Программа по математие
рабочая программа по алгебре (9 класс) на тему

Програма по математке  УМК Мордкович, Атанасян, 7-9 классы

Скачать:


Предварительный просмотр:

Программа рекомендована                                                                    Утверждаю                                                                                                                              

к работе педагогическим                                                                        Директор МБОУ «Средняя                            

советом школы                                                                                        общеобразовательная   школа №6»            

Протокол № _1_ от_____201_г.                                                             ____________  Е.Д.      Сазанович.                                                                                                

                                                                                                                  Приказ №  ______  от __________

Программа обсуждена на

заседании методического

объединения учителей

естественно-математического цикла

Протокол №_1__ от_____201_г.    

РАБОЧАЯ  ПРОГРАММА

по    алгебре

при получении основного общего образования для учащихся 7-9 класса

Количество часов __420_______              

Программа разработана на основе ООП ООО, ФГОС ООО

                                                                                                                               

                                                                               

                                                                                                                                                                                     Составитель:

                                                                                                                                                                                           учитель  математики                                                                                                                                  

Сарычева Елизавета Павловна

Новокузнецк, 2017

                                                                      Содержание рабочей программы

  1. Пояснительная записка                                                         стр. 2-10.
  2. Планируемые результаты освоения учебного предмета   стр.  11-42.
  3. Содержание учебного предмета                                           стр.  43-46.              
  4. Тематическое планирование                                                 стр.  47-64.

                                                                                        1. Пояснительная записка.

                         Рабочая программа основного общего образования по алгебре составлена в соответствии с требованиями:

  • Федерального государственного образовательного стандарта основного общего образования (Утвержден приказом Министерства образования и науки Российской Федерации от «17» декабря 2010 г. № 1897) на основе:
  • Приказа Минобрнауки России от 26.01.2016 N 38 «О внесении изменений в федеральный перечень учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования, утвержденный приказом Министерства образования и науки Российской Федерации от 31 марта 2014 г. №253»;
  • Письма Федеральной службы по надзору в сфере в сфере образования и науки (Рособрнадзора) от 03.11.2015 года №02-501;
  • Основной образовательной программы основного общего образования  МБОУ «СОШ №6»;
  • Положения об организации деятельности  по составлению, согласованию и утверждению рабочих программ учебных предметов в соответствии с ФГОС ООО МБОУ «СОШ №6»
  • Программы по алгебре  коллектива авторов И.И. Зубаревой, А.Г. Мордковича

Настоящая программа составлена на 420 часов (140 часов в год) в соответствии с учебным планом школы и рассчитана на 7-9 классы обучения, является программой основного общего образования.

Настоящая рабочая программа разработана применительно к учебной программе  А.Г. Мордковича «Алгебра» для 7-9 -х классов и ориентирована на использование учебно-методического комплекта:

  1. А.Г. Мордкович,Алгебра.7класс: учебник для учащихся общеобразовательных учреждений и задачник- М: Мнемозина , 2016-2017.
  2. А.Г.Мордкович, Алгебра 7 класс: метод. Пособие для учителя-М: Мнемозина, 2016.
  3. Л.А.Александрова, Алгебра 7 класс: самостоятельные работы-М: Мнемозина, 2016-2017.
  4. Л.А.Александрова, Алгебра 7 класс: контрольные работы-М: Мнемозина, 2016-2017.
  5. А.Г. Мордкович, Алгебра 8 класс: учебник для учащихся общеобразовательных учреждений и задачник- М: Мнемозина , 2016-2017.
  6. А.Г.Мордкович, Алгебра 8 класс: метод. Пособие для учителя-М: Мнемозина, 2016.
  7. Л.А.Александрова, Алгебра 8 класс: самостоятельные работы-М: Мнемозина, 2016-2017.
  8. Л.А. Александрова, Алгебра 8 класс: контрольные работы-М: Мнемозина, 2016-2017.
  9. А.Г. Мордкович, Алгебра 9 класс: учебник для учащихся общеобразовательных учреждений и задачник- М: Мнемозина , 2016-2017.
  10. А.Г.Мордкович, Алгебра 9 класс: метод. Пособие для учителя-М: Мнемозина, 2016.
  11. Л.А.Александрова, Алгебра 9 класс: самостоятельные работы-М: Мнемозина, 2016.
  12. Л.А.Александрова, Алгебра 9 класс: контрольные работы-М: Мнемозина, 2016-2017.
  13. А.Г.Мордкович, Алгебра 7-9 кл.: тесты-М: Мнемозина, 2016-2017.

14. Е.М.Ключникова, Рабочая тетрадь по алгебре к учебнику       А.Г.Мордковича,«Алгебра. 7 класс», «Алгебра. 8 класс», «Алгебра. 9 класс».

Изучение математики в современной школе приобретает особую актуальность, так как данный предмет способствует успешной социализации личности учащегося в современном мире, формированию у подростков логики и математического мышления. В современном обществе математическая подготовка необходима каждому человеку, математика присутствует во всех сферах человеческой деятельности. Математика является одним из опорных школьных предметов. Математические знания и умения необходимы для изучения алгебры и геометрии, а также для изучения смежных дисциплин.

Изучение алгебры в основной школе направлено на достижение следующих целей:

В направлении личностного развития:

  • развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;
  • формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
  • воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;
  • формирование качеств мышления, необходимых для адаптации в современном информационном обществе.
  • развитие интереса к математическому творчеству и математических способностей.

В метапредметном направлении:

  • формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
  • развитие представлений о математике как о форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;
  • формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности.

В предметном направлении:

  • формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
  • развитие представлений о математике как форме описания и методе познания действительности, со здание условий для приобретения первоначального опыта математического моделирования;
  • формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности.

Изучение учебного предмета «Алгебра» направлено на решение следующих задач:

  • овладеть математическими знаниями и умениями, необходимыми для продолжения обучения в старшей школе или иных общеобразовательных учреждениях, изучения смежных дисциплин, применения в повседневной жизни;
  • создать фундамент для математического развития, формирования механизмов мышления, характерных для математической деятельности.
  • интеллектуальное развивать учащихся, формировать качества мышления, характерных для математической деятельности и необходимых человеку для полноценного функционирования в обществе;
  • развивать логическое мышление и речевые умения: умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический);
  • формировать представления об идеях и методах математики как научной теории, о месте математики в системе наук, о математике как форме описания и методе познания действительности;
  • развивать представление о математике как части общечеловеческой культуры, воспитывать понимание значимости математики для общественного прогресса.

Срок  реализации программы 5 лет.

Методика организации занятий представлена следующим образом: теоретическая часть направлена на актуализацию знаний, составление опорных схем и алгоритмов, а также на изучение нестандартных методов решения математических задач. Освоение новых методов  происходит в процессе практической творческой деятельности. Эффективным методом является такое введение нового теоретического материала, которое вызвано требованиями творческой практики. Обучающийся должен уметь сам  сформулировать задачу, а новые знания теории помогут ему в процессе решения этой  задачи. Данный метод позволяет сохранить на занятии высокий творческий тонус при обращении к теории и ведет к более глубокому ее усвоению.

Основной формой организации учебного процесса является классно-урочная система. В качестве дополнительных форм организации образовательного процесса в учреждении используется система консультационной поддержки, индивидуальных занятий, самостоятельная работа обучающихся с использованием современных информационных технологий. Организация сопровождения обучающихся направлена на:

  • создание оптимальных условий обучения;
  • исключение психотравмирующих факторов;
  • сохранение психосоматического состояния здоровья учащихся;
  • развитие положительной мотивации к освоению программы;
  • развитие индивидуальности и одаренности каждого ребенка.

Формы проверки и оценки результатов обучения: устные и письменные зачёты, проверочные, самостоятельные, традиционные диагностические и контрольные работы, интерактивные задания, тестовый контроль, разноуровневые тесты, в том числе с использованием компьютерных технологий.

В   основной   школе   будет   продолжена   работа   по формированию  и  развитию  основ  читательской  компетенции.  Обучающиеся  овладеют чтением  как  средством  осуществления  своих  дальнейших  планов: продолжения образования и самообразования, осознанного планирования своего актуального и перспективного круга чтения, в том числе досугового, подготовки к трудовой и социальной деятельности.

Обучающиеся усовершенствуют технику чтения и приобретут устойчивый

навык осмысленного чтения, получат возможность приобрести навык рефлексивного чтения, овладеют различными видами и типами чтения: ознакомительным, изучающим, росмотровым, поисковым и выборочным;выразительным чтением; коммуникативным чтением вслух и про себя; учебным и самостоятельным чтением, овладеют основными стратегиями чтения

художественных и других видов текстов и будут способны выбрать стратегию

чтения, отвечающую конкретной учебной задаче.

В      разделе      «Планируемые      результаты      освоения      учебных      и междисциплинарных   программ»   ООП   ООО   сформулированы   требования   к освоению программы «Стратегии смыслового чтения и работа с текстом».

Ученик научиться

Ученик получит возможность научиться

1.         Работа с текстом: поиск информации и понимание прочитанного

- ориентироваться в содержании текста и понимать его целостный смысл:

— определять главную тему, общую цель или назначение текста

— выбирать    из    текста    или    придумать    заголовок, соответствующий содержанию и общему смыслу текста;

— формулировать тезис, выражающий общий смысл текста;

— предвосхищать содержание предметного плана текста по заголовку и с опорой на предыдущий опыт;

— объяснять порядок частей/инструкций, содержащихся в тексте;

— сопоставлять    основные    текстовые    и    внетекстовые    компоненты: обнаруживать   соответствие   между   частью   текста   и    его    общей   идеей, сформулированной  вопросом,  объяснять  назначение  карты,  рисунка,  пояснять части графика или таблицы и т. д.;

- находить  в  тексте  требуемую  информацию  (пробегать  текст  глазами, определять его основные элементы, сопоставлять формы выражения информации в запросе и в самом тексте, устанавливать, являются ли они тождественными или синонимическими, находить необходимую единицу информации в тексте);

- решать учебно-ознавательные и учебно-практические задачи, требующие полного и критического понимания текста:

— определять назначение разных видов текстов;

— ставить  перед  собой  цель  чтения,  направляя  внимание  на  полезную  в данный момент информацию;

— различать темы и подтемы специального текста;

— выделять главную и избыточную информацию;

— прогнозировать последовательность изложения идей текста;

— сопоставлять разные точки зрения и разные источники информации по заданной теме;

— выполнять смысловое свёртывание выделенных фактов и мыслей;

— формировать   на   основе   текста   систему   аргументов   (доводов)   для обоснования определённой позиции;

— понимать душевное состояние персонажей текста, сопереживать им.

• анализировать  изменения  своего  эмоционального  состояния  в  процессе чтения, получения и переработки полученной информации и её осмысления.

2. Работа с текстом: преобразование и интерпретация информации.

• структурировать  текст,  используя  нумерацию  страниц,  списки,  ссылки, оглавления; проводить проверку правописания, использовать в тексте таблицы, изображения;

• преобразовывать     текст,     используя     новые     формы     представления информации:    формулы,    графики,    диаграммы,    таблицы    (в    том    числе динамические, электронные, в частности в практических задачах), переходить от одного представления данных к другому;

- интерпретировать текст:

— сравнивать  и  противопоставлять  заключённую  в  тексте  информацию разного характера;

— обнаруживать в тексте доводы в подтверждение выдвинутых тезисов;

— делать выводы из сформулированных посылок;

— выводить заключение о намерении автора или главной мысли текста.

 

• выявлять  имплицитную  информацию  текста  на   основе  сопоставления иллюстративного    материала    с    информацией    текста,    анализа    подтекста (использованных языковых средств и структуры текста).

3.         Работа с текстом: оценка информации

- откликаться на содержание текста:

— связывать информацию, обнаруженную в тексте, со знаниями из других источников;

— оценивать    утверждения,    сделанные    в    тексте,    исходя    из    своих представлений о мире;

— находить доводы в защиту своей точки зрения;

- откликаться на форму текста: оценивать не только содержание текста, но и его форму, а в целом — мастерство его исполнения;

- на  основе  имеющихся  знаний,  жизненного  опыта  подвергать  сомнению достоверность     имеющейся     информации,     обнаруживать     недостоверность получаемой информации, пробелы в информации и находить пути восполнения этих пробелов;

- в  процессе  работы  с  одним  или  несколькими  источниками  выявлять содержащуюся в них противоречивую, конфликтную информацию;

- использовать полученный опыт восприятия информационных объектов для обогащения чувственного опыта, высказывать оценочные суждения и свою точку зрения о полученном сообщении (прочитанном тексте).

• критически относиться к рекламной информации;

• находить способы проверки противоречивой информации;

• определять  достоверную  информацию  в  случае  наличия  противоречивой или конфликтной ситуации.

Смысловое чтение – вид чтения, которое нацелено на понимание читающим смыслового содержания текста. Для смыслового понимания недостаточно просто прочесть   текст,   необходимо   дать   оценку   информации,   откликнуться   на содержание.

В  научной  литературе  «стратегии  смыслового  чтения»  понимаются  как различные комбинации приемов, которые используют учащиеся для восприятия графически оформленной текстовой информации и ее переработки в личностно- смысловые установки в соответствии с коммуникативно-познавательной задачей.

Работу по формированию основ смыслового чтения  необходимо начинать как можно раньше, систематически   включая   в урок   разнообразные приемы и методы работы с текстом.

                                       2. Планируемые результаты освоения учебного предмета.

К планируемым результатам освоения учебного предмета «алгебра» на уровне основного общего образования (7-9 класс), согласно требованиям ФГОС ООО и ООП ООО школы, относятся следующие результаты.

Личностные результаты

1. Российская гражданская идентичность (патриотизм, уважение к Отечеству, к прошлому и настоящему многонационального народа России,  чувство ответственности и долга перед Родиной, идентификация себя в качестве гражданина России, субъективная значимость использования русского языка и языков народов России, осознание и ощущение личностной сопричастности судьбе российского народа). Осознание этнической принадлежности, знание истории, языка, культуры своего народа, своего края, основ культурного наследия народов России и человечества (идентичность человека с российской многонациональной культурой, сопричастность истории народов и государств, находившихся на территории современной России); интериоризация гуманистических, демократических и традиционных ценностей многонационального российского общества. Осознанное, уважительное и доброжелательное отношение к истории, культуре, религии, традициям, языкам, ценностям народов России и народов мира. Чувство ответственности и долга перед Родиной.

2. Ответственное отношение к учению, готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию; готовность и способность к осознанному выбору и построению дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений с учетом устойчивых познавательных интересов, а также на основе формирования уважительного отношения к труду, развития опыта участия в социально значимом труде.

3. Развитое моральное сознание и компетентность в решении моральных проблем на основе личностного выбора, формирование нравственных чувств и нравственного поведения, осознанного и ответственного отношения к собственным поступкам (способность к нравственному самосовершенствованию; веротерпимость, уважительное отношение к религиозным чувствам, взглядам людей или их отсутствию; знание основных норм морали, нравственных, духовных идеалов, хранимых в культурных традициях народов России, готовность на их основе к сознательному самоограничению в поступках, поведении, расточительном потребительстве; сформированность представлений об основах светской этики, культуры традиционных религий, их роли в развитии культуры и истории России и человечества, в становлении гражданского общества и российской государственности; понимание значения нравственности, веры и религии в жизни человека, семьи и общества). Сформированность ответственного отношения к учению; уважительного отношения к труду, наличие опыта участия в социально значимом труде.

4. Сформированность целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики, учитывающего социальное, культурное, языковое, духовное многообразие современного мира.

5. Осознанное, уважительное и доброжелательное отношение к другому человеку, его мнению, мировоззрению, культуре, языку, вере, гражданской позиции, к истории, культуре, религии, традициям, языкам, ценностям народов Росси и народов мира. Готовность и способность вести диалог с другими людьми и достигать в нем взаимопонимания (идентификация себя как полноправного субъекта общения, готовность к конструированию образа партнера по диалогу, готовность к конструированию образа допустимых способов диалога, готовность к конструированию процесса диалога как конвенционирования интересов, процедур, готовность и способность к ведению переговоров).

6. Коммуникативная компетентность в общении и сотрудничестве со сверстниками, детьми старшего и младшего возраста, взрослыми в процессе образовательной, общественно полезной, учебно-исследовательской, творческой и других видов деятельности;

7. Освоенность социальных норм, правил поведения, ролей и форм социальной жизни в группах и сообществах, включая взрослые и социальные сообщества. Участие в школьном самоуправлении и общественной жизни в пределах возрастных компетенций с учетом региональных, этнокультурных, социальных и экономических особенностей (формирование готовности к участию в процессе упорядочения социальных связей и отношений, в которые включены и которые формируют сами учащиеся; включенность в непосредственное гражданское участие, готовность участвовать в жизнедеятельности подросткового общественного объединения, продуктивно взаимодействующего с социальной средой и социальными институтами;идентификация себя в качестве субъекта социальных преобразований, освоение компетентностей в сфере организаторской деятельности; интериоризация ценностей созидательного отношения к окружающей действительности, ценностей социального творчества, ценности продуктивной организации совместной деятельности, самореализации в группе и организации, ценности «другого» как равноправного партнера, формирование компетенций анализа, проектирования, организации деятельности, рефлексии изменений, способов взаимовыгодного сотрудничества, способов реализации собственного лидерского потенциала).

8. Сформированность ценности здорового и безопасного образа жизни; интериоризация правил индивидуального и коллективного безопасного поведения в чрезвычайных ситуациях, угрожающих жизни и здоровью людей, правил поведения на транспорте и на дорогах.

9. Сформированность основ экологической культуры, соответствующей современному уровню экологического мышления, развитие опыта экологически ориентированной рефлексивно-оценочной и практической деятельности в жизненных ситуациях (готовность к исследованию природы, к занятиям сельскохозяйственным трудом, к художественно-эстетическому отражению природы, к занятиям туризмом, в том числе экотуризмом, к осуществлению природоохранной деятельности).

10. Осознание значения семьи в жизни человека и общества, принятие ценности семейной жизни, уважительное и заботливое отношение к членам своей семьи

11. Развитость эстетического сознания через освоение художественного наследия народов России и мира, творческой деятельности эстетического характера (способность понимать художественные произведения, отражающие разные этнокультурные традиции; сформированность основ художественной культуры обучающихся как части их общей духовной культуры, как особого способа познания жизни и средства организации общения; эстетическое, эмоционально-ценностное видение окружающего мира; способность к эмоционально-ценностному освоению мира, самовыражению и ориентации в художественном и нравственном пространстве культуры; уважение к истории культуры своего Отечества, выраженной в том числе в понимании красоты человека; потребность в общении с художественными произведениями, сформированность активного отношения к традициям художественной культуры как смысловой, эстетической и личностно-значимой ценности).

Данные образовательныерезультаты проверяютсяиоцениваютсяобразовательной организациейспомощьюанкетированияразныхсубъектовобразовательных отношений, наблюдений,показателейдеятельностигимназии(правонарушений,участиеучащихсяв различныхвнешкольных,внеурочныхформах деятельностиит.п.).

Метапредметные результаты

Метапредметные результаты включают освоенные учащимися межпредметные понятия и универсальные учебные действия (регулятивные, познавательные, коммуникативные).

Межпредметные понятия

Условием формирования межпредметных понятий,  таких, как система, факт, закономерность, феномен, анализ, синтез и пр. является овладение учащимися основами читательской компетенции, приобретение навыков работы с информацией, участие  в проектной деятельности. У выпускников будет сформирована потребность в систематическом чтении как средстве познания мира и себя в этом мире, гармонизации отношений человека и общества, создании образа «потребного будущего».

При изучении учебного предмета «математика» учащиеся усовершенствуют приобретенные на уровне начального общего образования навыки работы с информацией и пополнят их. Они смогут работать с текстами, преобразовывать и интерпретировать содержащуюся в них информацию, в том числе:

• систематизировать, сопоставлять, анализировать, обобщать и интерпретировать информацию, содержащуюся в готовых информационных объектах;

• выделять главную и избыточную информацию, выполнять смысловое свертывание выделенных фактов, мыслей; представлять информацию в сжатой словесной форме (в виде плана или тезисов) и в наглядно-символической форме (в виде таблиц, графических схем и диаграмм, карт понятий — концептуальных диаграмм, опорных конспектов);

• заполнять и дополнять таблицы, схемы, тексты.

В ходе изучения всех учебных предметов, в том числе математики, учащиеся приобретут опыт проектной деятельности как особой формы учебной работы, способствующей воспитанию самостоятельности, инициативности, ответственности, повышению мотивации и эффективности учебной деятельности; в ходе реализации исходного замысла на практическом уровне овладеют умением выбирать адекватные стоящей задаче средства, принимать решения, в том числе и в ситуациях неопределенности. Они получат возможность развить способность к разработке нескольких вариантов решений, к поиску нестандартных решений, поиску и осуществлению наиболее приемлемого решения.

Перечень ключевых межпредметных понятий, осваиваемых учащимися в рамках всех учебных предметов, в том числе математике, следующий:

  • АБСОЛЮТНОЕ – безусловное, самодостаточное, вечное, завершенное; противостоит относительному.
  • АБСТРАКТНОЕ – одностороннее, простое, неразвитое; сторона, часть целого; противостоит конкретному.
  • АБСТРАКЦИЯ – мысленное отвлечение от ряда свойств предметов и отношений между ними; понятие, образуемое в результате отвлечения.
  • АДЕКВАТНОСТЬ – соответствие, равенство, эквивалентность; в теории познания соответствие, сходство идеального образа и объекта.
  • АКСИОМА – исходное положение теории, принимаемое без доказательств.
  • АКТУАЛЬНЫЙ – существующий в действительности; противоположное – потенциальный.
  • АНАЛИЗ – процедура мысленного разложения целого на составные части; противоположное – синтез.
  • АНАЛОГИЯ - умозаключение, в котором на основе сходства предметов в одних отношениях делается предположительный вывод об их сходстве в других отношениях; аналогия является источником гипотез.
  • БЫТИЕ – существование, а также то, что обладает существованием; у представителей различных направлений философии получает различную трактовку, у материалистов – это материя, у идеалистов – дух; обратное – небытие.
  • ВЕРОЯТНОСТЬ – показатель осуществимости тех или иных возможностей при определенных условиях.
  • ВЗАИМОДЕЙСТВИЕ – процессы обмена веществом, энергией, информацией, деятельностью и т.п.
  • ВИДИМОСТЬ – момент обманчивости в восприятии тех или иных явлений.
  • ВИД И РОД (в логике) – понятия, выражающие отношения между классами предметов; вид как класс входит в род.
  • ВСЕОБЩЕЕ – характеристики, присущие всем предметам данного класса; единая основа бесконечного множества явлений; внутренняя сущность явлений, закон их существования и развития.
  • ВТОРИЧНОЕ – несамостоятельное, имеющее причину не в себе, а в другом.
  • ГИПОТЕЗА – вероятностное предположение, выдвигаемое с целью объяснения какого-либо явления.
  • ДЕДУКЦИЯ – логический переход от общего к частному; выведение согласно строгим правилам логики достоверных заключений из посылок.
  • ДОКАЗАТЕЛЬСТВО – процесс (метод) установления истины; обоснование истинности того или иного суждения (тезиса).
  • ДОСТОВЕРНОСТЬ – характеристика знания, истинность или ложность которого доказана; противоположное – проблематичность.
  • ДЕДУКЦИЯ – логический переход от общего к частному; выведение согласно строгим правилам логики достоверных заключений из посылок.
  • ДОКАЗАТЕЛЬСТВО – процесс (метод) установления истины; обоснование истинности того или иного суждения (тезиса).
  • ДОСТОВЕРНОСТЬ – характеристика знания, истинность или ложность которого доказана; противоположное – проблематичность.
  • ЗАКОНОМЕРНОСТЬ – объективная, повторяющаяся при определенных условиях существенная связь явлений в природе и обществе.
  • ЗНАК – явление, выступающее в качестве представителя и заместителя других явлений; смысловое значение знака содержит информацию об обозначаемых явлениях.
  • ЗНАНИЕ – результат процесса познания действительности; знаково оформленная система идеальных образов.
  • ЗНАЧЕНИЕ И СМЫСЛ – понятия, фиксирующие обозначаемый знаком класс предметов и информацию о нем.
  • ИДЕАЛ – образ совершенства, выступающий в качестве цели.
  • ИДЕАЛИЗАЦИЯ – мысленное конструирование понятий об объектах, не существующих и не осуществимых в действительности, но таких, для которых имеются прообразы в реальном мире.
  • ИДЕЯ – форма постижения в мысли явлений, включающая в себя сознание цели и проекции дальнейшего познания и практического преобразования мира.
  • ИЛЛЮЗИЯ – искаженное восприятие действительности.
  • ИНДИВИДУАЛЬНОСТЬ – неповторимое своеобразие какого-либо явления, в том числе отдельного человека.
  • ИНДУКЦИЯ – логический переход от частного к общему, результат которого имеет вероятностный характер.
  • ИНСТИНКТ – совокупность врожденных компонентов психики, определяющая поведение животных и человека.
  • ИНТЕЛЛЕКТ – мыслительная (умственная) способность человека; может отождествляться с рассудком, разумом и интуицией.
  • ИСТИНА – адекватное отражение объекта познающим субъектом, верное отражение действительности; противоположное – заблуждение.
  • КАТЕГОРИЯ – предельно общее, фундаментальное понятие философии.
  • КАЧЕСТВО – то, что характеризует природу вещи, ее принадлежность к определенному классу предметов.
  • КЛАСС (логический) – понятие, обозначающее множество предметов, удовлетворяющее каким-либо условиям или признакам.
  • ЛОГИКА – наука о мышлении, исследующая общезначимые формы и средства мысли; является основой логического (дискурсивного) познания.
  • ОБРАЗ – одно из основных понятий теории познания, характеризующее результат познавательной деятельности субъекта.
  • ОБЪЕКТ – то, что противостоит субъекту, на что направлена его предметно-практическая и познавательная деятельность.
  • ПОНЯТИЕ – форма логического мышления, образ, фиксирующий общие и существенные признаки и свойства предметов и явлений и отношения между ними.
  • ПРЕДСТАВЛЕНИЕ – восстановление памятью образа ранее воспринятого предмета или явления, а также создание образа путем воображения.
  • ПРИНЦИП – в философии то же, что и основание, т.е. то, что лежит в основе некоторой совокупности фактов и знаний. Принцип – это основополагающее понятие, позволяющее объединить законы той или другой научной дисциплины в единую систему знаний.
  • ПРОБЛЕМА – объективно возникающий в ходе развития познания вопрос или целостный комплекс вопросов, решение которых представляет существенный практический или теоретический интерес.
  • ПРОГРЕСС – переход от низшего, менее совершенного уровня к более высокому.
  • РАЗВИТИЕ – необратимое, закономерное, направленное, качественное изменение материальных и идеальных объектов. Развитие характеризуется специфическим объектом, механизмом, источником, формами и направленностью.
  • РАЦИОНАЛИЗМ – философское направление, полагающее разум основой познания и поведения людей. Рационализм противостоит иррационализму и сенсуализму (эмпиризму).
  • РЕАЛИЗМ – в истории философии – позиция, согласно которой общее обладает объективным существованием, предшествует единичным конкретным предметам и независимо от них. Противостоит номинализму.
  • РЕФЛЕКСИЯ – принцип человеческого мышления, направляющий его на осмысление и осознание собственных форм и предпосылок; предметное рассмотрение самого знания, критический анализ его содержания и методов познания; деятельность самопознания, раскрывающая внутреннее строение и специфику духовного мира человека.
  • СИНТЕЗ – соединение различных элементов в единое целое, выполняемое в процессе познания и практической деятельности.
  • СИСТЕМА – совокупность элементов, находящихся в отношениях и связях между собой и образующих определенную целостность, единство.
  • СТРУКТУРА – строение и внутренняя форма организации системы, выступающая как единство устойчивых взаимосвязей между ее элементами, а также законов данных взаимосвязей. Структура – неотъемлемый атрибут всех реально существующих объектов и систем.
  • СУБЪЕКТ – носитель предметно-практической деятельности и познания (индивид или социальная группа), источник активности, направленной на объект.
  • ТЕНДЕНЦИЯ-направление развития какого-либо явления или процесса.
  • УМОЗАКЛЮЧЕНИЕ – логическая форма получения выводного знания, рассуждение, в ходе которого из одного или нескольких суждений, называемых посылками, выводится новое суждение (заключение или следствие), логически вытекающее из посылок. Переход от посылок к заключению всегда совершается по какому-либо правилу логики (правилу вывода).
  • ФАКТ – событие, которое было или есть на самом деле.
  • ФЕНОМЕН – нечто до этого невиданное, и загадочное, когда причина его неизвестна; понятие, соотносительное с понятием сущности и противопоставляемое ему.
  • ЦЕЛЬ – идеально, деятельностью мышления положенный результат, ради достижения которого предпринимаются те или иные действия; идеально-побуждающий мотив деятельности.
  • ЯЗЫК – система знаков, служащая средством человеческого общения, мышления и выражения.

В соответствии с ФГОС ООО выделяются три группы универсальных учебных действий: регулятивные, познавательные, коммуникативные. В ходе реализации ООП ООО, в том числе рабочей программы по математике, у учащихся будут сформированы следующие универсальные учебные действия.

Регулятивные УУД

  1. Умение самостоятельно определять цели обучения, ставить и формулировать новые задачи в учебе и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности. Обучающийся сможет:
  • анализировать существующие и планировать будущие образовательные результаты;
  • идентифицировать собственные проблемы и определять главную проблему;
  • выдвигать версии решения проблемы, формулировать гипотезы, предвосхищать конечный результат;
  • ставить цель деятельности на основе определенной проблемы и существующих возможностей;
  • формулировать учебные задачи как шаги достижения поставленной цели деятельности;
  • обосновывать целевые ориентиры и приоритеты ссылками на ценности, указывая и обосновывая логическую последовательность шагов.
  1. Умение самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач. Обучающийся сможет:
  • определять необходимые действие(я) в соответствии с учебной и познавательной задачей и составлять алгоритм их выполнения;
  • обосновывать и осуществлять выбор наиболее эффективных способов решения учебных и познавательных задач;
  • определять/находить, в том числе из предложенных вариантов, условия для выполнения учебной и познавательной задачи;
  • выстраивать жизненные планы на краткосрочное будущее (заявлять целевые ориентиры, ставить адекватные им задачи и предлагать действия, указывая и обосновывая логическую последовательность шагов);
  • выбирать из предложенных вариантов и самостоятельно искать средства/ресурсы для решения задачи/достижения цели;
  • составлять план решения проблемы (выполнения проекта, проведения исследования);
  • определять потенциальные затруднения при решении учебной и познавательной задачи и находить средства для их устранения;
  • описывать свой опыт, оформляя его для передачи другим людям в виде технологии решения практических задач определенного класса;
  • планировать и корректировать свою индивидуальную образовательную траекторию.
  1. Умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией. Обучающийся сможет:
  • определять совместно с педагогом и сверстниками критерии планируемых результатов и критерии оценки своей учебной деятельности;
  • систематизировать (в том числе выбирать приоритетные) критерии планируемых результатов и оценки своей деятельности;
  • отбирать инструменты для оценивания своей деятельности, осуществлять самоконтроль своей деятельности в рамках предложенных условий и требований;
  • оценивать свою деятельность, аргументируя причины достижения или отсутствия планируемого результата;
  • находить достаточные средства для выполнения учебных действий в изменяющейся ситуации и/или при отсутствии планируемого результата;
  • работая по своему плану, вносить коррективы в текущую деятельность на основе анализа изменений ситуации для получения запланированных характеристик продукта/результата;
  • устанавливать связь между полученными характеристиками продукта и характеристиками процесса деятельности и по завершении деятельности предлагать изменение характеристик процесса для получения улучшенных характеристик продукта;
  • сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно.
  1. Умение оценивать правильность выполнения учебной задачи, собственные возможности ее решения. Обучающийся сможет:
  • определять критерии правильности (корректности) выполнения учебной задачи;
  • анализировать и обосновывать применение соответствующего инструментария для выполнения учебной задачи;
  • свободно пользоваться выработанными критериями оценки и самооценки, исходя из цели и имеющихся средств, различая результат и способы действий;
  • оценивать продукт своей деятельности по заданным и/или самостоятельно определенным критериям в соответствии с целью деятельности;
  • обосновывать достижимость цели выбранным способом на основе оценки своих внутренних ресурсов и доступных внешних ресурсов;
  • фиксировать и анализировать динамику собственных образовательных результатов.
  1. Владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной. Обучающийся сможет:
  • наблюдать и анализировать собственную учебную и познавательную деятельность и деятельность других обучающихся в процессе взаимопроверки;
  • соотносить реальные и планируемые результаты индивидуальной образовательной деятельности и делать выводы;
  • принимать решение в учебной ситуации и нести за него ответственность;
  • самостоятельно определять причины своего успеха или неуспеха и находить способы выхода из ситуации неуспеха;
  • ретроспективно определять, какие действия по решению учебной задачи или параметры этих действий привели к получению имеющегося продукта учебной деятельности;
  • демонстрировать приемы регуляции психофизиологических/ эмоциональных состояний для достижения эффекта успокоения (устранения эмоциональной напряженности), эффекта восстановления (ослабления проявлений утомления), эффекта активизации (повышения психофизиологической реактивности).

Познавательные УУД

  1. Умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное, по аналогии) и делать выводы. Обучающийся сможет:
  • подбирать слова, соподчиненные ключевому слову, определяющие его признаки и свойства;
  • выстраивать логическую цепочку, состоящую из ключевого слова и соподчиненных ему слов;
  • выделять общий признак двух или нескольких предметов или явлений и объяснять их сходство;
  • объединять предметы и явления в группы по определенным признакам, сравнивать, классифицировать и обобщать факты и явления;
  • выделять явление из общего ряда других явлений;
  • определять обстоятельства, которые предшествовали возникновению связи между явлениями, из этих обстоятельств выделять определяющие, способные быть причиной данного явления, выявлять причины и следствия явлений;
  • строить рассуждение от общих закономерностей к частным явлениям и от частных явлений к общим закономерностям;
  • строить рассуждение на основе сравнения предметов и явлений, выделяя при этом общие признаки;
  • излагать полученную информацию, интерпретируя ее в контексте решаемой задачи;
  • самостоятельно указывать на информацию, нуждающуюся в проверке, предлагать и применять способ проверки достоверности информации;
  • вербализовать эмоциональное впечатление, оказанное на него источником;
  • объяснять явления, процессы, связи и отношения, выявляемые в ходе познавательной и исследовательской деятельности (приводить объяснение с изменением формы представления; объяснять, детализируя или обобщая; объяснять с заданной точки зрения);
  • выявлять и называть причины события, явления, в том числе возможные / наиболее вероятные причины, возможные последствия заданной причины, самостоятельно осуществляя причинно-следственный анализ;
  • делать вывод на основе критического анализа разных точек зрения, подтверждать вывод собственной аргументацией или самостоятельно полученными данными.
  1. Умение создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач. Обучающийся сможет:
  • обозначать символом и знаком предмет и/или явление;
  • определять логические связи между предметами и/или явлениями, обозначать данные логические связи с помощью знаков в схеме;
  • создавать абстрактный или реальный образ предмета и/или явления;
  • строить модель/схему на основе условий задачи и/или способа ее решения;
  • создавать вербальные, вещественные и информационные модели с выделением существенных характеристик объекта для определения способа решения задачи в соответствии с ситуацией;
  • преобразовывать модели с целью выявления общих законов, определяющих данную предметную область;
  • переводить сложную по составу (многоаспектную) информацию из графического или формализованного (символьного) представления в текстовое, и наоборот;
  • строить схему, алгоритм действия, исправлять или восстанавливать неизвестный ранее алгоритм на основе имеющегося знания об объекте, к которому применяется алгоритм;
  • строить доказательство: прямое, косвенное, от противного;
  • анализировать/рефлексировать опыт разработки и реализации учебного проекта, исследования (теоретического, эмпирического) на основе предложенной проблемной ситуации, поставленной цели и/или заданных критериев оценки продукта/результата.
  1. Смысловое чтение. Обучающийся сможет:
  • находить в тексте требуемую информацию (в соответствии с целями своей деятельности);
  • ориентироваться в содержании текста, понимать целостный смысл текста, структурировать текст;
  • устанавливать взаимосвязь описанных в тексте событий, явлений, процессов;
  • резюмировать главную идею текста;
  • преобразовывать текст, «переводя» его в другую модальность, интерпретировать текст (художественный и нехудожественный – учебный, научно-популярный, информационный, текст non-fiction);
  • критически оценивать содержание и форму текста.
  1. Формирование и развитие экологического мышления, умение применять его в познавательной, коммуникативной, социальной практике и профессиональной ориентации. Обучающийся сможет:
  • определять свое отношение к природной среде;
  • анализировать влияние экологических факторов на среду обитания живых организмов;
  • проводить причинный и вероятностный анализ экологических ситуаций;
  • прогнозировать изменения ситуации при смене действия одного фактора на действие другого фактора;
  • распространять экологические знания и участвовать в практических делах по защите окружающей среды;
  • выражать свое отношение к природе через рисунки, сочинения, модели, проектные работы.

10. Развитие мотивации к овладению культурой активного использования словарей и других поисковых систем. Обучающийся сможет:

  • определять необходимые ключевые поисковые слова и запросы;
  • осуществлять взаимодействие с электронными поисковыми системами, словарями;
  • формировать множественную выборку из поисковых источников для объективизации результатов поиска;
  • соотносить полученные результаты поиска со своей деятельностью.

Коммуникативные УУД

  1. Умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов; формулировать, аргументировать и отстаивать свое мнение. Обучающийся сможет:
  • определять возможные роли в совместной деятельности;
  • играть определенную роль в совместной деятельности;
  • принимать позицию собеседника, понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;
  • определять свои действия и действия партнера, которые способствовали или препятствовали продуктивной коммуникации;
  • строить позитивные отношения в процессе учебной и познавательной деятельности;
  • корректно и аргументированно отстаивать свою точку зрения, в дискуссии уметь выдвигать контраргументы, перефразировать свою мысль (владение механизмом эквивалентных замен);
  • критически относиться к собственному мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;
  • предлагать альтернативное решение в конфликтной ситуации;
  • выделять общую точку зрения в дискуссии;
  • договариваться о правилах и вопросах для обсуждения в соответствии с поставленной перед группой задачей;
  • организовывать учебное взаимодействие в группе (определять общие цели, распределять роли, договариваться друг с другом и т. д.);
  • устранять в рамках диалога разрывы в коммуникации, обусловленные непониманием/неприятием со стороны собеседника задачи, формы или содержания диалога.
  1. Умение осознанно использовать речевые средства в соответствии с задачей коммуникации для выражения своих чувств, мыслей и потребностей для планирования и регуляции своей деятельности; владение устной и письменной речью, монологической контекстной речью. Обучающийся сможет:
  • определять задачу коммуникации и в соответствии с ней отбирать речевые средства;
  • отбирать и использовать речевые средства в процессе коммуникации с другими людьми (диалог в паре, в малой группе и т. д.);
  • представлять в устной или письменной форме развернутый план собственной деятельности;
  • соблюдать нормы публичной речи, регламент в монологе и дискуссии в соответствии с коммуникативной задачей;
  • высказывать и обосновывать мнение (суждение) и запрашивать мнение партнера в рамках диалога;
  • принимать решение в ходе диалога и согласовывать его с собеседником;
  • создавать письменные «клишированные» и оригинальные тексты с использованием необходимых речевых средств;
  • использовать вербальные средства (средства логической связи) для выделения смысловых блоков своего выступления;
  • использовать невербальные средства или наглядные материалы, подготовленные/отобранные под руководством учителя;
  • делать оценочный вывод о достижении цели коммуникации непосредственно после завершения коммуникативного контакта и обосновывать его.
  1. Формирование и развитие компетентности в области использования информационно-коммуникационных технологий (далее – ИКТ). Обучающийся сможет:
  • целенаправленно искать и использовать информационные ресурсы, необходимые для решения учебных и практических задач с помощью средств ИКТ;
  • выбирать, строить и использовать адекватную информационную модель для передачи своих мыслей средствами естественных и формальных языков в соответствии с условиями коммуникации;
  • выделять информационный аспект задачи, оперировать данными, использовать модель решения задачи;
  • использовать компьютерные технологии (включая выбор адекватных задаче инструментальных программно-аппаратных средств и сервисов) для решения информационных и коммуникационных учебных задач, в том числе: вычисление, написание писем, сочинений, докладов, рефератов, создание презентаций и др.;
  • использовать информацию с учетом этических и правовых норм;
  • создавать информационные ресурсы разного типа и для разных аудиторий, соблюдать информационную гигиену и правила информационной безопасности.

Таким образом, метапредметные результаты (регулятивные, коммуникативные  и познавательные универсальные УУД) представляютсобойнабор основных ключевыхкомпетенций,которыедолжныбытьсформированывходеосвоения учащимися разныхформивидовдеятельности.Наданномэтапеосновного общего образованияключевыекомпетенциипроявляются:

1)в компетенции решения проблем (задач) как основы системно-деятельностного подхода в образовании: способность видеть, ставить и решать задачи;

2) в информационной компетенции как способности решать задачи, возникающие в образовательном и жизненном контексте с адекватным применением информационно-коммуникативных технологий;

3) в коммуникативной компетенции как способности ставить и решать определенные типы задач социального, организационного взаимодействия: определять цели взаимодействия, оценивать ситуацию, учитывать намерения и способы взаимодействия партнера (партнеров), выбирать адекватные стратегии коммуникации, оценивать успешность взаимодействия, быть готовым к осмысленному изменению собственного поведения, работать в группе, строить продуктивное взаимодействие со сверстниками и взрослыми.

Предметные результаты

В соответствии с Федеральным государственным образовательным стандартом основного общего образования предметные результаты изучения предметной области "Математика и информатика" должны отражать:

1) формирование представлений о математике как о методе познания действительности, позволяющем описывать и изучать реальные процессы и явления:

осознание роли математики в развитии России и мира;

возможность привести примеры из отечественной и всемирной истории математических открытий и их авторов;

2) развитие умений работать с учебным математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли с применением математической терминологии и символики, проводить классификации, логические обоснования, доказательства математических утверждений:

оперирование понятиями: множество, элемент множества, подмножество, принадлежность, нахождение пересечения, объединения подмножества в простейших ситуациях;

решение сюжетных задач разных типов на все арифметические действия;

применение способа поиска решения задачи, в котором рассуждение строится от условия к требованию или от требования к условию;

составление плана решения задачи, выделение этапов ее решения, интерпретация вычислительных результатов в задаче, исследование полученного решения задачи;

нахождение процента от числа, числа по проценту от него, нахождения процентного отношение двух чисел, нахождения процентного снижения или процентного повышения величины;

решение логических задач;

3) развитие представлений о числе и числовых системах от натуральных до действительных чисел; овладение навыками устных, письменных, инструментальных вычислений:

оперирование понятиями: натуральное число, целое число, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, иррациональное число;

использование свойства чисел и законов арифметических операций с числами при выполнении вычислений;

использование признаков делимости на 2, 5, 3, 9, 10 при выполнении вычислений и решении задач;

выполнение округления чисел в соответствии с правилами;

сравнение чисел;

оценивание значения квадратного корня из положительного целого числа;

4) овладение символьным языком алгебры, приемами выполнения тождественных преобразований выражений, решения уравнений, систем уравнений, неравенств и систем неравенств; умения моделировать реальные ситуации на языке алгебры, исследовать построенные модели с использованием аппарата алгебры, интерпретировать полученный результат:

выполнение несложных преобразований для вычисления значений числовых выражений, содержащих степени с натуральным показателем, степени с целым отрицательным показателем;

выполнение несложных преобразований целых, дробно рациональных выражений и выражений с квадратными корнями; раскрывать скобки, приводить подобные слагаемые, использовать формулы сокращенного умножения;

решение линейных и квадратных уравнений и неравенств, уравнений и неравенств сводящихся к линейным или квадратным, систем уравнений и неравенств, изображение решений неравенств и их систем на числовой прямой;

5) овладение системой функциональных понятий, развитие умения использовать функционально-графические представления для решения различных математических задач, для описания и анализа реальных зависимостей:

определение положения точки по ее координатам, координаты точки по ее положению на плоскости;

нахождение по графику значений функции, области определения, множества значений, нулей функции, промежутков знакопостоянства, промежутков возрастания и убывания, наибольшего и наименьшего значения функции;

построение графика линейной и квадратичной функций;

оперирование на базовом уровне понятиями: последовательность, арифметическая прогрессия, геометрическая прогрессия;

использование свойств линейной и квадратичной функций и их графиков при решении задач из других учебных предметов;

6) овладение геометрическим языком; развитие умения использовать его для описания предметов окружающего мира; развитие пространственных представлений, изобразительных умений, навыков геометрических построений:

оперирование понятиями: фигура, точка, отрезок, прямая, луч, ломаная, угол, многоугольник, треугольник и четырёхугольник, прямоугольник и квадрат, окружность и круг, прямоугольный параллелепипед, куб, шар; изображение изучаемых фигур от руки и с помощью линейки и циркуля;

выполнение измерения длин, расстояний, величин углов с помощью инструментов для измерений длин и углов;

7) формирование систематических знаний о плоских фигурах и их свойствах, представлений о простейших пространственных телах; развитие умений моделирования реальных ситуаций на языке геометрии, исследования построенной модели с использованием геометрических понятий и теорем, аппарата алгебры, решения геометрических и практических задач:

оперирование на базовом уровне понятиями: равенство фигур, параллельность и перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция;

проведение доказательств в геометрии;

оперирование на базовом уровне понятиями: вектор, сумма векторов, произведение вектора на число, координаты на плоскости;

решение задач на нахождение геометрических величин (длина и расстояние, величина угла, площадь) по образцам или алгоритмам;

8) овладение простейшими способами представления и анализа статистических данных; формирование представлений о статистических закономерностях в реальном мире и о различных способах их изучения, о простейших вероятностных моделях; развитие умений извлекать информацию, представленную в таблицах, на диаграммах, графиках, описывать и анализировать массивы числовых данных с помощью подходящих статистических характеристик, использовать понимание вероятностных свойств окружающих явлений при принятии решений:

формирование представления о статистических характеристиках, вероятности случайного события;

решение простейших комбинаторных задач;

определение основных статистических характеристик числовых наборов;

оценивание и вычисление вероятности события в простейших случаях;

наличие представления о роли практически достоверных и маловероятных событий, о роли закона больших чисел в массовых явлениях;

умение сравнивать основные статистические характеристики, полученные в процессе решения прикладной задачи, изучения реального явления;

9) развитие умений применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, компьютера, пользоваться оценкой и прикидкой при практических расчетах:

распознавание верных и неверных высказываний;

оценивание результатов вычислений при решении практических задач;

выполнение сравнения чисел в реальных ситуациях;

использование числовых выражений при решении практических задач и задач из других учебных предметов;

решение практических задач с применением простейших свойств фигур;

выполнение простейших построений и измерений на местности, необходимых в реальной жизни;

10) формирование информационной и алгоритмической культуры; формирование представления о компьютере как универсальном устройстве обработки информации; развитие основных навыков и умений использования компьютерных устройств;

11) формирование представления об основных изучаемых понятиях: информация, алгоритм, модель - и их свойствах;

12) развитие алгоритмического мышления, необходимого для профессиональной деятельности в современном обществе; развитие умений составить и записать алгоритм для конкретного исполнителя; формирование знаний об алгоритмических конструкциях, логических значениях и операциях; знакомство с одним из языков программирования и основными алгоритмическими структурами - линейной, условной и циклической;

13) формирование умений формализации и структурирования информации, умения выбирать способ представления данных в соответствии с поставленной задачей - таблицы, схемы, графики, диаграммы, с использованием соответствующих программных средств обработки данных;

14) формирование навыков и умений безопасного и целесообразного поведения при работе с компьютерными программами и в Интернете, умения соблюдать нормы информационной этики и права.

                                       

                                                   3.  Предметные результаты. Алгебра,7-9 классы.

Ученик научится

Ученик получит возможность научиться

Выпускник научится в 7-9 классах (для использования в повседневной жизни и обеспечения возможности успешного продолжения образования на базовом уровне)

Элементы теории множеств и математической логики

  • Оперировать на базовом уровне понятиями: множество, элемент множества, подмножество, принадлежность;
  • задавать множества перечислением их элементов;
  • находить пересечение, объединение, подмножество в простейших ситуациях;
  • оперировать на базовом уровне понятиями: определение, аксиома, теорема, доказательство;
  • приводить примеры и контрпримеры для подтверждения своих высказываний.

В повседневной жизни и при изучении других предметов:

использовать графическое представление множеств для описания реальных процессов и явлений, при решении задач других учебных предметов.

Числа:

  • оперировать на базовом уровне понятиями: натуральное число, целое число, обыкновенная дробь, десятичная дробь, смешанная дробь, рациональное число, арифметический квадратный корень;
  • использовать свойства чисел и правила действий при выполнении вычислений;
  • использовать признаки делимости на 2, 5, 3, 9, 10 при выполнении вычислений и решении несложных задач;
  • выполнять округление рациональных чисел в соответствии с правилами;
  • оценивать значение квадратного корня из положительного целого числа;
  • распознавать рациональные и иррациональные числа;
  • сравнивать числа.

В повседневной жизни и при изучении других предметов:

  • оценивать результаты вычислений при решении практических задач;
  • выполнять сравнение чисел в реальных ситуациях;
  • составлять числовые выражения при решении практических задач и задач из других учебных предметов.

Тождественные преобразования

  • Выполнять несложные преобразования для вычисления значений числовых выражений, содержащих степени с натуральным показателем, степени с целым отрицательным показателем;
  • выполнять несложные преобразования целых выражений: раскрывать скобки, приводить подобные слагаемые;
  • использовать формулы сокращенного умножения (квадрат суммы, квадрат разности, разность квадратов) для упрощения вычислений значений выражений;
  • выполнять несложные преобразования дробно-линейных выражений и выражений с квадратными корнями.

В повседневной жизни и при изучении других предметов:

  • понимать смысл записи числа в стандартном виде;
  • оперировать на базовом уровне понятием «стандартная запись числа».

Уравнения и неравенства

  • Оперировать на базовом уровне понятиями: равенство, числовое равенство, уравнение, корень уравнения, решение уравнения, числовое неравенство, неравенство, решение неравенства;
  • проверять справедливость числовых равенств и неравенств;
  • решать линейные неравенства и несложные неравенства, сводящиеся к линейным;
  • решать системы несложных линейных уравнений, неравенств;
  • проверять, является ли данное число решением уравнения (неравенства);
  • решать квадратные уравнения по формуле корней квадратного уравнения;
  • изображать решения неравенств и их систем на числовой прямой.

В повседневной жизни и при изучении других предметов:

  • составлять и решать линейные уравнения при решении задач, возникающих в других учебных предметах.

Функции

  • Находить значение функции по заданному значению аргумента;
  • находить значение аргумента по заданному значению функции в несложных ситуациях;
  • определять положение точки по ее координатам, координаты точки по ее положению на координатной плоскости;
  • по графику находить область определения, множество значений, нули функции, промежутки знакопостоянства, промежутки возрастания и убывания, наибольшее и наименьшее значения функции;
  • строить график линейной функции;
  • проверять, является ли данный график графиком заданной функции (линейной, квадратичной, обратной пропорциональности);
  • определять приближенные значения координат точки пересечения графиков функций;
  • оперировать на базовом уровне понятиями: последовательность, арифметическая прогрессия, геометрическая прогрессия;
  • решать задачи на прогрессии, в которых ответ может быть получен непосредственным подсчетом без применения формул.

В повседневной жизни и при изучении других предметов:

  • использовать графики реальных процессов и зависимостей для определения их свойств (наибольшие и наименьшие значения, промежутки возрастания и убывания, области положительных и отрицательных значений и т.п.);
  • использовать свойства линейной функции и ее график при решении задач из других учебных предметов.

Статистика и теория вероятностей

  • Иметь представление о статистических характеристиках, вероятности случайного события, комбинаторных задачах;
  • решать простейшие комбинаторные задачи методом прямого и организованного перебора;
  • представлять данные в виде таблиц, диаграмм, графиков;
  • читать информацию, представленную в виде таблицы, диаграммы, графика;
  • определять основные статистические характеристики числовых наборов;
  • оценивать вероятность события в простейших случаях;
  • иметь представление о роли закона больших чисел в массовых явлениях.

В повседневной жизни и при изучении других предметов:

  • оценивать количество возможных вариантов методом перебора;
  • иметь представление о роли практически достоверных и маловероятных событий;
  • сравнивать основные статистические характеристики, полученные в процессе решения прикладной задачи, изучения реального явления;
  • оценивать вероятность реальных событий и явлений в несложных ситуациях.

Текстовые задачи

  • Решать несложные сюжетные задачи разных типов на все арифметические действия;
  • строить модель условия задачи (в виде таблицы, схемы, рисунка или уравнения), в которой даны значения двух из трех взаимосвязанных величин, с целью поиска решения задачи;
  • осуществлять способ поиска решения задачи, в котором рассуждение строится от условия к требованию или от требования к условию;
  • составлять план решения задачи;
  • выделять этапы решения задачи;
  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;
  • знать различие скоростей объекта в стоячей воде, против течения и по течению реки;
  • решать задачи на нахождение части числа и числа по его части;
  • решать задачи разных типов (на работу, на покупки, на движение), связывающих три величины, выделять эти величины и отношения между ними;
  • находить процент от числа, число по проценту от него, находить процентное снижение или процентное повышение величины;
  • решать несложные логические задачи методом рассуждений.

В повседневной жизни и при изучении других предметов:

выдвигать гипотезы о возможных предельных значениях искомых в задаче величин (делать прикидку).

.

История математики

  • Описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;
  • знать примеры математических открытий и их авторов, в связи с отечественной и всемирной историей;
  • понимать роль математики в развитии России.

Методы математики

  • Выбирать подходящий изученный метод для решения изученных типов математических задач;
  • Приводить примеры математических закономерностей в окружающей действительности и произведениях искусства.

Выпускник получит возможность научиться в 7-9 классах для обеспечения возможности успешного продолжения образования на базовом и углубленном уровнях

Элементы теории множеств и математической логики

  • Оперировать понятиями: определение, теорема, аксиома, множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность, включение, равенство множеств;
  • изображать множества и отношение множеств с помощью кругов Эйлера;
  • определять принадлежность элемента множеству, объединению и пересечению множеств;
  • задавать множество с помощью перечисления элементов, словесного описания;
  • оперировать понятиями: высказывание, истинность и ложность высказывания, отрицание высказываний, операции над высказываниями: и, или, не, условные высказывания (импликации);
  • строить высказывания, отрицания высказываний.

В повседневной жизни и при изучении других предметов:

  • строить цепочки умозаключений на основе использования правил логики;
  • использовать множества, операции с множествами, их графическое представление для описания реальных процессов и явлений.

Числа

  • Оперировать понятиями: множество натуральных чисел, множество целых чисел, множество рациональных чисел, иррациональное число, квадратный корень, множество действительных чисел, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел;
  • понимать и объяснять смысл позиционной записи натурального числа;
  • выполнять вычисления, в том числе с использованием приемов рациональных вычислений;
  • выполнять округление рациональных чисел с заданной точностью;
  • сравнивать рациональные и иррациональные числа;
  • представлять рациональное число в виде десятичной дроби
  • упорядочивать числа, записанные в виде обыкновенной и десятичной дроби;
  • находить НОД и НОК чисел и использовать их при решении задач.

В повседневной жизни и при изучении других предметов:

  • применять правила приближенных вычислений при решении практических задач и решении задач других учебных предметов;
  • выполнять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений;
  • составлять и оценивать числовые выражения при решении практических задач и задач из других учебных предметов;
  • записывать и округлять числовые значения реальных величин с использованием разных систем измерения.

Тождественные преобразования

  • Оперировать понятиями степени с натуральным показателем, степени с целым отрицательным показателем;
  • выполнять преобразования целых выражений: действия с одночленами (сложение, вычитание, умножение), действия с многочленами (сложение, вычитание, умножение);
  • выполнять разложение многочленов на множители одним из способов: вынесение за скобку, группировка, использование формул сокращенного умножения;
  • выделять квадрат суммы и разности одночленов;
  • раскладывать на множители квадратный   трехчлен;
  • выполнять преобразования выражений, содержащих степени с целыми отрицательными показателями, переходить от записи в виде степени с целым отрицательным показателем к записи в виде дроби;
  • выполнять преобразования дробно-рациональных выражений: сокращение дробей, приведение алгебраических дробей к общему знаменателю, сложение, умножение, деление алгебраических дробей, возведение алгебраической дроби в натуральную и целую отрицательную степень;
  • выполнять преобразования выражений, содержащих квадратные корни;
  • выделять квадрат суммы или разности двучлена в выражениях, содержащих квадратные корни;
  • выполнять преобразования выражений, содержащих модуль.

В повседневной жизни и при изучении других предметов:

  • выполнять преобразования и действия с числами, записанными в стандартном виде;
  • выполнять преобразования алгебраических выражений при решении задач других учебных предметов.

Уравнения и неравенства

  • Оперировать понятиями: уравнение, неравенство, корень уравнения, решение неравенства, равносильные уравнения, область определения уравнения (неравенства, системы уравнений или неравенств);
  • решать линейные уравнения и уравнения, сводимые к линейным с помощью тождественных преобразований;
  • решать квадратные уравнения и уравнения, сводимые к квадратным с помощью тождественных преобразований;
  • решать дробно-линейные уравнения;
  • решать простейшие иррациональные уравнения вида , ;
  • решать уравнения вида ;
  • решать уравнения способом разложения на множители и замены переменной;
  • использовать метод интервалов для решения целых и дробно-рациональных неравенств;
  • решать линейные уравнения и неравенства с параметрами;
  • решать несложные квадратные уравнения с параметром;

В повседневной жизни и при изучении других предметов:

  • составлять и решать линейные и квадратные уравнения, уравнения, к ним сводящиеся, системы линейных уравнений, неравенств при решении задач других учебных предметов;
  • выполнять оценку правдоподобия результатов, получаемых при решении линейных и квадратных уравнений и систем линейных уравнений и неравенств при решении задач других учебных предметов;
  • выбирать соответствующие уравнения, неравенства или их системы для составления математической модели заданной реальной ситуации или прикладной задачи;
  • уметь интерпретировать полученный при решении уравнения, неравенства или системы результат в контексте заданной реальной ситуации или прикладной задачи.

Функции

  • Оперировать понятиями: функциональная зависимость, функция, график функции, способы задания функции, аргумент и значение функции, область определения и множество значений функции, нули функции, промежутки знакопостоянства, монотонность функции, четность/нечетность функции;
  • строить графики линейной, квадратичной функций, обратной пропорциональности, функции вида: , ,, ;
  • на примере квадратичной функции, использовать преобразования графика функции y=f(x) для построения графиков функций ;
  • составлять уравнения прямой по заданным условиям: проходящей через две точки с заданными координатами, проходящей через данную точку и параллельной данной прямой;
  • исследовать функцию по ее графику;
  • находить множество значений, нули, промежутки знакопостоянства, монотонности квадратичной функции;

оперировать понятиями: последовательность, арифметическая прогрессия, геометрическая

  • прогрессия;
  • решать задачи на арифметическую и геометрическую прогрессию.

В повседневной жизни и при изучении других предметов:

  • иллюстрировать с помощью графика реальную зависимость или процесс по их характеристикам;
  • использовать свойства и график квадратичной функции при решении задач из других учебных предметов.

Текстовые задачи

  • Решать простые и сложные задачи разных типов, а также задачи повышенной трудности;
  • использовать разные краткие записи как модели текстов сложных задач для построения поисковой схемы и решения задач;
  • различать модель текста и модель решения задачи, конструировать к одной модели решения несложной задачи разные модели текста задачи;
  • знать и применять оба способа поиска решения задач (от требования к условию и от условия к требованию);
  • выделять этапы решения задачи и содержание каждого этапа;
  • уметь выбирать оптимальный метод решения задачи и осознавать выбор метода, рассматривать различные методы, находить разные решения задачи, если возможно;
  • анализировать затруднения при решении задач;
  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;
  • анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние) при решении задач на движение двух объектов как в одном, так и в противоположных направлениях;
  • решать разнообразные задачи «на части»,
  • решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;
  • осознавать и объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение), выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задач указанных типов;
  • владеть основными методами решения задач на смеси, сплавы, концентрации;
  • решать задачи на проценты, в том числе, сложные проценты с обоснованием, используя разные способы;
  • решать задачи по комбинаторике и теории вероятностей на основе использования изученных методов и обосновывать решение;
  • решать несложные задачи по математической статистике;
  • овладеть основными методами решения сюжетных задач: арифметический, алгебраический, перебор вариантов, геометрический, графический, применять их в новых по сравнению с изученными ситуациях.

В повседневной жизни и при изучении других предметов:

  • выделять при решении задач характеристики рассматриваемой в задаче ситуации, отличные от реальных (те, от которых абстрагировались), конструировать новые ситуации с учетом этих характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества;

Статистика и теория вероятностей

  • Оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое, медиана, наибольшее и наименьшее значения выборки, размах выборки, дисперсия и стандартное отклонение, случайная изменчивость;
  • извлекать информацию, представленную в таблицах, на диаграммах, графиках;
  • составлять таблицы, строить диаграммы и графики на основе данных;
  • оперировать понятиями: факториал числа, перестановки и сочетания, треугольник Паскаля;
  • применять правило произведения при решении комбинаторных задач;
  • оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями;
  • представлять информацию с помощью кругов Эйлера;

В повседневной жизни и при изучении других предметов:

  • извлекать, интерпретировать и преобразовывать информацию, представленную в таблицах, на диаграммах, графиках, отражающую свойства и характеристики реальных процессов и явлений;
  • определять статистические характеристики выборок по таблицам, диаграммам, графикам, выполнять сравнение в зависимости от цели решения задачи;
  • оценивать вероятность реальных событий и явлений.
  • множества, пустое, конечное и бесконечное множество, подмножество, принадлежность, включение, равенство множеств, способы задание множества;
  • задавать множества разными способами;
  • проверять выполнение характеристического свойства множества;

В повседневной жизни и при изучении других предметов:

строить рассуждения на основе использования правил

  • логики;
  • использовать множества, операции с множествами, их графическое представление для описания реальных процессов и явлений, при решении задач других учебных предметов.

Числа

  • Свободно оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, иррациональное число, корень степени n, действительное число, множество действительных чисел, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел;
  • понимать и объяснять разницу между позиционной и непозиционной системами записи чисел;
  • доказывать и использовать признаки делимости на 2, 4, 8, 5, 3, 6, 9, 10, 11 суммы и произведения чисел при выполнении вычислений и решении задач;
  • выполнять округление рациональных и иррациональных чисел с заданной точностью;
  • сравнивать действительные числа разными способами;
  • упорядочивать числа, записанные в виде обыкновенной и десятичной дроби, числа, записанные с использованием арифметического квадратного корня, корней степени больше 2;
  • находить НОД и НОК чисел разными способами и использовать их при решении задач;
  • выполнять вычисления и преобразования выражений, содержащих действительные числа, в том числе корни натуральных степеней.

В повседневной жизни и при изучении других предметов:

  • выполнять и объяснять результаты сравнения результатов вычислений при решении практических задач, в том числе приближенных вычислений, используя разные способы сравнений;
  • записывать, сравнивать, округлять числовые данные реальных величин с использованием разных систем измерения;
  • составлять и оценивать разными способами числовые выражения при решении практических задач и задач из других учебных предметов.

Тождественные преобразования

  • Свободно оперировать понятиями степени с целым показателем;
  • выполнять доказательство свойств степени с целыми показателями;

оперировать понятиями «одночлен», «многочлен», «многочлен с одной переменной», «многочлен с несколькими переменными», коэффициенты многочлена, «стандартная запись многочлена», степень

  • одночлена и многочлена;
  • свободно владеть приемами преобразования целых и дробно-рациональных выражений;
  • выполнять разложение многочленов на множители разными способами, с использованием комбинаций различных приемов;
  • использовать теорему Виета и теорему, обратную теореме Виета, для поиска корней квадратного трехчлена и для решения задач, в том числе задач с параметрами на основе квадратного трехчлена;
  • выполнять преобразования выражений, содержащих квадратные корни
  • свободно оперировать понятиями «тождество», «тождество на множестве», «тождественное преобразование»;
  • выполнять различные преобразования выражений, содержащих модули.

В повседневной жизни и при изучении других предметов:

  • выполнять преобразования и действия с буквенными выражениями, числовые коэффициенты которых записаны в стандартном виде;
  • выполнять преобразования рациональных выражений при решении задач других учебных предметов;

Уравнения и неравенства

  • Свободно оперировать понятиями: уравнение, неравенство, равносильные уравнения и неравенства, уравнение, являющееся следствием другого уравнения, уравнения, равносильные на множестве, равносильные преобразования уравнений;
  • решать разные виды уравнений и неравенств и их систем, в том числе некоторые уравнения 3 и 4 степеней, дробно-рациональные и иррациональные;
  • понимать смысл теорем о равносильных и неравносильных преобразованиях уравнений и уметь их доказывать;
  • владеть разными методами решения уравнений, неравенств и их систем, уметь выбирать метод решения и обосновывать свой выбор;
  • использовать метод интервалов для решения неравенств, в том числе дробно-рациональных и включающих в себя иррациональные выражения;

В повседневной жизни и при изучении других предметов:

  • составлять и решать уравнения, неравенства, их системы при решении задач других учебных предметов;
  • выполнять оценку правдоподобия результатов, получаемых при решении различных уравнений, неравенств и их систем при решении задач других учебных предметов;
  • составлять и решать уравнения и неравенства с параметрами при решении задач других учебных предметов;
  • составлять уравнение, неравенство или их систему, описывающие реальную ситуацию или прикладную задачу, интерпретировать полученные результаты.

Функции

  • Свободно оперировать понятиями: зависимость, функциональная зависимость, зависимая и независимая переменные, функция, способы задания функции, аргумент и значение функции, область определения и множество значения функции, нули функции, промежутки знакопостоянства, монотонность функции, наибольшее и наименьшее значения, четность/нечетность функции, периодичность функции, график функции, вертикальная, горизонтальная, наклонная асимптоты; график зависимости, не являющейся функцией,
  • строить графики функций: линейной, квадратичной, дробно-линейной, степенной при разных значениях показателя степени, ;
  • использовать преобразования графика функции  для построения графиков функций ;
  • анализировать свойства функций и вид графика в зависимости от параметров;
  • свободно оперировать понятиями: последовательность, ограниченная последовательность, монотонно возрастающая (убывающая) последовательность, предел последовательности, арифметическая прогрессия, геометрическая прогрессия, характеристическое свойство арифметической (геометрической) прогрессии;
  • решать комбинированные задачи на арифметическую и геометрическую прогрессии.

В повседневной жизни и при изучении других предметов:

  • конструировать и исследовать функции, соответствующие реальным процессам и явлениям, интерпретировать полученные результаты в соответствии со спецификой исследуемого процесса или явления;
  • использовать графики зависимостей для исследования реальных процессов и явлений;
  • конструировать и исследовать функции при решении задач других учебных предметов, интерпретировать полученные результаты в соответствии со спецификой учебного предмета.

Статистика и теория вероятностей

  • Свободно оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое, медиана, наибольшее и наименьшее значения выборки, размах выборки, дисперсия и стандартное отклонение, случайная изменчивость;
  • выбирать наиболее удобный способ представления информации, адекватный ее свойствам и целям анализа;
  • вычислять числовые характеристики выборки;
  • свободно оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями, основные комбинаторные формулы;
  • свободно оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями, основные комбинаторные формулы;

В повседневной жизни и при изучении других предметов:

  • представлять информацию о реальных процессах и явлениях способом, адекватным ее свойствам и цели исследования;
  • анализировать и сравнивать статистические характеристики выборок, полученных в процессе решения прикладной задачи, изучения реального явления, решения задачи из других учебных предметов;
  • оценивать вероятность реальных событий и явлений в различных ситуациях.

Текстовые задачи

  • Решать простые и сложные задачи, а также задачи повышенной трудности и выделять их математическую основу;
  • распознавать разные виды и типы задач;
  • использовать разные краткие записи как модели текстов сложных задач и задач повышенной сложности для построения поисковой схемы и решения задач, выбирать оптимальную для рассматриваемой в задаче ситуации модель текста задачи;
  • различать модель текста и модель решения задачи, конструировать к одной модели решения сложных задач разные модели текста задачи;
  • знать и применять три способа поиска решения задач (от требования к условию и от условия к требованию, комбинированный);
  • моделировать рассуждения при поиске решения задач с помощью граф-схемы;
  • выделять этапы решения задачи и содержание каждого этапа;
  • уметь выбирать оптимальный метод решения задачи и осознавать выбор метода, рассматривать различные методы, находить разные решения задачи, если возможно;
  • анализировать затруднения при решении задач;
  • решать разнообразные задачи «на части»;
  • решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;

объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на

  • движение), выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задач указанных типов;
  • владеть основными методами решения задач на смеси, сплавы, концентрации, использовать их в новых ситуациях по отношению к изученным в процессе обучения;
  •  решать задачи на проценты, в том числе, сложные проценты с обоснованием, используя разные способы;
  • решать логические задачи разными способами, в том числе, с двумя блоками и с тремя блоками данных с помощью таблиц;
  • решать задачи по комбинаторике и теории вероятностей на основе использования изученных методов и обосновывать решение;
  • решать несложные задачи по математической статистике;

В повседневной жизни и при изучении других предметов:

  • конструировать новые для данной задачи задачные ситуации с учетом реальных характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества; решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат;
  • решать задачи на движение по реке, рассматривая разные системы отсчета;
  • конструировать задачные ситуации, приближенные к реальной действительности.
  • выполнять необходимые для решения задачи дополнительные построения, исследовать возможность применения теорем и формул для решения задач;
  • формулировать и доказывать геометрические утверждения.

В повседневной жизни и при изучении других предметов:

  • составлять с использованием свойств геометрических фигур математические модели для решения задач практического характера и задач из смежных дисциплин, исследовать полученные модели и интерпретировать результат.

История математики

  • Понимать математику как строго организованную систему научных знаний, в частности владеть представлениями об аксиоматическом построении геометрии и первичными представлениями о неевклидовых геометриях;
  • рассматривать математику в контексте истории развития цивилизации и истории развития науки, понимать роль математики в развитии России.

Методы математики

Владеть знаниями о различных методах обоснования и

  • опровержения математических утверждений и самостоятельно применять их;
  • владеть навыками анализа условия задачи и определения подходящих для решения задач изученных методов или их комбинаций;

характеризовать произведения искусства с учетом математических закономерностей в природе, использовать математические закономерности в самостоятельном творчестве.

                                        3. СОДЕРЖАНИЕ ПРОГРАММЫ КУРСА АЛГЕБРЫ ДЛЯ 7-9 КЛАССОВ

Числа

Рациональные числа

Множество рациональных чисел. Сравнение рациональных чисел. Действия с рациональными числами. Представление рационального числа десятичной дробью.

Иррациональные числа

Понятие иррационального числа. Распознавание иррациональных чисел. Примеры доказательств в алгебре. Иррациональность числа . Применение в геометрии. Сравнение иррациональных чисел. Множество действительных чисел.

Тождественные преобразования

Числовые и буквенные выражения

Выражение с переменной. Значение выражения. Подстановка выражений вместо переменных.

Целые выражения

Степень с натуральным показателем и ее свойства. Преобразования выражений, содержащих степени с натуральным показателем.

Одночлен, многочлен. Действия с одночленами и многочленами (сложение, вычитание, умножение). Формулы сокращенного умножения: разность квадратов, квадрат суммы и разности. Разложение многочлена на множители: вынесение общего множителя за скобки, группировка, применение формул сокращенного умножения. Квадратный трехчлен, разложение квадратного трехчлена на множители.

Дробно-рациональные выражения

Степень с целым показателем. Преобразование дробно-линейных выражений: сложение, умножение, деление. Алгебраическая дробь. Допустимые значения переменных в дробно-рациональных выражениях. Сокращение алгебраических дробей. Приведение алгебраических дробей к общему знаменателю. Действия с алгебраическими дробями: сложение, вычитание, умножение, деление, возведение в степень.

Преобразование выражений, содержащих знак модуля.

Квадратные корни

Арифметический квадратный корень. Преобразование выражений, содержащих квадратные корни: умножение, деление, вынесение множителя из-под знака корня, внесение множителя под знак корня.

Уравнения и неравенства

Равенства

Числовое равенство. Свойства числовых равенств. Равенство с переменной.

Уравнения

Понятие уравнения и корня уравнения. Представление о равносильности уравнений. Область определения уравнения (область допустимых значений переменной).

Линейное уравнение и его корни

Решение линейных уравнений. Линейное уравнение с параметром. Количество корней линейного уравнения. Решение линейных уравнений с параметром.

Квадратное уравнение и его корни

Квадратные уравнения. Неполные квадратные уравнения. Дискриминант квадратного уравнения. Формула корней квадратного уравнения. Теорема Виета. Теорема, обратная теореме Виета. Решение квадратных уравнений:использование формулы для нахождения корней, графический метод решения, разложение на множители, подбор корней с использованием теоремы Виета. Количество корней квадратного уравнения в зависимости от его дискриминанта. Биквадратные уравнения. Уравнения, сводимые к линейным и квадратным. Квадратные уравнения с параметром.

Дробно-рациональные уравнения

Решение простейших дробно-линейных уравнений. Решение дробно-рациональных уравнений.

Методы решения уравнений: методы равносильных преобразований, метод замены переменной, графический метод. Использование свойств функций при решении уравнений.

Простейшие иррациональные уравнения вида , .

Уравнения вида.Уравнения в целых числах.

Системы уравнений

Уравнение с двумя переменными. Линейное уравнение с двумя переменными. Прямая как графическая интерпретация линейного уравнения с двумя переменными.

Понятие системы уравнений. Решение системы уравнений.

Методы решения систем линейных уравнений с двумя переменными: графический метод, метод сложения, метод подстановки.

Системы линейных уравнений с параметром.

Неравенства

Числовые неравенства. Свойства числовых неравенств. Проверка справедливости неравенств при заданных значениях переменных.

Неравенство с переменной. Строгие и нестрогие неравенства. Область определения неравенства (область допустимых значений переменной).

Решение линейных неравенств.

Квадратное неравенство и его решения. Решение квадратных неравенств: использование свойств и графика квадратичной функции, метод интервалов. Запись решения квадратного неравенства.

Решение целых и дробно-рациональных неравенств методом интервалов.

Системы неравенств

Системы неравенств с одной переменной. Решение систем неравенств с одной переменной: линейных, квадратных. Изображение решения системы неравенств на числовой прямой. Запись решения системы неравенств.

Функции

Понятие функции

Декартовы координаты на плоскости. Формирование представлений о метапредметном понятии «координаты». Способы задания функций: аналитический, графический, табличный. График функции. Примеры функций, получаемых в процессе исследования различных реальных процессов и решения задач. Значение функции в точке. Свойства функций: область определения, множество значений, нули, промежутки знакопостоянства, четность/нечетность, промежутки возрастания и убывания, наибольшее и наименьшее значения. Исследование функции по ее графику.

Представление об асимптотах.

Непрерывность функции. Кусочно заданные функции.

Линейная функция

Свойства и график линейной функции. Угловой коэффициент прямой. Расположение графика линейной функции в зависимости от ее углового коэффициента и свободного члена. Нахождение коэффициентов линейной функции по заданным условиям: прохождение прямой через две точки с заданными координатами, прохождение прямой через данную точку и параллельной данной прямой.

Квадратичная функция

Свойства и график квадратичной функции (парабола). Построение графика квадратичной функции по точкам. Нахождение нулей квадратичной функции, множества значений, промежутков знакопостоянства, промежутков монотонности.

Обратная пропорциональность

Свойства функции . Гипербола.

Графики функций. Преобразование графика функции  для построения графиков функций вида .

Графики функций , ,, .

Последовательности и прогрессии

Числовая последовательность. Примеры числовых последовательностей. Бесконечные последовательности. Арифметическая прогрессия и ее свойства. Геометрическая прогрессия. Формула общего члена и суммы n первых членов арифметической и геометрической прогрессий. Сходящаяся геометрическая прогрессия.

Решение текстовых задач

Задачи на все арифметические действия

Решение текстовых задач арифметическим способом. Использование таблиц, схем, чертежей, других средств представления данных при решении задачи.

Задачи на движение, работу и покупки

Анализ возможных ситуаций взаимного расположения объектов при их движении, соотношения объемов выполняемых работ при совместной работе.

Задачи на части, доли, проценты

Решение задач на нахождение части числа и числа по его части. Решение задач на проценты и доли. Применение пропорций при решении задач.

Логические задачи

Решение логических задач. Решение логических задач с помощью графов, таблиц.

Основные методы решения текстовых задач: арифметический, алгебраический, перебор вариантов. Первичные представления о других методах решения задач (геометрические и графические методы).

Статистика и теория вероятностей

Статистика

Табличное и графическое представление данных, столбчатые и круговые диаграммы, графики, применение диаграмм и графиков для описания зависимостей реальных величин, извлечение информации из таблиц, диаграмм и графиков. Описательные статистические показатели числовых наборов: среднее арифметическое, медиана, наибольшее и наименьшее значения. Меры рассеивания: размах, дисперсия и стандартное отклонение.

Случайная изменчивость. Изменчивость при измерениях. Решающие правила. Закономерности в изменчивых величинах.

Случайные события

Случайные опыты (эксперименты), элементарные случайные события (исходы). Вероятности элементарных событий. События в случайных экспериментах и благоприятствующие элементарные события. Вероятности случайных событий. Опыты с равновозможными элементарными событиями. Классические вероятностные опыты с использованием монет, кубиков. Представление событий с помощью диаграмм Эйлера. Противоположные события, объединение и пересечение событий. Правило сложения вероятностей. Случайный выбор. Представление эксперимента в виде дерева. Независимые события. Умножение вероятностей независимых событий. Последовательные независимые испытания. Представление о независимых событиях в жизни.

Элементы комбинаторики

Правило умножения, перестановки, факториал числа. Сочетания и число сочетаний. Формула числа сочетаний. Треугольник Паскаля. Опыты с большим числом равновозможных элементарных событий. Вычисление вероятностей в опытах с применением комбинаторных формул. Испытания Бернулли. Успех и неудача. Вероятности событий в серии испытаний Бернулли.

Случайные величины

Знакомство со случайными величинами на примерах конечных дискретных случайных величин. Распределение вероятностей. Математическое ожидание. Свойства математического ожидания. Понятие о законе больших чисел. Измерение вероятностей. Применение закона больших чисел в социологии, страховании, в здравоохранении, обеспечении безопасности населения в чрезвычайных ситуациях.

                                     

                                                                    4.Тематическое планирование.

Алгебра-7 класс.

Раздел.

Учебная тема

Количество часов

Характеристика основных видов деятельности ученика

(на уровне учебных действий)

Всего

Из них количество часов на к/р

Повторение курса математики 5-6 классов.

6

1

Постановка цели и задач на каждом уроке. Планирование учебной деятельности на уроке и дома. Применение алгоритмов привыполнение действий с дробями, с рациональными числами. Самоконтроль. Подведение итога на уроке.

Математический язык. Математическая модель.

Числовые и алгебраические выражения. Что такое математический язык и математическая модель. Линейное уравнение с одной переменной. Линейное уравнение с одной переменной как математическая модель реальной ситуации. Координатная прямая.

14

1

Постановка цели и задач на каждом уроке. Планирование учебной деятельности на уроке и дома. Подведение итога на уроке: что нового узнали, чему научились. Самоконтроль.

Вычисление значений числовых выражений, применение свойств и правил арифметических действий, выбор рациональных способов вычислений.

Чтение выражений, формул, правил, записанных на математическом языке, перевод словесных формулировок на математический язык. Использование символики для записи математических утверждений.

Работа в паре и группе. Участие в деловой игре.

Описание реальных ситуаций с помощью математических моделей. Планирование хода решения задач с использованием трех этапов математического моделирования. Прогнозирование результата решения, оценка реальности полученного ответа.

Применение алгоритма при решении линейного уравнения.

Изображение чисел и числовых промежутков на числовой прямой.

Чтение учебника, извлечение информации в соответствии с темой урока и заданием учителя. Выполнение упражнений по правилу, образцу и алгоритму.

Подведение итогов. Самооценка знаний.

Линейная функция. Координатная плоскость. Линейное уравнение с двумя переменными. Линейная функция. Взаимное расположение графиков линейных функций.

14

1

Постановка цели и задач на каждом уроке. Планирование учебной деятельности на уроке и дома. Подведение итога на уроке: что нового узнали, чему научились. Самоконтроль.

Построение точек и геометрических фигур в координатной плоскости.

Построение прямой, заданной линейным уравнением с двумя переменными.

Моделирование реальной ситуации с помощью линейного уравнения с двумя переменными. Исследование графической модели с точки зрения реальности результата.

Проведение аналогии между линейным уравнением с двумя переменными и линейной функцией.

Работа в паре и в группе.

Построение графика линейной функции, в том числе на заданном промежутке.  Чтение графика, нахождение наибольшего и наименьшего значений функции.

Анализ поведения графика линейной функции в зависимости от значений коэффициентов k и m на основе наблюдения и сравнения. Работа в группе.

Исследование взаимного расположения графиков линейных функций. Работа в группе.

Самостоятельное изучение материала учебника, извлечение учебной информации, осмысление ее и применение в учебной деятельности.  Выполнение упражнений по аналогии, алгоритму, образцу. Самоконтроль решения.

Участие в мини проектной деятельности «Линейная функция как модель описания реальных ситуаций».

Поиск, обнаружение и устранение ошибок при построении графиков линейного уравнения с двумя переменными и линейной функции.

Подведение итогов: что нового узнали, чему научились. Самооценка знаний.

Системы двух линейных уравнений с двумя переменными.

Основные понятия о системах двух линейных уравнений с двумя переменными. Методы решения систем двух линейных уравнений с двумя переменными: графический, подстановки и алгебраического сложения. Системы двух линейных уравнений как математические модели реальных ситуаций

13

1

Постановка цели и задач на каждом уроке. Планирование учебной деятельности на уроке и дома. Подведение итога на уроке: что нового узнали, чему научились. Самоконтроль.

Изучение новой математической модели – системы двух линейных уравнений с двумя переменными. Проведение аналогии между взаимным расположением двух прямых на координатной плоскости и графическим методом решения систем двух линейных уравнений с двумя переменными. Составление алгоритма решения систем графическим методом.

Исследование  систем уравнений на предмет числа решений с помощью функционально-графических представлений.

Поиск решения в проблемной ситуации в случаях неточности и недостаточности применения графического метода решения систем (точка пересечения неточна или слишком удалена). Работа в группе.

Составление алгоритма решения систем методом постановки и алгебраического сложения. Работа в паре.

Выполнение самоконтроля при решении систем. Поиск, обнаружение и устранение ошибок при решении систем.

Описание реальных ситуаций с помощью систем двух линейных уравнений с двумя переменными. Решение задач в три этапа математического моделирования.

Участие в мини проектной деятельности «Моделирование реальных ситуаций с помощью систем линейных уравнений».

Отыскание информации на заданную тему в учебнике.

Подведение итогов: что нового узнали, чему научились. Самооценка знаний.

Степень с натуральным показателем и ее свойства.

Понятие степени с натуральным показателем и ее свойства. Умножение и деление  степеней с одинаковым показателем. Степень с нулевым показателем.

10

1

Постановка цели и задач на каждом уроке. Планирование учебной деятельности на уроке и дома. Подведение итога на уроке: что нового узнали, чему научились. Самоконтроль.

Чтение и запись степени выражения, свойств степени на математическом языке.

Составление таблицы степеней.

Изучение по учебнику этапов теоретического исследования. Самостоятельное проведение исследования.

Доказательство свойств степени.

Конструирование предложений с помощью связок «если…, то…». Работа в паре.

Применение определения и свойств степени при решении простейших уравнений, моделирование реальных ситуаций, приводящих к простейшему степенному уравнению. Мини проект.

Осуществление самоконтроля решения, поиск и устранение ошибок.

Подведение итогов: что нового узнали, чему научились. Самооценка знаний.

Одночлены. Арифметические операции над одночленами.

Понятие одночлена. Стандартный вид одночлена. Сложение и вычитание одночленов. Умножение одночленов. Возведение одночленов в натуральную степень. Деление одночлена на одночлен.

9

1

Постановка цели и задач на каждом уроке. Планирование учебной деятельности на уроке и дома. Подведение итога на уроке: что нового узнали, чему научились. Самоконтроль.

Самостоятельное чтение учебника с целью поиска информации на заданную тему.

Выполнение алгебраических преобразований с одночленами, пошаговый контроль правильности выполнения алгоритма преобразования. Работа в паре.

Сравнение двух дробей по виду  и выявление, которая из них является одночленом, а которая нет, обоснование вывода.

Составление алгоритма приведения одночлена к стандартному виду, сложения одночленов. Работа в паре.

Выполнение действий с одночленами.

Описание реальных ситуаций с помощью модели (уравнения) с подобными одночленами. Решение задач в три этапа математического моделирования. Мини проект.

Наблюдение и вывод, в каком случае один одночлен можно разделить на другой одночлен и как это сделать.  Выполнение заданий, связанных с выявлением некорректных высказываний.

Самоконтроль выполнения действий и преобразований с одночленами, поиск и устранение ошибок.

Подведение итогов: что нового узнали, чему научились. Самооценка знаний.

Многочлены. Арифметические операции над многочленами, 19 часов.

Понятие многочлена. Сложение и вычитание многочленов. Умножение многочлена на одночлен. Умножение многочлена на многочлен. Формулы сокращенного умножения. Деление многочлена на одночлен.

19

1

Постановка цели и задач на каждом уроке. Планирование учебной деятельности на уроке и дома. Подведение итога на уроке: что нового узнали, чему научились. Самоконтроль.

Извлечение информации из учебника, связанной с изучением нового материала.

Выполнение действий с многочленами по правилам. Работа в паре.

Описание реальных ситуаций с помощью математической модели, представляющей собой многочлены. Решение задач в три этапа математического моделирования. Мини проект.

Вывод формул сокращенного умножения. Чтение их и запись на математическом языке. Применение геометрической модели, иллюстрирующей вывод формул разности квадратов и квадрата суммы и разности.

Выполнение преобразований многочленов, пошаговый контроль правильности и полноты выполнения алгоритма. Поиск, обнаружение и устранение арифметических и алгебраических ошибок.

Подведение итогов: что нового узнали, чему научились.  Самооценка знаний.

Разложение многочленов на множители

Понятие о разложении многочлена на множители и его необходимости. Вынесение общего множителя за скобки. Способ группировки. Разложение многочлена на множители с помощью формул сокращенного умножения и комбинации различных приемов. Сокращение алгебраических дробей. Тождества.

23

1

Постановка цели и задач на каждом уроке. Планирование учебной деятельности на уроке и дома. Подведение итога на уроке: что нового узнали, чему научились. Самоконтроль.

Извлечение информации из учебника по заданной теме. Выделение существенного, главного.

Чтение и запись на математическом языке при выполнении разложения на множители.

Комментирование решений, разобранных в учебнике. Работа в паре.

Выполнение преобразования в виде разложения многочлена на множители по алгоритму и образцу. Решение уравнений, построение графиков уравнений, выполнение арифметических действий, связанных с разложением на множители, сокращение дробей. Пошаговый самоконтроль за выполнением указанных действий. Поиск и устранение ошибок.

Подведение итогов. Самооценка знаний.

Функция  , 9 часов.

Функция  и ее график. Графическое решение уравнений. Функциональная символика

9

1

Постановка цели и задач на каждом уроке. Планирование учебной деятельности на уроке и дома. Подведение итога на уроке: что нового узнали, чему научились. Самоконтроль.

Чтение учебника и извлечение информации по заданной теме.

Изучение новых функций  , графических моделей этих функций, свойств.

Построение и чтение графиков, в том числе кусочных функций. Проведение простейших исследований.

Участие в проектной деятельности «Описание реальных ситуаций с помощью кусочных функций».

Применение графических моделей для решения уравнений, неравенств, систем неравенств. Проверка найденных корней.

Исследование взаимного расположения графика кусочной функции и прямой y = a на предмет числа общих точек при различных значениях а.

Подведение итогов. Самооценка знаний.

Элементы описательной статистики.

Данные и ряды данных. Упорядоченные ряды данных, таблицы распределения. Частота результата, таблица распределения частот, процентные частоты. Группировка данных

9

Постановка цели и задач на каждом уроке. Планирование учебной деятельности на уроке и дома. Подведение итога на уроке: что нового узнали, чему научились. Самоконтроль.

Сбор, анализ, обобщение и представление статистической информации в виде таблиц и диаграмм. Мини проект.

Итоговое повторение.

14

1

Постановка цели и задач при повторении материала. Планирование учебной деятельности на уроке и дома. Подведение итога, коррекция знаний. Самоконтроль.

Итого

140

10

Алгебра-8 класс.

Содержание курса

Количество часов

Характеристика основных видов деятельности ученика

(на уровне учебных действий)

Всего

Из них количество часов на к.р.

Повторение курса алгебры 7 класса.

6

1

Алгебраические дроби.Основные понятия об алгебраических дробях. Основное свойство алгебраической дроби. Сложение и вычитание, умножение и деление алгебраических дробей, возведение алгебраической дроби в степень. Преобразование рациональных выражений. Первые представления о простейших рациональных уравнениях. Степень с отрицательным целым показателем.

28

2

Постановка цели и задач. Планирование учебной деятельности на уроке и дома. Подведение итога на уроке: что нового узнали, чему научились. Самоконтроль и коррекция знаний.

Чтение учебника с целью освоения новых знаний, извлечение информации в соответствии с темой урока и заданием учителя.

Выполнение упражнений по правилу, образцу и алгоритму при нахождении допустимых значений алгебраической дроби, сокращении алгебраических дробей, приведении к наименьшему общему знаменателю, сложении, вычитании, умножении и делении дробей, возведении дроби в степен, преобразовании выражений, содержащих степень с отрицательным показателем, решении рациональных уравнений. Поиск и отбор корней рационального уравнения.

Моделирование реальных ситуаций с помощью рациональных уравнений.

Работа в паре и группе.

Подведение итогов. Самооценка знаний.

Функция . Свойства квадратного корня.

Рациональные, иррациональные числа, множество действительных чисел, стандартный вид числа. Квадратный корень из неотрицательного числа. Функция . Свойства квадратных корней. Преобразование выражений, содержащих квадратные корни.

25

1

Постановка цели и задач. Планирование учебной деятельности на уроке и дома. Подведение итога на уроке: что нового узнали, чему научились. Самоконтроль.

Самостоятельное изучение материала учебника, извлечение учебной информации о множестве рациональных и иррациональных чисел как части множества действительных чисел, осмысление ее и применение в учебной деятельности. Изображение чисел на числовойпрямой, сравнение, выполнение арифметических и алгебраических действий на множестве действительных чисел. Запись рациональных чисел в виде обыкновенной и десятичной периодической дроби. Прикидка возможности представления обыкновенной дроби в виде конечной десятичной дроби. Работа по правилу и по образцу. Составление алгоритма.

Знакомство с методом доказательства от противного.

Изучение свойств функций , построение их графиков. Построение и чтение графиков кусочных функций. Применение графических методов при решении уравнений, неравенств и систем уравнений. Исследование взаимного расположения графиков рассматриваемых функций и прямой.

Проведение преобразований выражений, содержащих квадратный корень.

Работа в паре.

Поиск, обнаружение и устранение ошибок при выполнении вычислений,построении графиков и преобразовании выражений.

Подведение итогов: что нового узнали, чему научились. Самооценка знаний.

Квадратичная функция. Функция .

Функции их свойства и графики. Параллельный перенос графика функции. Функция , ее свойства и график. Графическое решение квадратных уравнений.

25

2

Постановка цели и задач на каждом уроке. Планирование учебной деятельности на уроке и дома. Подведение итога на уроке: что нового узнали, чему научились. Самоконтроль и самооценка знаний.

Изучение графических моделей и свойств функций . Исследование зависимости графиков функций от значений коэффициентов. Проведение аналогии между аналитическим заданием квадратичной функции в виде и .

Наблюдение и исследование взаимного расположения графика функциии графиков функций , обобщение результатов наблюдения в виде правила.

Составление алгоритмов построение параболы, гиперболы, построения графика функции с учетом параллельного переноса,  решения квадратного уравнения графическим методом.

Участие в мини проектной деятельности «Гипербола и парабола как математические модели реальных ситуаций».

Поиск решения в проблемной ситуации в случаях неточности и недостаточности применения графического метода решения квадратного уравнения (точки пересечения неточны или слишком удалены).

Работа в паре и группе.

Подведение итогов: что нового узнали, чему научились. Самооценка знаний.

Квадратные уравнения.

Квадратные уравнения. Формулы корней квадратных уравнений. Рациональные уравнения. Рациональные уравнения как математические модели реальных ситуаций. Теорема Виета. Разложение квадратного трехчлена на линейные множители.

24

2

Постановка цели и задач на каждом уроке. Планирование учебной деятельности на уроке и дома. Подведение итога на уроке: что нового узнали, чему научились. Самоконтроль и самооценка достижений.

Изучение материала учебника с целью освоения понятия квадратного уравнения, его коэффициентов, понятия дискриминанта. Исследование квадратных уравнений на предмет числа корней. Вывод формулы для вычисления корней квадратного уравнения. Применение формул для решения квадратных уравнений. Составление алгоритма решения квадратного уравнения.

Исследование соотношения между корнями квадратного уравнения и его коэффициентами, изучение теоремы Виета (прямой и обратной). Применение теоремы Виета для составления квадратных уравнений, подбора корней приведенного квадратного уравнения, разложения квадратного трехчлена на множители.

Освоение методов решения алгебраических уравнений, сводящихся к квадратным.

Моделирование реальных ситуаций с помощью квадратных и рациональных уравнений.

Участие в мини проектной деятельности «Квадратные уравнения как математические модели реальных ситуаций».

Осуществление самоконтроля решения, поиск и устранение ошибок.

Неравенства.

Свойства числовых неравенств. Исследование функций на монотонность. Линейные и квадратные неравенства. Приближенные значения действительных чисел. Стандартный вид числа.

19

1

Постановка цели и задач на каждом уроке. Планирование учебной деятельности на уроке и дома. Подведение итога на уроке: что нового узнали, чему научились. Самоконтроль и самооценка достижений.

Самостоятельное чтение учебника с целью поиска информации и изучения материала на заданную тему.

Иллюстрация свойств числовых неравенств на координатной прямой. Исследование функций на монотонность с помощью свойств числовых неравенств.

Применение правил при решении неравенств.

Исследование взаимосвязи решений квадратного неравенства и расположения параболы относительно прямойОх. Установление взаимосвязи между коэффициентома квадратного неравенства, знаком неравенства и наличием решений при отрицательном дискриминанте.

Исследование квадратного уравнения с параметром на число корней.

Поиск, обнаружение и устранение ошибок в решении линейных и квадратных неравенств.

Участие в проектной деятельности «Моделирование реальных ситуаций с помощью квадратных неравенств» и «Где используются числа, записанные в стандартном виде?».

Оценка и прикидка результата в приближенных вычислениях.

Элементы комбинаторики, статистики и теории вероятностей.

Простейшие комбинаторные задачи. Организованный перебор вариантов, дерево вариантов. Комбинаторное правило умножения.

4

Постановка цели и задач на каждом уроке. Планирование учебной деятельности на уроке и дома. Подведение итога на уроке: что нового узнали, чему научились. Самоконтроль и самооценка достижений.

Наблюдение, установление закономерности при переборе вариантов, построении дерева вариантов, вывод правила комбинаторного умножения.

Мини проект «Комбинаторика вокруг нас».

Итоговое повторение.

9

1

Постановка цели и задач при повторении материала. Планирование учебной деятельности на уроке и дома. Подведение итога, коррекция знаний. Самоконтроль.

Итого

140

10

Алгебра-9 класс.

Содержание курса

Количество часов.

Характеристика основных видов деятельности ученика

(на уровне учебных действий)

Всего.

Из них количество часов на к. р.

Повторение курса алгебры 8 класса.

6

1

Неравенства и системы неравенств, 18 часов.

Линейные и квадратные неравенства. Рациональные неравенства. Метод интервалов. Множества и операции над ними. Системы неравенств.

18

1

Постановка цели и задач. Планирование учебной деятельности на уроке и дома. Подведение итога на уроке: что нового узнали, чему научились. Самоконтроль и коррекция знаний.

Чтение учебника с целью освоения новых знаний, извлечение информации в соответствии с темой урока и заданием учителя.

Выполнение упражнений по правилу, образцу и алгоритму при решении неравенств и систем неравенств. Исследование знаков неравенства на числовых промежутках, отбор  результатов решения.

Поиск, обнаружение и исправление ошибок.

Подведение итогов. Самооценка знаний.

Системы уравнений.

Рациональное уравнение с двумя переменными. Решение уравнения. Формула расстояния между двумя точками координатной плоскости. Уравнение окружности. Системы уравнений с двумя переменными. Решение систем уравнений. Неравенства и системы неравенств с двумя переменными.  Методы решения систем уравнений. Системы уравнений как математические модели реальных ситуаций.

21

1

Постановка цели и задач. Планирование учебной деятельности на уроке и дома. Подведение итога на уроке: что нового узнали, чему научились. Самоконтроль.

Самостоятельное изучение материала учебника, извлечение учебной информации о методах решения систем уравнений.

Интеграция знаний по алгебре и геометрии при изучении и применении в решении задач тем расстояние между двумя точками в координатной плоскости, уравнение окружности и уравнение прямой.

Применение графических методов при решении уравнений, неравенств и систем уравнений. Исследование взаимного расположения графиков  уравнений прямой, параболы, гиперболы и др. с окружностью.

Моделирование реальных ситуаций в виде систем уравнений. Освоение нового вида задач на производительность.

Участие в проектной деятельности «Системы уравнений как математические модели реальных ситуаций», «Жизнь вокруг нас: задачи на производительность».

Работа в паре, группе.

Поиск, обнаружение и устранение ошибок при выполнении вычислений, построении графиков и преобразовании выражений,  решении уравнений, входящих в систему. Оценка достоверности и интерпретация результата решения.

Подведение итогов: что нового узнали, чему научились. Самооценка знаний.

Числовые функции.

Функция. Независимая и зависимая переменные. Определение числовой функции. Область определения и область значений функции. Естественная область определения функции. Способы задания функции. Свойства функций. Четные и нечетные функции. Алгоритм исследования функции на четность. Графики четной и нечетной функций. Функции, их свойства и графики. Функции, их свойства и графики. Функция , ее свойства и график.

29

2

Постановка цели и задач на каждом уроке. Планирование учебной деятельности на уроке и дома. Подведение итога на уроке: что нового узнали, чему научились. Самоконтроль и самооценка знаний.

Описание свойств функций . Исследование функций.

Задание функций разными способами и построение графиков.

Изучение новых свойств функций: четность и нечетность. Исследование функций на четность и нечетность согласно алгоритму.

Изучение свойств функций , , , построение их графиков. Применение графиков функций к решению уравнений, неравенств, систем уравнений и неравенств.

Участие в проектной деятельности «Описание реальных процессов с помощью графиков функций, ».

Поиск решения в проблемной ситуации: неточность и недостаточность применения графического метода решения уравнения,  – по аналогии с решением проблемы . Знакомство с новой математической моделью.

Работа в паре и группе.

Подведение итогов: что нового узнали, чему научились. Самооценка знаний.

Прогрессии.

Числовые последовательности. Способы задания числовых последовательностей (аналитический, словесный, рекуррентный). Свойства числовых последовательностей. Арифметическая прогрессия. Формула n-го члена. Формула суммы членов конечной арифметической прогрессии. Характеристическое свойство.

Геометрическая прогрессия. . Формула n-го члена. Формула суммы членов конечной геометрической прогрессии. Характеристическое свойство. Прогрессии и банковские расчеты.

22

1

Постановка цели и задач на уроке. Планирование учебной деятельности на уроке и дома. Подведение итога на уроке: что нового узнали, чему научились. Самоконтроль и самооценка достижений.

Изучение материала учебника с целью освоения понятиями:последовательность, задание последовательности, график последовательности, формула n-го члена. Освоение понятий арифметическая и геометрическая прогрессии, вывод формул  n-го члена, суммы членов конечной арифметической и геометрической прогрессии, характеристических свойств. Исследование последовательностей, в том числе арифметической и геометрической прогрессий. Выполнение упражнений на применение формул  n-го члена, суммы членов конечной арифметической и геометрической прогрессии, характеристических свойств.

Моделирование банковских расчетов с помощью прогрессий. Работа в группе.

Участие в проекте «Прогрессии как математические модели реальных ситуаций».

Осуществление самоконтроля решения, обнаружение, поиск и устранение ошибок.

Элементы комбинаторики, статистики и теории вероятностей.

Комбинаторные задачи. Правило умножения. Факториал. Перестановки.

Статистика – дизайн информации. Группировка информации. Общий ряд данных. Кратность варианты измерения. Табличное представление информации. Частота варианты. Графическое представление информации. Полигон распределения данных. Гистограмма. Числовые характеристики данных измерения.

Вероятность. Событие. Классическая вероятностная схема. Противоположные события. Несовместные события. Вероятность суммы двух событий. Вероятность противоположного события.  Экспериментальные данные и вероятности событий. Статистическая устойчивость и статистическая вероятность.

20

1

Постановка цели и задач на каждом уроке. Планирование учебной деятельности на уроке и дома. Подведение итога на уроке: что нового узнали, чему научились. Самоконтроль и самооценка достижений.

Наблюдение, установление закономерности при переборе вариантов, построении дерева вариантов, вывод правила комбинаторного умножения.

Участие в проведении эксперимента. Сбор, обработка и представление информации.

Ознакомление с новой математической моделью – классической вероятностной схемой и применение формулы для подсчета вероятности. Математическое моделирование простейших вероятностных ситуаций.

Мини проект «Игры и вероятности событий».

Итоговое повторение.

Числовые выражения. Алгебраические выражения. Функции и графики. Уравнения и системы уравнений. Неравенства и системы неравенств. Задачи на составление уравнений или систем уравнений. Арифметическая и геометрическая прогрессии.

24

1

Постановка цели и задач при повторении материала. Планирование учебной деятельности на уроке и дома. Подведение итога, коррекция знаний.

Подготовка к итоговой аттестации по математике. Самоконтроль.

Итого

140

8



По теме: методические разработки, презентации и конспекты

презентация к уроку математии в 6 классе по теме "Деление"

презентация к уроку математики в 6 классе...

рабочая программа по математи ке 2 класс

             Рабочая  программа по  математике для  2-го  класса разработана и    составлена в соответствии с федеральным к...

Урок математи в 5 классе

Урок математики в 5 классе по теме "Деление десятичных дробей"...

МО учителй математии

методическая  работа учителя-руководителя группы  -предоставлен план работы на год...

Рабочая программа по математие 6 класс

Уровень изучения учебного материала: базовый Рабочая программа разработана в соответствии с Федеральным компонентом государственного стандарта основного общего образования на основе Примерной програ...

Рабочая программа по математие 9 класс

Рабочая программа по математие 9 класс УМК Дорофеев Г.В., Атанасян Л.С....