; использовать все возможные ресурсы для достижения поставленных целей и реализации планов деятельности; выбирать успешные стратегии в различных ситуациях;
2) умение продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности, эффективно разрешать конфликты;
3) владение навыками познавательной, учебно-исследовательской и проектной деятельности, навыками разрешения проблем; способность и готовность к самостоятельному поиску методов решения практических задач, применению различных методов познания;
4) готовность и способность к самостоятельной информационно-познавательной деятельности, включая умение ориентироваться в различных источниках информации, критически оценивать и интерпретировать информацию, получаемую из различных источников;
5) умение использовать средства информационных и коммуникационных технологий (далее — ИКТ) в решении когнитивных, коммуникативных и организационных задач с соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности;
6) владение языковыми средствами — умение ясно, логично и точно излагать свою точку зрения, использовать адекватные языковые средства;
7) владение навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований, границ своего знания и незнания, новых познавательных задач и средств их достижения.
Предметные
Базовый уровень
Предметные результаты освоения интегрированного курса математики ориентированы на формирование целостных представлений о мире и общей культуры обучающихся путём освоения систематических научных знаний и способов действий на метапредметной основе, а предметные результаты освоения курса алгебры и начал математического анализа на базовом уровне ориентированы на обеспечение преимущественно общеобразовательной и общекультурной подготовки. Они предполагают:
1) сформированность представлений о математике как части мировой культуры и о месте математики в современной цивилизации, о способах описания на математическом языке явлений реального мира;
2) сформированность представлений о математических понятиях как о важнейших математических моделях, позволяющих описывать и изучать разные процессы и явления; понимание возможности аксиоматического построения математических теорий;
3) владение методами доказательств и алгоритмов решения; умение их применять, проводить доказательные рассуждения в ходе решения задач;
4) владение стандартными приёмами решения рациональных и иррациональных, показательных, степенных, тригонометрических уравнений и неравенств, их систем; использование готовых компьютерных программ, в том числе для поиска пути решения и иллюстрации решения уравнений и неравенств;
5) сформированность представлений об основных понятиях, идеях и методах математического анализа;
6) сформированность представлений о процессах и явлениях, имеющих вероятностный характер, о статистических закономерностях в реальном мире, об основных понятиях элементарной теории вероятностей; сформированность умений находить и оценивать вероятности наступления событий в простейших практических ситуациях и основные характеристики случайных величин;
7) владение навыками использования готовых компьютерных программ при решении задач.
СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА
1. Действительные числа (8ч)
Понятие натурального числа. Множества чисел. Свойства действительных чисел. Перестановки. Размещения. Сочетания.
Основная цель — систематизировать известные и изучить новые сведения о действительных числах.
Знать понятие «Перестановки. Размещения. Сочетания»;
Уметь находить разницу между ними и научиться применять их при решении задач.
2. Рациональные уравнения и неравенства (14ч )
Рациональные выражения. Формулы бинома Ньютона, суммы и разности степеней. Рациональные уравнения. Системы рациональных уравнений. Метод интервалов решения неравенств. Рациональные неравенства. Нестрогие неравенства. Системы рациональных неравенств.
Основная цель — сформировать умения решать рациональные уравнения и неравенства.
Знать формулы бинома Ньютона, и разности степеней.
Уметь решать рациональные уравнения и их системы; применять метод интервалов для решения несложных рациональных неравенств и их систем.
3. Корень степени n ( 6ч )
Понятия функции и ее графика. Функция у = хn. Понятие корня степени n. Корни четной и нечетной степеней. Арифметический корень. Свойства корней степени n. Функция у = .
Основная цель — освоить понятия корня степени n и арифметического корня; выработать умение преобразовывать выражения, содержащие корни степени n.
Знать определение корня п-ой степени, понятие функции и ее графика, арифметического корня п-ой степени и его свойства.
Уметь находить значение корня на основе определения и свойств, выполнять преобразования выражений, содержащие корни, строить график степенной функции.
4. Степень положительного числа ( 9 ч )
Понятие и свойства степени с рациональным показателем. Предел последовательности.
Бес конечно убывающая геометрическая прогрессия. Число е.
Понятие степени с иррациональным показателем. Показательная функция.
Основная цель – усвоить понятие рациональной и иррациональной степеней положительного числа и пока зательной функции.
Знать определение степени с действительным показателем, определение показательной функции, формулу суммы бесконечной геометрической прогрессии;
уметь находить значение степени, упрощать выражения, содержащие степень, строить график показательной функции.
5. Логарифмы (6ч)
Понятие и свойства логарифмов. Логарифмическая функция. Десятичный логарифм (приближенные вычисления). Степенные функции.
Основная цель — освоить понятия логарифма и логарифмической функции, выработать умение преобразовывать выражения, содержащие логарифмы.
Знать определение логарифма, свойства;
Уметь строить график логарифмической функции, находить значения логарифмических выражений, применять свойства логарифмов для преобразования логарифмических выражений.
6. Показательные и логарифмические уравнения и неравенства (7 ч)
Простейшие показательные и логарифмические уравнения. Уравнения, сводящиеся к простейшим заменой неизвестного. Простейшие показательные и логарифмические неравенства. Неравенства, сводящиеся к простейшим заме ной неизвестного.
Основная цель — сформировать умение решать показательные и логарифмические уравнения и неравенства.
Знать определение логарифмических и показательных уравнений и неравенств, приемы решения простейших их уравнений и неравенств;
уметь решать показательные и логарифмические уравнения и неравенства.
7. Синус и косинус угла ( 7 ч)
Понятие угла и его меры. Определение синуса и косину саугла, основные формулы для них. Арксинус и арккосинус.
Основная цель — освоить понятия синуса и косинуса произвольного угла, изучить свойства функций угла: sinх и cos х.
Знать определение синуса, косинуса, радиана, арксинуса, арккосинуса, основные формулы тригонометрии;
Уметь выражать радианную меру угла в градусную и наоборот, находить значение синуса, косинуса любого угла, преобразовывать тригонометрические выражения, используя основные формулы, находить значения арксинусов и арккосинусов.
8. Тангенс и котангенс угла ( 5 ч )
Определения тангенса и котангенса угла и основные формулы для них. Арктангенс и арккотангенс.
Основная цель — освоить понятия тангенса и котангенса произвольного угла, изучить свойства функций угла: tgх и ctgх.
Знать определение тангенса и котангенса, арктангенса и арккотангенса; основные формулы для них;
Уметь находить значения тангенса и котангенса любого угла.
9. Формулы сложения (9 ч )
Косинус суммы (и разности) двух углов. Формулы для дополнительных углов. Синус суммы (и разности) двух углов. Сумма и разность синусов и косинусов. Формулы для двойных и половинных углов.
Основная цель — освоить формулы косинуса и синуса суммы и разности двух углов, выработать умение выполнять тождественные преобразования тригонометрических выражений с использованием выведенных формул.
Знать формулы сложения, двойных и половинных углов, формулы суммы и разности синусов и косинусов;
Уметь применять формулы тригонометрии для упрощения тригонометрических выражений и вычислений .
10. Тригонометрические функции числового аргумента ( 5 ч )
Функции у = sin х , у = cos x, у = tg x, у = ctg x.
Основная цель — изучить свойства основных тригонометрических функций и их графиков.
Знать определение тригонометрических функций их свойства;
Уметь строить графики тригонометрических функций, определять их период.
11. Тригонометрические уравнения и неравенства ( 9 ч )
Простейшие тригонометрические уравнения. Тригонометрические уравнения, сводящиеся к простейшим заменой неизвестного. Применение основных тригонометрических формул для решения уравнений. Однородные уравнения.
Основная цель — сформировать умение решать тригонометрические уравнения и неравенства.
Знать формулы корней простейших тригонометрических уравнений, основные приемы решения тригонометрических уравнений;
Уметь решать простейшие тригонометрические уравнения.
12. Вероятность события ( 4ч )
Понятие и свойства вероятности события.
Основная цель — овладеть классическим понятием вероятности события, изучить его свойства и научиться применять их при решении несложных задач.
- Повторение курса алгебры и начал математического анализа (13ч)
Основная цель- повторение, обобщение и систематизация знаний, умений и навыков за курс алгебры и начал анализа средней общеобразовательной школы.
ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ
№ п/п | Тема раздела | Кол-во часов по авторской программе | Кол-во часов по рабочей программе | В том числе контрольные работы |
1 | Действительные числа | 8 | 8 | |
2 | Рациональные уравнения и неравенства | 12 | 14 | Контрольная работа №1 |
3 | Корень степени n | 6 | 6 | |
4 | Степень положительного числа | 8 | 9 | Контрольная работа №2 |
5 | Логарифмы | 5 | 6 | |
6 | Показательные и логарифмические уравнения и неравенства | 7 | 7 | Контрольная работа №3 |
7 | Синус и косинус угла | 7 | 7 | |
8 | Тангенс и котангенс угла | 4 | 5 | Контрольная работа №4 |
9 | Формулы сложения | 7 | 9 | |
10 | Тригонометрические функции числового аргумента | 5 | 5 | Контрольная работа №5 |
11 | Тригонометрические уравнения и неравенства | 5 | 9 | Контрольная работа №6 |
12 | Элементы теории вероятностей | 4 | 4 | |
13 | Повторение курса алгебры и начала математического анализа за 10 класс | 7 | 13 | Контрольная работа №7 |
Всего | 85ч. | 102ч. |
По теме: методические разработки, презентации и конспекты
Рабочая программа по алгебре и началам анализа 10 класса по учебнику Мордковича
Рабочая программа по алгебре по алгебре составлена в соответствии с Базисным учебным планом 2004 года на основе «Программы общеобразовательных учреждений. Математика 5-6 классы. Алгебра 7-9 классы. Ал...
Рабочая программа по алгебре и началам анализа 10 класс (к учебнику Ш.А. Алимова)
Представлено развернутое тематическое планирование по алгебре и началам анализа для 10 класса по учебнику Ш.А. Алимова, составленное на основе Примерной программы основного общего и среднего (по...
Рабочая программа по алгебре и началам анализа 11 класс (к учебнику Ш.А. Алимова)
Представлено развернутое тематическое планирование по алгебре и началам математического анализа для 11 класса, составленное на основе Примерной программы основного общего и среднего (полного) образова...
Рабочая программа по алгебре и началам анализа 11 класс по учебнику А.Н. Колмогорова
Рабочая программа по алгебре и началам анализа 11 класс по учебнику А.Н. Колмогорова с календарно-тематическим планированием...
Рабочая программа по алгебре и началам анализа 11 класс (автор учебника Колягин Ю.М. - 2,5 часа в неделю)
Рабочая программа по алгебре и началам анализа 11 класс - базовый уровень...
Рабочая программа по алгебре и началам анализа 10 класса к учебнику Ю.М.Колягина, М.В. Ткачевой и др. (профильный уровень)
Рабочая программа расчитана на 4 часа в неделю (профильный уровень)....
Рабочая программа по алгебре и началам анализа 10 класс по учебнику Алимов Ш. А.. Пояснительная записка
Рабочая программа по алгебре и началам анализа 10 класс по учебнику Алимов Ш. А. Пояснительная записка...