Подготовка к ОГЭ по математике.
рабочая программа по алгебре (9 класс) на тему

Саблина Татьяна Алексеевна

Кружок, факультатив.

Скачать:

ВложениеРазмер
Microsoft Office document icon ellektiv_oge_9_klass.doc101.5 КБ

Предварительный просмотр:

Рабочая программа

элективного курса по  математике в 9 классе «ГИА: курс подготовки к экзамену»

Саблиной Татьяны Алексеевны, учителя 1 квалификационной категории  МБОУ СОШ №14 города Красногорска.

                                                                                                 

                                                                                   

2015 - 2016 учебный год

СОДЕРЖАНИЕ:

1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

2. КАЛЕНДАРНО- ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

3. СОДЕРЖАНИЕ  ТЕМ УЧЕБНОГО КУРСА

4. ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ УЧАЩИХСЯ  

5. СПИСОК ЛИТЕРАТУРЫ

                                                                                                ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

В школах подготовка к экзаменам осуществляется на уроках, а также во внеурочное время: на факультативных и индивидуальных занятиях.

 Оптимальной формой подготовки к экзаменам являются элективные курсы, которые позволяют расширить и углубить изучаемый материал по школьному курсу.

 Учитывая новую форму сдачи государственных экзаменов в форме единого государственного экзамена, предлагается элективный курс для учащихся 9 общеобразовательного  класса  по математике: «ОГЭ: курс подготовки к экзамену».

Цель  элективного курса: подготовить учащихся к сдаче  ОГЭ в соответствии с требованиями, предъявляемыми  образовательными стандартами.

Назначение данного элективного курса- повысить уровень общеобразовательной подготовки  по математике выпускников основной школы  с целью их успешной подготовки  к государственной (итоговой ) аттестации. Результаты усвоения данного курса будут использованы при приеме учащихся в профильный класс.

 Нормативно- правовая база элективного курса. Содержание элективного курса  определяется на основании кодификатора элементов содержания для проведения в 2016 году государственной (итоговой) аттестации ( в новой форме) по математике, подготовленного федеральным государственным бюджетным научным учреждением «Федеральный институт педагогических измерений». Кодификатор элементов содержания по математике составлен на основе Обязательного минимума содержания основных образовательных программ и Требований к уровню подготовки  выпускников основной школы (приказ Минобразования России от 05.03.2004 №1089 «Об утверждении федерального компонента Государственных стандартов начального общего, основного общего и среднего(полного) общего образования.

Рабочая программа разработана с учетом положения, что результатом освоения основной образовательной программы основного общего образования должна стать математическая компетентность выпускников, т.е. они должны овладеть  специфическими для математики знаниями и видами деятельности, научиться преобразованию знаний  и его применению в учебных и внеучебных ситуациях, сформировать качества присущие математическому мышлению, а также овладеть математической терминологией, клюевыми понятиями, методами и приемами.

 Структура  рабочей программы.  Курс рассчитан на 34 занятия .Структура рабочей программы отвечает цели построения системы дифференцированного обучения в современной школе. Дифференциация обучения направлена на решение двух задач: формирование у всех учащихся  базовой математической подготовки, составляющей функциональную основу общего образования; одновременного создания условий, способствующих получению частью учащихся подготовки повышенного уровня, достаточной для активного  использования математики во время дальнейшего обучения, прежде всего, при изучении его в средней школе на профильном уровне. С учетом изменений в ОГЭ-2016 года  задания предусмотренные в ходе реализации  рабочей программы  подразделены на  три модуля : «Алгебра», «Геометрия», «Реальная математика».  Модули «Алгебра» и  «Геометрия» предполагают две части, соответствующие овладению математической компетентности на базовом и повышенном  уровнях,   модуль  «Реальная математика»- одну часть, соответствующая овладению знаниями на базовом уровне.  Проверка усвоения материала   предполагает работу  с тематическими тестами, выстроенными в виде логически взаимосвязанной системы, где из одного вытекает другое, т.е. правильно решенное предыдущее задание готовит понимание смысла следующего; выполненный сегодня тест готовит к пониманию и правильному выполнению завтрашнего и т. д.;  При проверке базовой математической компетентности учащиеся должны продемонстрировать:

владение основными алгоритмами, знание и понимание ключевых элементов содержания (математических понятий, их свойств, приемов решения задач), умение пользоваться математической  записью, применять знания к решению математических задач, не сводящихся к простому применению алгоритма, а также применять  математические знания в простейших практических ситуациях.

Части 2 модулей «Алгебра» и «Геометрия»  направлены на проверку  владения материалом на повышенном уровне. Их назначение- дифференцировать хорошо успевающих школьников по уровням подготовки, выявить наиболее подготовленную часть выпускников, составляющую потенциальный контингент профильных классов. Поэтому при прохождении модулей «Алгебра» и «Геометрия» предполагается рассматривать на занятиях задания повышенного уровня  сложности из различных разделов курса математики. Задания второй части модуля  направлены на проверку таких качеств математической подготовки, как:

-уверенное владение формально- оперативным алгебраическим аппаратом;

-умение решать комплексную задачу, включающую в себя  знания из различных тем курса алгебра;

-умение математически грамотно и ясно записывать решение, приводя при этом необходимые пояснения и обоснования;

-владение широким спектром приемов и способов рассуждений.

 Ожидаемые результаты:

Овладеют общими универсальными приемами и подходами к решению заданий  ОГЭ-2016.

Усвоят основные приемы мыслительного поиска.

Выработают умения:

Контролировать  время  выполнения заданий;

Оценить трудность заданий и, соответственно, разумный выбор этих заданий;

Формы организации учебных занятий

Формы проведения занятий включают в себя лекции, практикумы и зачеты.

  Каждая тема курса начинается с постановки задачи. Теоретический материал дается  в форме мини лекции. После изучения теоретического материала проводится практикум по решению задач для  закрепления изученного материала.

 Занятия строятся с учётом цели построения системы дифференцированного обучения в современной школе.  Выполнение  заданий на практикумах осуществляется в три этапа- по модулям. Каждое задание базового уровня характеризуется пятью параметрами: элемент содержания; проверяемое умение; категория познавательной области; уровень трудности и форма ответа. Предусмотрены следующие формы ответа: с выбором ответа из четырех предложенных вариантов, с кратким ответом на соответствие. Задания второй части  требуют записи решения и ответа.

 В ходе обучения периодически проводятся непродолжительные, рассчитанные на 5-10 минут,  тестовые испытания для определения глубины знаний и скорости выполнения заданий. Такая форма работы  обеспечивает эффективную обратную связь, позволяет учителю  и ученикам  корректировать свою деятельность.

 Контроль и система оценивания

Текущий контроль уровня усвоения материала осуществляется по результатам выполнения учащимися зачетных работ.  Для оценивания результатов выполнения  зачетных  работ выпускниками  применяется такой количественный показатель, как общий балл.

 Итоговый контроль реализуется в форме внутришкольного пробного ОГЭ.

КАЛЕНДАРНО- ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

№ п\п

Тема  занятия

Количество  часов

Формы проведения

Планируемые результаты освоения материала

всего

лекции

практикум

1

Натуральные, рациональные  и действительные числа. Дроби.

1

0,5

0,5

Мини-лекция, практикум.

Выполнять, сочетая устные и письменные приемы, арифметические действия с рациональными числами, сравнивать действительные числа. Вычислять значения числовых выражений, переходить от одной формы записи чисел к другой

2

Измерения, приближения, оценка

1

1

Практикум

Округлять целые числа и десятичные дроби, находить приближения чисел с недостатком и избытком выполнять прикидку результата вычислений, оценку числовых выражений.

3

Алгебраические выражения

2

0,5

1,5

Мини-лекция, практикум

Составлять буквенные выражения и формулы по условиям задач, находить значения буквенных выражений, осуществляя необходимые подстановки и преобразования.

4

Свойства степени с целым показателем

1

1

Практикум, зачет

Выполнять основные действия со степенями с целыми показателями, с многочленами и алгебраическими дробями

5

Многочлены

2

0,5

1,5

Мини-лекция, практикум

Выполнять разложение многочленов на множители

6

Свойства квадратных корней и их применение в вычислениях

1

0,5

0,5

Мини-лекция, практикум

Применять свойства арифметических  квадратных корней для преобразования числовых выражений, содержащих квадратные корни

7

Уравнения

3

0,5

2,5

Мини-лекция, практикум, зачет

Научиться решать квадратные и рациональные уравнения, сводящиеся к ним системы двух линейных уравнений и несложные линейные системы Применять графическое представление при решении уравнений

8

Неравенства

2

0,5

1,5

Мини-лекция, практикум

Решать линейные и квадратные неравенства с одной переменной  и их системы

9

Текстовые задачи

3

0,5

2,5

Мини-лекция, практикум

Решать текстовые задачи, включая задачи, связанные отношением, пропорциональностью величин, дробями, процентами. Решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений  исходя из формулировки задачи.

10

Числовые последовательности

2

0,5

1,5

Мини-лекция, практикум

Решать элементарные задачи, связанные с числовыми последовательностями. Распознавать арифметические и геометрические прогрессии, решать задачи с применение  формулы общего члена и суммы нескольких  первых членов.

11

Сложные проценты

2

0,5

1,5

Мини-лекция, практикум, зачет

Решать несложные практические расчетные задачи, связанные с процентами, интерпретировать результаты решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых объектов

12

Числовые функции

3

0,5

2,5

Мини-лекция, практикум

Определять значение функции по значению аргумента при различных способах задания функции, решать обратную задачу. Определять свойства функции по ее графику, строить графики изученных функций.

13

Декартовы координаты на плоскости

2

0,5

1,5

Мини-лекция, практикум

Определять координаты точки плоскости; проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами

14

Графическая интерпретация уравнений и неравенств с двумя переменными

1

0,5

0,5

Мини-лекция, практикум

Применять графические представления при решении  уравнений, систем, неравенств

15

Геометрические фигуры и их свойства. Треугольник, многоугольники, окружность и круг.

2

0,5

1,5

Мини-лекция, практикум

Распознавать геометрические фигуры на плоскости, различать их взаимное расположение, изображать геометрические фигуры, выполнять чертежи по условию задачи

16

Измерения геометрических величин

2

0,5

1,5

Мини-лекция, практикум, зачет

Решать планиметрические задачи на нахождение геометрических величин.

17

Описательная статистика

1

0,5

0,5

Мини-лекция, практикум

Извлекать статистическую информацию , представленную в таблицах, на диаграммах, графиках

18

Вероятность

1

0,5

0,5

Мини-лекция, практикум

Находить вероятности случайных событий в простейших случаях

19

Комбинаторика

1

0,5

0,5

Мини-лекция, практикум

Решать комбинаторные задачи путем организованного перебора возможных вариантов , а также с использованием правила умножения

20

Внутришкольный  пробный ОГЭ

1

1

Зачет

Решать  задачи из контрольно-измерительных материалов для ОГЭ

СОДЕРЖАНИЕ  ТЕМ УЧЕБНОГО КУРСА

 Тема 1 Натуральные, рациональные  и действительные числа. Дроби.

Арифметические действия над  натуральными, рациональными, действительными и дробными  числами. Представление десятичной дроби  в виде обыкновенной дроби  и обыкновенной в виде десятичной. Сравнение  чисел. Числовые выражения, порядок действий в них, использование скобок. Законы арифметических действий.  Понятие об иррациональном числе. Действительные числа как бесконечные десятичные дроби.

Тема 2  Измерения, приближения, оценка.

Единицы измерения длины, площади, объема, массы, времени, скорости. Размеры объектов окружающего мира, длительность процессов в окружающем мире.  Округление чисел, прикидка и оценка результатов вычисления. Выделение множителя – степени десяти в записи числа.

Тема 3  Алгебраические выражения.

Допустимые значения переменных, входящих в алгебраическое выражение. Подстановка выражений вместо переменных. Равенство буквенных выражений , тождество. Преобразование выражений

Тема 4 Свойства степени с целым показателем

Основные действия со степенями с целыми показателями, с многочленами и алгебраическими дробями.

Тема 5  Многочлены

Сложение, вычитание, умножение многочленов. Формулы сокращенного умножения. Разложение многочлена на множители. Квадратный трехчлен. Теорема Виета. Разложение квадратного трехчлена на линейные множители. Степень и корень многочленов с одной переменной.

Тема 6  Свойства квадратных корней и их применение в вычислениях

Применение  свойства арифметических  квадратных корней для преобразования числовых выражений, содержащих квадратные корни

Тема 7 Уравнения

Уравнения с одной переменной, корень уравнения. Квадратное  уравнение, формула корней квадратного уравнения. Решение рациональных уравнений. Примеры  решения уравнений высших степеней. Решение уравнений методом замены переменной. Решение уравнений методом разложения на множители. Уравнения с двумя переменными. Системы уравнений.

Тема 8  Неравенства

Числовые неравенства и их свойства. Неравенства с одной переменной. Системы линейных неравенств. Квадратные неравенства.

Тема 9 Текстовые задачи

Решение текстовых задач арифметическим способом. Решение текстовых задач алгебраическим способом.

Тема 10 Числовые последовательности

Арифметическая и геометрическая последовательности.  Формулы общего члена  арифметической и геометрической прогрессии. Формула суммы первых  членов прогрессии.

Тема 11 Сложные проценты

Практические расчетные задачи, связанные с процентами.  Интерпретация  результатов  решения задач с учетом ограничений , связанных с реальными свойствами рассматриваемых объектов.

Тема 12 Числовые функции

Область определения и область значения функции. Графики функций, их свойства. Примеры графических зависимостей, отражающих реальные процессы.

Тема 13 Декартовы координаты на плоскости

 Координаты точки, координаты середины отрезка. Формула расстояния  между двумя точками  плоскости. Уравнение прямой, угловой коэффициент прямой, условие параллельности прямых.

Тема 14 Графическая интерпретация уравнений и неравенств с двумя переменными.

 Использование графиков функций для решения уравнений и систем.  Уравнение окружности.

Тема 15 Геометрические фигуры и их свойства. Треугольник, многоугольники, окружность и круг.

Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренный, равносторонний, прямоугольный треугольники. Теорема Пифагора. Признаки равенства и признаки подобия.  Решение прямоугольных треугольников. Многоугольники, их свойства и признаки.   Центральный , вписанный угол. Касательная и секущая к окружности. Вписанные и описанные окружности.

Тема 16 Измерения геометрических величин

Градусная мера угла, соответствие между величиной угла и длины дуги окружности. Площадь и ее свойства, формулы нахождения площади  для различных фигур планиметрии.

Тема 17 Описательная статистика

Представление данных в виде таблиц , диаграмм, графиков. Средние результаты измерений. Статистические характеристики.

Тема 18 Вероятность

 Частота события, вероятность. Равновозможные события и подсчет  их вероятности. Представление о геометрической вероятности.

Тема 19 Комбинаторика

Решение комбинаторных задач: перебор вариантов, комбинаторное правило умножения.

Тема 20 Внутришкольный  пробный ОГЭ. Решение задач из контрольно-измерительных материалов для  ОГЭ.

             ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ УЧАЩИХСЯ  

должны знать:

числа и вычисления;

алгебраические выражения;

уравнения и неравенства;

числовые последовательности;

функции;

координаты на прямой и плоскости;

геометрические фигуры и их свойства. Измерения геометрических величин;

статистика и теория вероятностей.

должны уметь:

 выполнять вычисления и преобразования;

 выполнять преобразования алгебраических выражений;

 решать уравнения, неравенства, их системы;

 строить и читать графики функций;

 выполнять действия с геометрическими фигурами, координатами и векторами;

работать со статистической информацией, находить частоту и вероятность случайного события;

 использовать приобретенные знания и умения в практической деятельности и повседневной жизни, уметь строить и исследовать простейшие математические модели;

владеть компетенциями:

познавательной;    информационной;    коммуникативной;     рефлексивной.

способны решать следующие жизненно-практические задачи:

самостоятельно приобретать и применять знания в различных ситуациях;     работать в группах;         аргументировать и отстаивать свою точку зрения, уметь слушать других;       извлекать учебную информацию на основе сопоставительного анализа объектов;      самостоятельно действовать в ситуации неопределенности при решении актуальных для них проблем

СПИСОК ЛИТЕРАТУРЫ

1. ОГЭ 2016. Математика. 9 класс. Типовые тестовые задания (в новой форме) Ященко И.В., Шестаков С.А., Трепалин А.С., Семенов А.В., Захаров П.И.;

2. ОГЭ 2016. Математика. 9 класс. Типовые тестовые задания Ященко И.В., Шестаков С.А., Трепалин А.С., Семенов А.А., Захаров П.И.;

3.ОГЭ. Математика. 9 класс. Тематические тренировочные задания. Рабочая тетрадь  Минаева С.С., Рослова Л.О;

4. Мирошин, Шевелева, Корешкова: ГИА-2016. Математика. Тренировочные задания;

5. Каспарова, Балаян: Справочник по математике для подготовки к ОГЭ и ЕГЭ;

6.ОГЭ. 4000 задач с ответами по математике Семенов А.Я. , Ященко И.В.


По теме: методические разработки, презентации и конспекты

Доклад на районном семинаре учителей математики «Проблемы подготовки к ЕГЭ по математике»

В математике все по-иному: если ученик не освоил, скажем, раскрытие скобок при действии с многочленами, то дальше изучение алгебры бессмысленно. Некоторый процент учащихся, который не осваивает ...

Доклад на районном семинаре учителей математики «Проблемы подготовки к ЕГЭ по математике»

В математике все по-иному: если ученик не освоил, скажем, раскрытие скобок при действии с многочленами, то дальше изучение алгебры бессмысленно. Некоторый процент учащихся, который не осваивает ...

"Занимательная математика" 5 класс для подготовки к олимпиаде по Математике в рамках внеклассной работы

Урок-презентация "Занимательная математика" 5 класс для подготовки к олимпиаде по Математике в рамках внеклассной работыСлайды "решение" только для педагогов. Рекомендую их скрывать перед уроком...

Рабочая программа элективного курса по математике в 11 классе "Практикум по подготовке к ЕГЭ по математике"

Сдача    экзамена   в  форме   ЕГЭ   требует   от   учащихся  обширных   знаний  по  всему  школьном...