Нахождение множества значений функции.
консультация по алгебре (11 класс) на тему
Предварительный просмотр:
множества значений функции.
Нахождение множества значений функции.
1. Метод оценки (границ).
Для нахождения множества значений функции сначала находят множество значений аргумента, затем, используя свойства неравенств, отыскивают соответствующие наименьше и наибольшее значения функции функции. Если есть возможность путем тождественных преобразований получить функцию, которая на всей области определения или на заранее заданном множестве является непрерывной и либо только возрастающей либо только убывающей, тогда используя свойства неравенств оценивают множество значений вновь полученной функции.
Пример 1. Найдите множество значений функции y=5 - .
Из определения квадратного корня следует, что 4 - x2 0, решая квадратичное неравенство получаем, что -2 x 2. разобьем промежуток [-2; 2] на два промежутка [-2; 0] и (0; 2]. Первому промежутку соответствует неравенство -2 x 0, а второму соответствует 0 < x 2. На первом промежутке переменная х принимает неотрицательные значения, а на втором - положительные.
Возведем в квадрат каждое из этих двойных неравенств, в результате получим
0x24.
Умножим все три части неравенства на - 1, получим неравенство
-4-x20.
Прибавим к трем частям неравенства 4 и получим
0 4-x2 4.
Введем вспомогательную переменную предположив, что
t = 4 - x2, где 0 t 4.
Функция y = на указанном промежутке непрерывна и возрастает, поэтому свои наименьшее и наибольшее значения принимает на концах промежутка и, следовательно, 0 2 тогда произведя обратную замену переменных получим неравенство 0 2. Прибавим к трем частя последнего двойного неравенств 5, умножив его предварительно на - 1, получим 3 5 - 5.
Множество значений функции y = 5 - является множество [3; 5].
Пример 2. Найти множество значений функции y = 5 - 4sinx.
Из определения синуса следует, -1 sinx 1. Далее воспользуемся свойствами числовых неравенств.
-4 - 4sinx 4, (умножили все три части двойного неравенства на -4);
1 5 - 4sinx 9 (прибавили к трем частям двойного неравенства 5);
Так как данная функция непрерывна на всей области определения, то множество ее значений заключено между наименьшим и наибольшим ее значением на всей области определения, если таковые существуют. В данном случаее множество значений функции y =5 - 4sinx есть множество [1; 9].
Пример 3. Найти множество значений функции y = sinx + cos x.
Преобразуем выражение sinx + cos x = sinx +sin( - x) =
= 2sin((x + - x)/2)cos((x + + x)/2) = 2sin{)cos(x + ) =
= cos(x + ).
Из определения косинуса следует -1 cosx 1;
-1 cos(x + } 1;
- cos( x + ) ;
Так как данная функция непрерывна на всей области определения, то множество ее значений заключено между наименьшим и наибольшим ее значением, если таковые существуют, множество значений функции y = cos(x + ) есть множество [-; ]. Множество значений функции
y = sinx + cosx есть множество чисел [-; ].
Пример 4. Найти множество значений функции y = 3sinx + 7cos x.
Преобразуем выражение 3sinx + 7cos x. Заметим, что 32 + 72 = 9 + 49 = 58 =
3sinx + 7cos x = ( sinx + cosx).
Так как < 1 и < 1. и ()2 + ()2= 1, то найдется такое число что cos = и sin = . Тогда 3sinx + 7cos x = (cossinx + sincosx) = sin( + x).
Из определения синуса следует, что при любом х справедливо неравенство -1 sinx 1 и, из периодичности этой функции, следует, что
-1 sin( + x) 1, тогда умножая все части двойного неравенства на , имеем - sin( + x) .
Множество значений функции y = 3sinx + 7cos x является множество [ - ; ].
2. Метод применения свойств непрерывной функции.
Среди числовых значений, принимаемых на заданном отрезке непрерывной функцией, всегда имеется как наименьшее pначение m, так и наибольшее значение М. Множество значений функции заключено между числами m и M. Это основные утверждения положенны в основу поиска множества значений функции в следующем примере.
Пример 5. Найти множество значений функции y = 2sinx + cos2x на отрезке [0; p].
Решение.
D(y) = R. Данная функция на всей области определения непрерывна, поэтому на отрезке [0; p] существуют такие точки, в которых функция принимает свои наименьше и наибольшее значения. Эти точки либо критические, либо концы отрезка.
1) найдем производную данной функции
2) y' = 2cosx - 2 sin2x = 2cosx - 4sinxcosx = 2cosx(1 - 2sinx)
3) Область определения производной R.
3) Найдем ее критические точки. y' = 0. 2cosx(1 - sinx) = 0, это уравнение равносильно совокупности двух уравнений:
cosx = 0 и 1 - 2sinx = 0.
Решая каждое из них получим:
x = + n, где n Z и x = (-1)n + k, где kZ.
Отрезку [0; ] принадлежат три критические точки: x = , x =, x =.
Вычисляем значение функции на концах промежутка и в критических точках:
y(0) = 1, y() = 1, y() = 1,5, y() = 1,5, следовательно, наименьшее значение функции на отрезке[0; ] равно 1, а наибольшее значение функции на этом же отрезке равно 1,5. Исходя из выше изложенный утверждений Е(у) = [1; 1,5].
3. Метод приведения к уравнению относительно х с параметром у.
Возможна следующая схема применения этого метода:
Пусть функция задана формулой y = f(x).
2) Рассматриваем функцию как уравнение с параметром у.
3) Выясняем при каких значениях у уравнение f(x) - y = 0 имеет хотя бы один корень. Полученное множество будет множеством значений заданной функции.
Пример 6. найдите множество значений функции .
Решение.
x2 + 5 > 0 при любом х, следовательно, D(y) = R. Рассматриваем формулу:
, как уравнение с параметром у. Это уравнение равносильно уравнению y(x2 + 5) = x2 - 4x + 4;
x2 (y - 1) + 4x + 5y + 1 = 0;
1) Если у = 1, то данное уравнение равносильно линейному уравнению 4х + 6 = 0, которое имеет один корень.
Если у 1, то квадратное уравнение, которое мы получили в результате выше изложенных соображений, имеет корни тогда и только тогда, когда его дискриминант не отрицателен.
D/4 = 4 - (y - 1)(5y + 1) 0;
- 5y2 + 4y +5 0;
5y2 - 4y - 5 0; Вычислим четверть дискриминанта и корни квадратного трехчлена 5y2 - 4y -5:
D/4 = 4 + 25 = 29
y = 2 - и y = 2 + .
Таким образом квадратное уравнение имеет корни,если параметр y [2- ; 1) и (1; 2 + ],
Учитывая пункты 1) и 2), делаем вывод, что множество значений изучаемой функции - [2 - ; 2 + ].
4. Метод непосредственных вычислений.
В случае, когда область определения функции содержит конечное число значений аргумента или количество значений не велико, или множество значений аргумента может быть описано с помощью конечного числа формул, так бывает в случае рассмотрения тригонометрических функций, обычно множество значений функции находят путем непосредственных вычислений.
Пример 7. Укажите множество значений функции y = 11 - .
Решение.
Найдем область определения данной функции. Так как в формуле задающей функцию есть квадратный корень, то согласно определению квадратного корня потребуем, чтобы подкоренное выражение было неотрицательным:
10х - х2 -25 0;
-(х - 5)2 0;
(х - 5)2 0; Откуда х = 5. Таким образом область определения данной функции состоит из одного числа, следовательно, множество значений функции состоит из одного числа и Е(у) = {11}.
По теме: методические разработки, презентации и конспекты
Открытый урок в 11 классе "Множество значений функции,применение при решении нестандартных уравнений и неравенств.
Нахождение области значений функции всегда вызывает затруднения у учащихся, между тем такие задания есть в КИМ-ах ЕГЭ. Комбинированные уравнения и неравенства пугают детей, многие даже не приступают к...
Функция. Область определения и множество значений функции
Презентация к уроку...
Множество значений функции. Открытый урок
Множество значений функции. Открытый урок...
Конспект урока математики (по новым ФГОС), по теме:Понятие функции. Область определения и множество значений функции. Способы задания функции.
Конспект урока математики по новым ФГОС.Тема урока: Понятие функции. Область определения и множество значений функции. Способы задания функции....
Мастер-класс по теме «Множество значений функции». (9 класс)
1.Проверка домашнего задания.2.Игра «Испорченный телефон».3.Определение свойств функции по заданному графику.4.Устно5.Самостоятельная работа в парах на 6 вариантов различной сложности.6.Новый ма...
Функция, область определения. множество значений функции.
Функция, область определения функции, множество значений функции....
Обобщение различных приёмов нахождения множеств значений различных функций.
При повторении материала алгебры и начал анализа во время подготовки к сдаче ЕГЭ по математике я столкнулась с тем, что многие материалы по темам разрозненны, многие даже противоречат друг другу. Разн...