Тесты
тест по алгебре (6 класс) на тему
Проверить знание определений поможет данный тест
Скачать:
Вложение | Размер |
---|---|
a874f938cc98275d548d8cfc7450f7f5.doc | 393 КБ |
Предварительный просмотр:
Тест по теме «НОД и НОК» Фамилия, Имя ____________________________________________
- Натуральные числа называются взаимно простыми, если:
а) у них более двух делителей; б) их НОД равен 1; в) у них один делитель.
- Наибольшим общим делителем чисел а и в называется:
а) наибольшее натуральное число, на которое делятся без остатка эти числа;
б) наименьшее натуральное число, которое кратно и а, и в;
в) наибольшее натуральное число, которое делится без остатка на эти числа.
- Наименьшим общим кратным чисел а и в называется:
а) наибольшее натуральное число, на которое делятся без остатка эти числа;
б) наименьшее натуральное число, которое делится без остатка на эти числа;
в) наименьшее натуральное число, которое кратно и а, и в.
- Чтобы найти НОК нескольких натуральных чисел, надо:
а) Разложить их на простые множители. Выписать множители, входящие в разложение одного из чисел; добавить к ним недостающие множители из разложения остальных чисел. Найти произведение получившихся множителей.
б) Разложить их на простые множители. Выписать множители, входящие в разложение одного из чисел; добавить к ним все множители из разложения остальных чисел. Найти произведение получившихся множителей.
в) Разложить их на простые множители. Из множителей, входящих в разложение одного из этих чисел, вычеркнуть те, которые не входят в разложение других чисел. Найти произведение оставшихся множителей.
- Чтобы найти НОД нескольких натуральных чисел, надо:
а) Разложить их на простые множители. Выписать множители, входящие в разложение одного из чисел; добавить к ним недостающие множители из разложения остальных чисел. Найти произведение получившихся множителей.
б) Разложить их на простые множители. Из множителей, входящих в разложение одного из этих чисел, вычеркнуть те, которые входят в разложение других чисел. Найти произведение получившихся множителей.
в) Разложить их на простые множители. Из множителей, входящих в разложение одного из этих чисел, вычеркнуть те, которые не входят в разложение других чисел. Найти произведение оставшихся множителей.
Тест по теме «НОД и НОК» Фамилия, Имя _____________________________________________
- Натуральные числа называются взаимно простыми, если:
а) у них более двух делителей; б) их НОД равен 1; в) у них один делитель.
- Наибольшим общим делителем чисел а и в называется:
а) наибольшее натуральное число, на которое делятся без остатка эти числа;
б) наименьшее натуральное число, которое кратно и а, и в;
в) наибольшее натуральное число, которое делится без остатка на эти числа.
- Наименьшим общим кратным чисел а и в называется:
а) наибольшее натуральное число, на которое делятся без остатка эти числа;
б) наименьшее натуральное число, которое делится без остатка на эти числа;
в) наименьшее натуральное число, которое кратно и а, и в.
- Чтобы найти НОК нескольких натуральных чисел, надо:
а) Разложить их на простые множители. Выписать множители, входящие в разложение одного из чисел; добавить к ним недостающие множители из разложения остальных чисел. Найти произведение получившихся множителей.
б) Разложить их на простые множители. Выписать множители, входящие в разложение одного из чисел; добавить к ним все множители из разложения остальных чисел. Найти произведение получившихся множителей.
в) Разложить их на простые множители. Из множителей, входящих в разложение одного из этих чисел, вычеркнуть те, которые не входят в разложение других чисел. Найти произведение оставшихся множителей.
- Чтобы найти НОД нескольких натуральных чисел, надо:
а) Разложить их на простые множители. Выписать множители, входящие в разложение одного из чисел; добавить к ним недостающие множители из разложения остальных чисел. Найти произведение получившихся множителей.
б) Разложить их на простые множители. Из множителей, входящих в разложение одного из этих чисел, вычеркнуть те, которые входят в разложение других чисел. Найти произведение получившихся множителей.
в) Разложить их на простые множители. Из множителей, входящих в разложение одного из этих чисел, вычеркнуть те, которые не входят в разложение других чисел. Найти произведение оставшихся множителей.
Тест по теме «Сокращение дробей. Сравнение, сложение и вычитание дробей с разными знаменателями»
Фамилия, Имя ___________________________________________
1. Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится:
а) дробь, противоположная данной; б) более двух делителей; в) равная ей дробь.
- Наименьший общий знаменатель должен:
а) быть делителем данных дробей;
б) делиться на знаменатели данных дробей без остатка;
в) делиться на знаменатели данных дробей с остатком.
- Чтобы привести дробь к наименьшему общему знаменателю, надо:
а) Найти НОК знаменателей этих дробей; умножить наименьший общий знаменатель на знаменатели данных дробей, т.е. найти для каждой дроби дополнительный множитель; умножить числитель каждой дроби на дополнительный множитель;
б) Найти НОК знаменателей этих дробей; разделить наименьший общий знаменатель на знаменатели данных дробей, т.е. найти для каждой дроби дополнительный множитель; умножить знаменатель каждой дроби на дополнительный множитель;
в) Найти НОК знаменателей этих дробей; разделить наименьший общий знаменатель на знаменатели данных дробей, т.е. найти для каждой дроби дополнительный множитель; умножить числитель и знаменатель каждой дроби на дополнительный множитель.
4. Чтобы сравнить (сложить или вычесть) дроби с разными знаменателями, надо:
а) привести данные дроби к наименьшему общему знаменателю; сравнить (сложить или вычесть дроби);
б) разложить числитель на простые множители; сравнить (сложить или вычесть дроби);
в) разложить знаменатель на простые множители; сравнить (сложить или вычесть дроби).
Тест по теме «Сокращение дробей. Сравнение, сложение и вычитание дробей с разными знаменателями»
Фамилия, Имя ___________________________________________
1. Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится:
а) дробь, противоположная данной; б) более двух делителей; в) равная ей дробь.
- Наименьший общий знаменатель должен:
а) быть делителем данных дробей;
б) делиться на знаменатели данных дробей без остатка;
в) делиться на знаменатели данных дробей с остатком.
- Чтобы привести дробь к наименьшему общему знаменателю, надо:
а) Найти НОК знаменателей этих дробей; умножить наименьший общий знаменатель на знаменатели данных дробей, т.е. найти для каждой дроби дополнительный множитель; умножить числитель каждой дроби на дополнительный множитель;
б) Найти НОК знаменателей этих дробей; разделить наименьший общий знаменатель на знаменатели данных дробей, т.е. найти для каждой дроби дополнительный множитель; умножить знаменатель каждой дроби на дополнительный множитель;
в) Найти НОК знаменателей этих дробей; разделить наименьший общий знаменатель на знаменатели данных дробей, т.е. найти для каждой дроби дополнительный множитель; умножить числитель и знаменатель каждой дроби на дополнительный множитель.
4. Чтобы сравнить (сложить или вычесть) дроби с разными знаменателями, надо:
а) привести данные дроби к наименьшему общему знаменателю; сравнить (сложить или вычесть дроби);
б) разложить числитель на простые множители; сравнить (сложить или вычесть дроби);
в) разложить знаменатель на простые множители; сравнить (сложить или вычесть дроби).
5. Чтобы сложить смешанные числа, надо:
а) привести дробные части этих чисел к НОЗ; выполнить сложение целых частей и дробных частей вместе. Если при сложении дробных частей получится неправильная дробь, выделить целую часть из этой дроби и прибавить её к полученной целой части;
б) привести дробные части этих чисел к НОЗ; отдельно выполнить сложение целых частей и отдельно дробных частей. Если при сложении дробных частей получится неправильная дробь, выделить целую часть из этой дроби и прибавить её к полученной целой части;
в) привести дробные части этих чисел к НОЗ; отдельно выполнить сложение целых частей и отдельно дробных частей. Если при сложении целых частей получится неправильная дробь, выделить целую часть из этой целой части и прибавить её к полученной дробной части.
6. Чтобы выполнить вычитание смешанных чисел, надо:
а) привести дробные части этих чисел к НОЗ; если дробная часть уменьшаемого меньше дробной части вычитаемого, превратить её в неправильную дробь, уменьшив на единицу целую часть; отдельно выполнить вычитание целых частей и отдельно дробных частей;
б) привести дробные части этих чисел к НОЗ; если дробная часть уменьшаемого меньше дробной части вычитаемого, превратить её в неправильную дробь, уменьшив на единицу целую часть; отдельно выполнить сложение целых частей и отдельно дробных частей;
в) привести дробные части этих чисел к НОЗ; если дробная часть уменьшаемого больше дробной части вычитаемого, превратить её в неправильную дробь, уменьшив на единицу целую часть; отдельно выполнить вычитание целых частей и отдельно дробных частей.
5. Чтобы сложить смешанные числа, надо:
а) привести дробные части этих чисел к НОЗ; выполнить сложение целых частей и дробных частей вместе. Если при сложении дробных частей получится неправильная дробь, выделить целую часть из этой дроби и прибавить её к полученной целой части;
б) привести дробные части этих чисел к НОЗ; отдельно выполнить сложение целых частей и отдельно дробных частей. Если при сложении дробных частей получится неправильная дробь, выделить целую часть из этой дроби и прибавить её к полученной целой части;
в) привести дробные части этих чисел к НОЗ; отдельно выполнить сложение целых частей и отдельно дробных частей. Если при сложении целых частей получится неправильная дробь, выделить целую часть из этой целой части и прибавить её к полученной дробной части.
6. Чтобы выполнить вычитание смешанных чисел, надо:
а) привести дробные части этих чисел к НОЗ; если дробная часть уменьшаемого меньше дробной части вычитаемого, превратить её в неправильную дробь, уменьшив на единицу целую часть; отдельно выполнить вычитание целых частей и отдельно дробных частей;
б) привести дробные части этих чисел к НОЗ; если дробная часть уменьшаемого меньше дробной части вычитаемого, превратить её в неправильную дробь, уменьшив на единицу целую часть; отдельно выполнить сложение целых частей и отдельно дробных частей;
в) привести дробные части этих чисел к НОЗ; если дробная часть уменьшаемого больше дробной части вычитаемого, превратить её в неправильную дробь, уменьшив на единицу целую часть; отдельно выполнить вычитание целых частей и отдельно дробных частей.
Тест по теме «Применение распределительного свойства умножения»
- Чтобы умножить дробь на натуральное число, надо:
а) её числитель умножить на это число, а знаменатель оставить без изменения;
б) её знаменатель умножить на это число, а числитель оставить без изменения;
в) её числитель и знаменатель умножить на это число.
- Чтобы умножить дробь на дробь, надо:
а) найти произведение числителей и произведение знаменателей этих дробей; первое произведение записать знаменателем, а второе – числителем;
б) найти произведение числителей, а знаменатель оставить прежним;
в) найти произведение числителей и произведение знаменателей этих дробей; первое произведение записать числителем, а второе – знаменателем;
- Для того чтобы выполнить умножение смешанных чисел, надо:
а) отдельно умножить целые числа, отдельно дробные;
б) записать их в виде неправильных дробей, а затем воспользоваться правилом умножения дробей.
Тест по теме «Применение распределительного свойства умножения»
- Чтобы умножить дробь на натуральное число, надо:
а) её числитель умножить на это число, а знаменатель оставить без изменения;
б) её знаменатель умножить на это число, а числитель оставить без изменения;
в) её числитель и знаменатель умножить на это число.
- Чтобы умножить дробь на дробь, надо:
а) найти произведение числителей и произведение знаменателей этих дробей; первое произведение записать знаменателем, а второе – числителем;
б) найти произведение числителей, а знаменатель оставить прежним;
в) найти произведение числителей и произведение знаменателей этих дробей; первое произведение записать числителем, а второе – знаменателем;
- Для того чтобы выполнить умножение смешанных чисел, надо:
а) отдельно умножить целые числа, отдельно дробные;
б) записать их в виде неправильных дробей, а затем воспользоваться правилом умножения дробей.
- Чтобы найти дробь от числа, надо:
а) сложить число и эту дробь;
б) умножить число на эту дробь;
в) разделить число на эту дробь.
- Чтобы умножить смешанное число на натуральное число, можно:
а) умножить целую часть на натуральное число; умножить дробную часть на это натуральное число; сложить полученные результаты;
б) умножить целую часть на натуральное число; умножить дробную часть на это натуральное число; вычесть полученные результаты;
в) умножить целую часть на натуральное число; умножить дробную часть на это натуральное число; умножить полученные результаты
- Чтобы найти дробь от числа, надо:
а) сложить число и эту дробь;
б) умножить число на эту дробь;
в) разделить число на эту дробь.
- Чтобы умножить смешанное число на натуральное число, можно:
а) умножить целую часть на натуральное число; умножить дробную часть на это натуральное число; сложить полученные результаты;
б) умножить целую часть на натуральное число; умножить дробную часть на это натуральное число; вычесть полученные результаты;
в) умножить целую часть на натуральное число; умножить дробную часть на это натуральное число; умножить полученные результаты
Ф.И._______________________________
Тест по теме «Отношения и пропорции»
- Отношением двух чисел называют:
а) произведение этих чисел; б) частное этих чисел.
- Отношение показывает:
а) во сколько раз первое число больше второго или какую часть первое составляет от второго;
б) на сколько первое число больше второго или какую часть второе составляет от первого.
- Что нужно сделать, если величины измерены разными единицами измерениями?
4. Что называют пропорцией?__________________________________________________
5. Подпишите название членов пропорции: а : в = с : d
6. Запишите основное свойство пропорции: ______________________________________
___________________________________________________________________________
7. Что можно найти, используя основное свойство дроби?__________________________
Ф.И._______________________________
Тест по теме «Отношения и пропорции»
- Отношением двух чисел называют:
а) произведение этих чисел; б) частное этих чисел.
- Отношение показывает:
а) во сколько раз первое число больше второго или какую часть первое составляет от второго;
б) на сколько первое число больше второго или какую часть второе составляет от первого.
- Что нужно сделать, если величины измерены разными единицами измерениями?
4. Что называют пропорцией?__________________________________________________
5. Подпишите название членов пропорции: а : в = с : d
6. Запишите основное свойство пропорции: ______________________________________
___________________________________________________________________________
7. Что можно найти, используя основное свойство дроби?__________________________
8. Новые пропорции верны, если:
а) поменять местами числитель и знаменатель в пропорции;
б) поменять местами средние члены или крайние члены.
9. Две величины называют прямо пропорциональными, если:
а) при увеличении (уменьшении) одной из них в несколько раз другая уменьшается (увеличивается) во столько же раз;
б) при увеличении (уменьшении) одной из них в несколько раз другая увеличивается (уменьшается) во столько же раз.
10. Две величины называют обратно пропорциональными, если:
а) при увеличении (уменьшении) одной из них в несколько раз другая уменьшается (увеличивается) во столько же раз;
б) при увеличении (уменьшении) одной из них в несколько раз другая увеличивается (уменьшается) во столько же раз.
8. Новые пропорции верны, если:
а) поменять местами числитель и знаменатель в пропорции;
б) поменять местами средние члены или крайние члены.
9. Две величины называют прямо пропорциональными, если:
а) при увеличении (уменьшении) одной из них в несколько раз другая уменьшается (увеличивается) во столько же раз;
б) при увеличении (уменьшении) одной из них в несколько раз другая увеличивается (уменьшается) во столько же раз.
10. Две величины называют обратно пропорциональными, если:
а) при увеличении (уменьшении) одной из них в несколько раз другая уменьшается (увеличивается) во столько же раз;
б) при увеличении (уменьшении) одной из них в несколько раз другая увеличивается (уменьшается) во столько же раз.
Ф.И._______________________________
Тест по теме «Положительные и отрицательные числа»
- Какие числа называются положительными?
а) со знаком «+»; б) со знаком «-».
2. Какие числа называют отрицательными?
а) со знаком «+»; б) со знаком «-».
3. Два числа, отличающиеся друг от друга только знаками, называют:
а) положительными; б) противоположными;
в) отрицательными.
4. Любое отрицательное число _______________________ любого положительного.
5. Любое положительное число _______________________ нуля.
6. Любое отрицательное число ________________________ нуля.
7. Из двух отрицательных чисел меньше то, модуль которого___________________ .
8. Чему равна сумма двух противоположных чисел? __________________________ .
Ф.И._______________________________
Тест по теме «Положительные и отрицательные числа»
- Какие числа называются положительными?
а) со знаком «+»; б) со знаком «-».
2. Какие числа называют отрицательными?
а) со знаком «+»; б) со знаком «-».
3. Два числа, отличающиеся друг от друга только знаками, называют:
а) положительными; б) противоположными; в) отрицательными.
4. Любое отрицательное число _______________________ любого положительного.
5. Любое положительное число _______________________ нуля.
6. Любое отрицательное число ________________________ нуля.
7. Из двух отрицательных чисел меньше то, модуль которого___________________ .
8. Чему равна сумма двух противоположных чисел? __________________________ .
Ф.И._______________________________
Тест по теме «Положительные и отрицательные числа»
- Какие числа называются положительными?
а) со знаком «+»; б) со знаком «-».
2. Какие числа называют отрицательными?
а) со знаком «+»; б) со знаком «-».
3. Два числа, отличающиеся друг от друга только знаками, называют:
а) положительными; б) противоположными; в) отрицательными.
4. Любое отрицательное число _______________________ любого положительного.
5. Любое положительное число _______________________ нуля.
6. Любое отрицательное число ________________________ нуля.
7. Из двух отрицательных чисел меньше то, модуль которого___________________ .
8. Чему равна сумма двух противоположных чисел? __________________________ .
9. Чтобы сложить два отрицательных числа, надо:
а) из большего модуля слагаемых вычесть меньший; поставить перед полученным числом знак того слагаемого, модуль которого больше;
б) сложить их модули; поставить перед полученным числом знак « - ».
10. Чтобы сложить два числа с разными знаками, надо:
а) из большего модуля слагаемых вычесть меньший; поставить перед полученным числом знак того слагаемого, модуль которого больше;
б) сложить их модули; поставить перед полученным числом знак « - ».
11. Найдите значение суммы:
а) – 36 + (-54)= ; б) -23 + 23= ; в) -145 + 0 = ; г) -127,3 + (-13,9)= ;
д) 26 + (-83)= ; е) ; ж) -0,28 + 0,18= ; з) + (- 0,4)= .
12. Найдите значение выражения х + 2,6, если: х = -1,47 ___________________________
9. Чтобы сложить два отрицательных числа, надо:
а) из большего модуля слагаемых вычесть меньший; поставить перед полученным числом знак того слагаемого, модуль которого больше;
б) сложить их модули; поставить перед полученным числом знак « - ».
10. Чтобы сложить два числа с разными знаками, надо:
а) из большего модуля слагаемых вычесть меньший; поставить перед полученным числом знак того слагаемого, модуль которого больше;
б) сложить их модули; поставить перед полученным числом знак « - ».
11. Найдите значение суммы:
а) – 36 + (-54)= ; б) -23 + 23= ; в) -145 + 0 = ; г) -127,3 + (-13,9)= ;
д) 26 + (-83)= ; е) ; ж) -0,28 + 0,18= ; з) + (- 0,4)= .
12. Найдите значение выражения х + 2,6, если: х = -1,47 ___________________________
9. Чтобы сложить два отрицательных числа, надо:
а) из большего модуля слагаемых вычесть меньший; поставить перед полученным числом знак того слагаемого, модуль которого больше;
б) сложить их модули; поставить перед полученным числом знак « - ».
10. Чтобы сложить два числа с разными знаками, надо:
а) из большего модуля слагаемых вычесть меньший; поставить перед полученным числом знак того слагаемого, модуль которого больше;
б) сложить их модули; поставить перед полученным числом знак « - ».
11. Найдите значение суммы:
а) – 36 + (-54)= ; б) -23 + 23= ; в) -145 + 0 = ; г) -127,3 + (-13,9)= ;
д) 26 + (-83)= ; е) ; ж) -0,28 + 0,18= ; з) + (- 0,4)= .
12. Найдите значение выражения х + 2,6, если: х = -1,47 ___________________________
Ф.И._________________________________
Тест по теме «Умножение и деление положительных и отрицательных чисел»
- Чтобы перемножить два числа с разными знаками, надо:
а) перемножить модули этих чисел и поставить перед полученным числом знак « - »;
б) перемножить модули этих чисел.
2. Чтобы перемножить два отрицательных числа, надо
а) перемножить модули этих чисел и поставить перед полученным числом знак « - »;
б) перемножить модули этих чисел.
3. Поставьте знак:
а) ; б) ; в) .
4. Чтобы разделить отрицательное число на отрицательное число, надо:
а) разделить модуль делимого на модуль делителя, поставить перед полученным числом знак « - »;
б) разделить модуль делимого на модуль делителя.
Ф.И._________________________________
Тест по теме «Умножение и деление положительных и отрицательных чисел»
- Чтобы перемножить два числа с разными знаками, надо:
а) перемножить модули этих чисел и поставить перед полученным числом знак « - »;
б) перемножить модули этих чисел.
2. Чтобы перемножить два отрицательных числа, надо
а) перемножить модули этих чисел и поставить перед полученным числом знак « - »;
б) перемножить модули этих чисел.
3. Поставьте знак:
а) ; б) ; в) .
4. Чтобы разделить отрицательное число на отрицательное число, надо:
а) разделить модуль делимого на модуль делителя, поставить перед полученным числом знак « - »;
б) разделить модуль делимого на модуль делителя.
Ф.И._________________________________
Тест по теме «Умножение и деление положительных и отрицательных чисел»
- Чтобы перемножить два числа с разными знаками, надо:
а) перемножить модули этих чисел и поставить перед полученным числом знак « - »;
б) перемножить модули этих чисел.
2. Чтобы перемножить два отрицательных числа, надо
а) перемножить модули этих чисел и поставить перед полученным числом знак « - »;
б) перемножить модули этих чисел.
3. Поставьте знак:
а) ; б) ; в) .
4. Чтобы разделить отрицательное число на отрицательное число, надо:
а) разделить модуль делимого на модуль делителя, поставить перед полученным числом знак « - »;
б) разделить модуль делимого на модуль делителя.
5. При делении чисел с разными знаками, надо:
а) разделить модуль делимого на модуль делителя, поставить перед полученным числом знак « - »;
б) разделить модуль делимого на модуль делителя.
6. Найдите значения выражений:
а) в) д) ж)
б) г) е) з)
5. При делении чисел с разными знаками, надо:
а) разделить модуль делимого на модуль делителя, поставить перед полученным числом знак « - »;
б) разделить модуль делимого на модуль делителя.
6. Найдите значения выражений:
а) в) д) ж)
б) г) е) з)
5. При делении чисел с разными знаками, надо:
а) разделить модуль делимого на модуль делителя, поставить перед полученным числом знак « - »;
б) разделить модуль делимого на модуль делителя.
6. Найдите значения выражений:
а) в) д) ж)
б) г) е) з)
Ф.И._________________________________
Тест по теме «Рациональные числа и свойства действий над ними»
- Какое число называется рациональным?
а) число, которое можно записать в виде отношения , где а – целое число; п – натуральное;
б) число, которое можно записать в виде отношения , где а – целое число; п – натуральное.
2. Любое целое число а можно записать в виде , а значит оно является:
а) натуральным; б) рациональным.
3. Верно ли, что любое рациональное число можно записать либо в виде десятичной дроби, либо в виде периодической? а) да; б) нет.
4. Сложение рациональных чисел обладает свойствами:
а) сочетательным, переместительным, распределительным;
б) сочетательным, переместительным.
Ф.И._________________________________
Тест по теме «Рациональные числа и свойства действий над ними»
- Какое число называется рациональным?
а) число, которое можно записать в виде отношения , где а – целое число; п – натуральное;
б) число, которое можно записать в виде отношения , где а – целое число; п – натуральное.
2. Любое целое число а можно записать в виде , а значит оно является:
а) натуральным; б) рациональным.
3. Верно ли, что любое рациональное число можно записать либо в виде десятичной дроби, либо в виде периодической? а) да; б) нет.
4. Сложение рациональных чисел обладает свойствами:
а) сочетательным, переместительным, распределительным;
б) сочетательным, переместительным.
Ф.И._________________________________
Тест по теме «Рациональные числа и свойства действий над ними»
- Какое число называется рациональным?
а) число, которое можно записать в виде отношения , где а – целое число; п – натуральное;
б) число, которое можно записать в виде отношения , где а – целое число; п – натуральное.
2. Любое целое число а можно записать в виде , а значит оно является:
а) натуральным; б) рациональным.
3. Верно ли, что любое рациональное число можно записать либо в виде десятичной дроби, либо в виде периодической? а) да; б) нет.
4. Сложение рациональных чисел обладает свойствами:
а) сочетательным, переместительным, распределительным относительно сложения;
б) сочетательным, переместительным.
5. Запишите свойства сложения рациональных чисел (все вам известные).
________________________________________________________________________________
________________________________________________________________________________
6. Умножение рациональных чисел обладает свойствами:
а) сочетательным, переместительным, распределительным относительно сложения;
б) сочетательным, переместительным.
7. Запишите свойства умножения рациональных чисел (все вам известные).
________________________________________________________________________________
________________________________________________________________________________
8. Произведение может быть равно нулю лишь в том случае, когда:
а) обязательно два множителя равны нулю;
б) хотя бы один из множителей равен нулю.
9. Выразите в виде десятичной или периодической дроби числа:
; ; ; ; .
5. Запишите свойства сложения рациональных чисел (все вам известные).
________________________________________________________________________________
________________________________________________________________________________
6. Умножение рациональных чисел обладает свойствами:
а) сочетательным, переместительным, распределительным относительно сложения;
б) сочетательным, переместительным.
7. Запишите свойства умножения рациональных чисел (все вам известные).
________________________________________________________________________________
________________________________________________________________________________
8. Произведение может быть равно нулю лишь в том случае, когда:
а) обязательно два множителя равны нулю;
б) хотя бы один из множителей равен нулю.
9. Выразите в виде десятичной или периодической дроби числа:
; ; ; ; .
5. Запишите свойства сложения рациональных чисел (все вам известные).
________________________________________________________________________________
________________________________________________________________________________
6. Умножение рациональных чисел обладает свойствами:
а) сочетательным, переместительным, распределительным относительно сложения;
б) сочетательным, переместительным.
7. Запишите свойства умножения рациональных чисел (все вам известные).
________________________________________________________________________________
________________________________________________________________________________
8. Произведение может быть равно нулю лишь в том случае, когда:
а) обязательно два множителя равны нулю;
б) хотя бы один из множителей равен нулю.
9. Выразите в виде десятичной или периодической дроби числа:
; ; ; ; .
Ф.И._________________________________
Тест по теме «Раскрытие скобок. Коэффициент. Подобные слагаемые»
- Если перед скобками стоит знак «+», то :
а) знаки всех слагаемых в скобках меняются на противоположные;
б) знаки всех слагаемых в скобках не изменяются.
- Если перед скобками стоит знак «-», то :
а) знаки всех слагаемых в скобках меняются на противоположные;
б) знаки всех слагаемых в скобках не изменяются.
3. Если выражение является произведением числа и одной или нескольких букв, то это число называют:
а) подобным слагаемым;
б) коэффициентом.
Ф.И._________________________________
Тест по теме «Раскрытие скобок. Коэффициент. Подобные слагаемые»
- Если перед скобками стоит знак «+», то :
а) знаки всех слагаемых в скобках меняются на противоположные;
б) знаки всех слагаемых в скобках не изменяются.
- Если перед скобками стоит знак «-», то :
а) знаки всех слагаемых в скобках меняются на противоположные;
б) знаки всех слагаемых в скобках не изменяются.
3. Если выражение является произведением числа и одной или нескольких букв, то это число называют:
а) подобным слагаемым;
б) коэффициентом.
Ф.И._________________________________
Тест по теме «Раскрытие скобок. Коэффициент. Подобные слагаемые»
- Если перед скобками стоит знак «+», то :
а) знаки всех слагаемых в скобках меняются на противоположные;
б) знаки всех слагаемых в скобках не изменяются.
- Если перед скобками стоит знак «-», то :
а) знаки всех слагаемых в скобках меняются на противоположные;
б) знаки всех слагаемых в скобках не изменяются.
3. Если выражение является произведением числа и одной или нескольких букв, то это число называют:
а) подобным слагаемым;
б) коэффициентом.
4. Слагаемые имеющие одинаковую буквенную часть называются ________________________
5. Что нужно сделать, чтобы сложить (привести) подобные слагаемые _________________________________________________________________________________
6. Раскройте скобки и найдите значение выражения:
а) – 0,6 + (-4,4 + 3,8) = б) – 1,8 – (- 4,8 + 2,9) = в)
7. Приведите подобные слагаемые:
а) 3х + 15у – 2х – 20у + 7х = б)
8. Упростите выражение и подчеркните коэффициент:
а) -3 ∙ (-7с) ∙ 4р = б) -2,4m ∙ (-3.2) ∙ 5.5 = в)
4. Слагаемые имеющие одинаковую буквенную часть называются ________________________
5. Что нужно сделать, чтобы сложить (привести) подобные слагаемые _________________________________________________________________________________
6. Раскройте скобки и найдите значение выражения:
а) – 0,6 + (-4,4 + 3,8) = б) – 1,8 – (- 4,8 + 2,9) = в)
7. Приведите подобные слагаемые:
а) 3х + 15у – 2х – 20у + 7х = б)
8. Упростите выражение и подчеркните коэффициент:
а) -3 ∙ (-7с) ∙ 4р = б) -2,4m ∙ (-3.2) ∙ 5.5 = в)
4. Слагаемые имеющие одинаковую буквенную часть называются ________________________
5. Что нужно сделать, чтобы сложить (привести) подобные слагаемые _________________________________________________________________________________
6. Раскройте скобки и найдите значение выражения:
а) – 0,6 + (-4,4 + 3,8) = б) – 1,8 – (- 4,8 + 2,9) = в)
7. Приведите подобные слагаемые:
а) 3х + 15у – 2х – 20у + 7х = б)
8. Упростите выражение и подчеркните коэффициент:
а) -3 ∙ (-7с) ∙ 4р = б) -2,4m ∙ (-3.2) ∙ 5.5 = в)
Тест по теме «Решение уравнений» Ф.И._________________________________
I вариант
- Корни уравнения не изменяются, если:
1)___________________________________________________________________________2)___________________________________________________________________________ ____________________________________________________________________________
2. Решите уравнение: а) 14 +5 х =4х + 3х; х =
б) 3а + 5 = 8а – 15; а =
в) 5(х + 1,2) = 12,5х; х =
г) у =
Тест по теме «Решение уравнений» Ф.И._________________________________
II вариант
- Корни уравнения не изменяются, если:
1)___________________________________________________________________________2)___________________________________________________________________________ ____________________________________________________________________________
2. Решите уравнение: а) 4х +12 = 3х + 8; х =
б) 3в – 35 - 2в = 6в; в =
в) 0,4(6х – 7) = 0,5(3х + 7); х =
г) у =
Тест по теме «Решение уравнений» Ф.И._________________________________
I вариант
- Корни уравнения не изменяются, если:
1)___________________________________________________________________________2)___________________________________________________________________________ ____________________________________________________________________________
2. Решите уравнение: а) 14 +5 х =4х + 3х; х =
б) 3а + 5 = 8а – 15; а =
в) 5(х + 1,2) = 12,5х; х =
г) у =
Тест по теме «Решение уравнений» Ф.И._________________________________
II вариант
- Корни уравнения не изменяются, если:
1)___________________________________________________________________________2)___________________________________________________________________________ ____________________________________________________________________________
2. Решите уравнение: а) 4х +12 = 3х + 8; х =
б) 3в – 35 - 2в = 6в; в =
в) 0,4(6х – 7) = 0,5(3х + 7); х =
г) у =
Тест по теме «Перпендикулярные и параллельные прямые. Координатная плоскость »
1. Перпендикулярными прямыми называются:
а) две непересекающиеся прямые;
б) две прямые, образующие при пересечении прямые углы.
2. Параллельными прямыми называются:
а) две непересекающиеся прямые;
б) две прямые, образующие при пересечении прямые углы.
3. Если две прямые в плоскости перпендикулярны третьей прямой, то они:
а) перпендикулярны; б) параллельны.
4. Сколько прямых можно провести через каждую точку плоскости, не лежащую на данной прямой: а) одну; б) ни одной; в) множество.
5. Ось ординат – это: а) х; б) у.
6. Ось абсцисс – это: а) х; б) у.
Тест по теме «Перпендикулярные и параллельные прямые. Координатная плоскость »
1. Перпендикулярными прямыми называются:
а) две непересекающиеся прямые;
б) две прямые, образующие при пересечении прямые углы.
2. Параллельными прямыми называются:
а) две непересекающиеся прямые;
б) две прямые, образующие при пересечении прямые углы.
3. Если две прямые в плоскости перпендикулярны третьей прямой, то они:
а) перпендикулярны; б) параллельны.
4. Сколько прямых можно провести через каждую точку плоскости, не лежащую на данной прямой: а) одну; б) ни одной; в) множество.
5. Ось ординат – это: а) х; б) у.
6. Ось абсцисс – это: а) х; б) у.
Тест по теме «Перпендикулярные и параллельные прямые. Координатная плоскость »
1. Перпендикулярными прямыми называются:
а) две непересекающиеся прямые;
б) две прямые, образующие при пересечении прямые углы.
2. Параллельными прямыми называются:
а) две непересекающиеся прямые;
б) две прямые, образующие при пересечении прямые углы.
3. Если две прямые в плоскости перпендикулярны третьей прямой, то они:
а) перпендикулярны; б) параллельны.
4. Сколько прямых можно провести через каждую точку плоскости, не лежащую на данной прямой: а) одну; б) ни одной; в) множество.
5. Ось ординат – это: а) координатную прямую х; б) координатную прямую у.
6. Ось абсцисс – это: а) координатную прямую х; б) координатную прямую у.
7. Прямые х и у называют - …
8. Точка О – это…
9. Постройте в координатной плоскости точки К(-3;-2), L(-3;5), M(-4;0), N(0;2), P(4;-2), T(4;4).
10. По рисунку определите координаты точек A, B, C, D, R, S.
7. Прямые х и у называют - …
8. Точка О – это…
9. Постройте в координатной плоскости точки К(-3;-2), L(-3;5), M(-4;0), N(0;2), P(4;-2), T(4;4).
10. По рисунку определите координаты точек A, B, C, D, R, S.
7. Прямые х и у называют - …
8. Точка О – это…
9. Постройте в координатной плоскости точки К(-3;-2), L(-3;5), M(-4;0), N(0;2), P(4;-2), T(4;4).
10. По рисунку определите координаты точек A, B, C, D, R, S.
Название: «__________________»
(0;0); (-1;1); (-3;1); (-2;2); (-3;3); (-4;6); (0;8); (2;5); (2;8); (6;0); (6;10); (3;9); (4;5); (3;0); (2;0); (1;-7); (3;-8); (0;-8); (0;0).
Название: «__________________»
(0;0); (-1;1); (-3;1); (-2;2); (-3;3); (-4;6); (0;8); (2;5); (2;8); (6;0); (6;10); (3;9); (4;5); (3;0); (2;0); (1;-7); (3;-8); (0;-8); (0;0).
Название: «__________________»
(0;0); (-1;1); (-3;1); (-2;2); (-3;3); (-4;6); (0;8); (2;5); (2;8); (6;0); (6;10); (3;9); (4;5); (3;0); (2;0); (1;-7); (3;-8); (0;-8); (0;0).
Название: «__________________»
(0;0); (-1;1); (-3;1); (-2;2); (-3;3); (-4;6); (0;8); (2;5); (2;8); (6;0); (6;10); (3;9); (4;5); (3;0); (2;0); (1;-7); (3;-8); (0;-8); (0;0).
Название: «__________________»
(0;0); (-1;1); (-3;1); (-2;2); (-3;3); (-4;6); (0;8); (2;5); (2;8); (6;0); (6;10); (3;9); (4;5); (3;0); (2;0); (1;-7); (3;-8); (0;-8); (0;0).
Название: «__________________»
(0;0); (-1;1); (-3;1); (-2;2); (-3;3); (-4;6); (0;8); (2;5); (2;8); (6;0); (6;10); (3;9); (4;5); (3;0); (2;0); (1;-7); (3;-8); (0;-8); (0;0).
Название: «__________________»
(0;0); (-1;1); (-3;1); (-2;2); (-3;3); (-4;6); (0;8); (2;5); (2;8); (6;0); (6;10); (3;9); (4;5); (3;0); (2;0); (1;-7); (3;-8); (0;-8); (0;0).
Название: «__________________»
(0;0); (-1;1); (-3;1); (-2;2); (-3;3); (-4;6); (0;8); (2;5); (2;8); (6;0); (6;10); (3;9); (4;5); (3;0); (2;0); (1;-7); (3;-8); (0;-8); (0;0).
Название: «__________________»
(-1;3); (-5;0); (-7;0); (-3;9); (-1;11); (1;11); (3;9); (7;0); (5;0); (1;3); (-1;3); (-2;1); (-2;-1); (-3;-2); (-2;-2); (-2;-8); (-1;-9); (1;-9); (2;-8); (2;-2); (3;-2); (2;-1); (2;1); (1;3).
(-2;-2); (-1;-3); (0;-2); (1;-3); (2;-2).
Название: «__________________»
(-1;3); (-5;0); (-7;0); (-3;9); (-1;11); (1;11); (3;9); (7;0); (5;0); (1;3); (-1;3); (-2;1); (-2;-1); (-3;-2); (-2;-2); (-2;-8); (-1;-9); (1;-9); (2;-8); (2;-2); (3;-2); (2;-1); (2;1); (1;3).
(-2;-2); (-1;-3); (0;-2); (1;-3); (2;-2).
Название: «__________________»
(-1;3); (-5;0); (-7;0); (-3;9); (-1;11); (1;11); (3;9); (7;0); (5;0); (1;3); (-1;3); (-2;1); (-2;-1); (-3;-2); (-2;-2); (-2;-8); (-1;-9); (1;-9); (2;-8); (2;-2); (3;-2); (2;-1); (2;1); (1;3).
(-2;-2); (-1;-3); (0;-2); (1;-3); (2;-2).
Название: «__________________»
(-1;3); (-5;0); (-7;0); (-3;9); (-1;11); (1;11); (3;9); (7;0); (5;0); (1;3); (-1;3); (-2;1); (-2;-1); (-3;-2); (-2;-2); (-2;-8); (-1;-9); (1;-9); (2;-8); (2;-2); (3;-2); (2;-1); (2;1); (1;3).
(-2;-2); (-1;-3); (0;-2); (1;-3); (2;-2).
Название: «__________________»
(-1;3); (-5;0); (-7;0); (-3;9); (-1;11); (1;11); (3;9); (7;0); (5;0); (1;3); (-1;3); (-2;1); (-2;-1); (-3;-2); (-2;-2); (-2;-8); (-1;-9); (1;-9); (2;-8); (2;-2); (3;-2); (2;-1); (2;1); (1;3).
(-2;-2); (-1;-3); (0;-2); (1;-3); (2;-2).
Название: «__________________»
(-1;3); (-5;0); (-7;0); (-3;9); (-1;11); (1;11); (3;9); (7;0); (5;0); (1;3); (-1;3); (-2;1); (-2;-1); (-3;-2); (-2;-2); (-2;-8); (-1;-9); (1;-9); (2;-8); (2;-2); (3;-2); (2;-1); (2;1); (1;3).
(-2;-2); (-1;-3); (0;-2); (1;-3); (2;-2).
По теме: методические разработки, презентации и конспекты
Тесты по русскому языку, итоговый тест для 5 класса, тест "Выразительные средства", уроки по произведениям Воронковой и Чивилихина
Тренировочные тесты для подготовки к ЕГЭ. Можно использовать в качестве контрольной работыТест для отработки знаний задания В8Итоговый тест для 5 классаМетодические разработки уроков по произведениям ...
Мастер класс «Создание тестов с помощью конструктора тестов RomeXoftMultiTesterSystem 3.3»
Мастер класс «Создание тестов с помощью конструктора тестов RomeXoftMultiTesterSystem 3.3» Ознакомиться педагогов с программой «RomeXoftMultiTesterSystem 3.3” и дать им первоначальные...
Тест по физике_Итоговый тест. Законы электрического тока
Тест по физике для учащихся 8 класса, обучающихся по учебнику А. В. Перышкина. Тема: итоговый - Законы электрического тока. Работа выполнена в программе MyTest....
Тесты. Виды тестов
Важнейший элемент рейтиноговой системы - тестирование. Тесты позволяют в кротчайший срок проверить знания больших групп учащихся, выявить пробелы при изложении учебного материала, применить методы мет...
ЕГЭ английский Тест toefl Тест ielts CAE tests Тесты по аудированию Тесты по чтению Словарный запас Что нужно знать для успешной сдачи ЕГЭ
Тест toeflТест ieltsCAE testsТесты по аудированиюТесты по чтениюСловарный запас Что нужно знать для успешной сдачи ЕГЭЧему бы ни учился человек на протяжении всей своей жизни, его всегда бу...
Тест по повести А.С.Пушкина "Капитанская дочка",тест по лирике поэтов ХХ века о Великой Отечественной войне и итоговый тест по курсу литературы 8 класса.
Тесты рекомендуются как итоговый контроль....
Урок по технологии. "Блюда из теста. Понятие о разных видах теста. Песочное тесто"
Разработка урока по теме "Блюда из теста. Понятие о разных видах теста. Песочное тесто"....