Рабочая программа элективного курса " Математика для каждого"
материал для подготовки к егэ (гиа) по алгебре (9 класс) на тему

Тиунова Ольга Николаевна

Рабочая программа данного элективного курса расчитана на 34 часа в год, один урок в неделю. Она предназначена для учащихся девятого класса. Состоит из трёх модулей по одиннадцать часов в каждом.

Скачать:


Предварительный просмотр:

Государственное бюджетное общеобразовательное учреждение

средняя общеобразовательная школа № 251 Кировского района Санкт-Петербурга

«Рассмотрено»

Председатель МО учителей математики и информатики

________Сабадаш Н.В.

Протокол № _1

от «  31 » августа 2016г.

«Согласовано»

Заместитель директора по УВР _____ Епихина Л.С..

«   31» _августа 2016г.

«Утверждаю»

Директор школы № 251

Кировского района СПб

______О.А.Конышева

Приказ № 64а

от «  31 » августа 2016г.

Рабочая программа

элективного  учебного предмета

«Математика для каждого»

для 9  класса

1 час в неделю (34ч.)

Составитель:

учитель математики

ГБОУ СОШ № 251

Кировского района

Санкт-Петербурга

Тиунова О.Н.

2016/ 2017 учебный год

Санкт-Петербург


ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Элективный предмет  для 9 классов основной школы ГБОУ СОШ №251 Кировского района Санкт-Петербурга разработан на основе:

  1. Федеральным законом « Об образовании в Российской Федерации», с изменениями и дополнениями, вступившими в силу 06.05.2014, № 273 - ФЗ от 29.12.2012;
  2. Требованиями Федерального государственного образовательного стандартов основного общего и среднего (полного) общего образования;
  3. Требованиями к результатам освоения основной образовательной программы ГБОУ СОШ № 251 (личностным, метапредметным, предметным); основными подходами к развитию и формированию универсальных учебных действий (УУД) для основного общего образования и среднего (полного) общего образования;
  4. Основной общеобразовательной программой ГБОУ СОШ № 251 Кировского района Санкт-Петербурга (в том числе: Учебный план ГБОУ СОШ № 251 Кировского района Санкт-Петербурга на 2016 - 2017 учебный год; Календарный учебный график ГБОУ СОШ № 251 Кировского района Санкт-Петербурга на 2016 - 2017 учебный год);
  5. Санитарно-эпидемиологическими требованиями к условиям и организации обучения в ОУ (утверждены постановлением Главного государственного санитарного врача РФ от 29.12.2010г. № 189);
  6. Локальным актом «Положение о рабочей программе учебных предметов, курсов, дисциплин (модулей) ГБОУ СОШ № 251 Кировского района Санкт-Петербурга» (утвержден приказом директора  от 01.09.2016г.).
  7. Локальным актом «Положение об оценивании знаний обучающихся ГБОУ СОШ № 251 Кировского района Санкт-Петербурга» (утвержден приказом директора №  от 01.09.2016г.).

За основу выбран курс разработанный в Санкт-Петербургской академии постдипломного  педагогического образования Институтом общего образования кафедрой физико-математического образования авторами; Лукичевой Е.Ю.зав.кафедрой ФМОи Лоншаковой Т.Е.методистом ЦЕНиМО.

Актуальность  изучения учебного элективного предмета «Математика для каждого»

Предлагаемый элективный предмет адресован учащимся  9 классов. Главная его идея – это реализация идеи пред профильной подготовки учащихся, организация систематического и системного повторения, углубления и расширения курса математики за период изучения в основной школе, что, несомненно, будет направлено на осмысленное изучение предмета, а значит и правильный выбор дальнейшего профиля обучения в старшей школе. Данный предмет позволит удовлетворить образовательные потребности учащихся, осваивающих как базовый уровень математики, так и повышенный уровень.

Программа данного элективного предмета ориентирована на рассмотрение отдельных вопросов математики, которые входят в содержание государственной итоговой аттестации по математике за курс основной школы. Предмет дополняет и развивает школьный курс математики, а также является информационной поддержкой дальнейшего образования в старшей школе и ориентирован на удовлетворение образовательных потребностей школьников, их аналитических и синтетических способностей. Основная идея данного элективного курса заключена в расширении и углублении знаний учащихся по некоторым разделам математики, в обеспечении прочного и сознательного овладения учащимися системой математических знаний и умений, в том числе необходимых при сдаче выпускного экзамена.

В процессе освоения содержания данного предмета ученики овладевают новыми знаниями, обогащают свой жизненный опыт, получают возможность практического применения своих интеллектуальных, организаторских способностей, развивают свои коммуникативные способности, овладевают обще учебными умениями. Освоение предметного содержания курса и сам процесс изучения его становятся средствами, которые обеспечивают переход от обучения учащихся к их самообразованию.

Изучение предмета предполагает обеспечение положительной мотивации учащихся на повторение ранее изученного материала, выделение узловых вопросов курса, предназначенных для повторения, использование схем, моделей, опорных конспектов, справочников, компьютерных тестов (в том числе интерактивных), самостоятельное составление (моделирование) тестов.

Методологической основой предлагаемого предмета является деятельностный подход к обучению математике. Данный подход предполагает обучение не только готовым знаниям, но и деятельности по приобретению этих знаний, способов рассуждений, доказательств. В связи с этим в процессе изучения курса учащимся предлагаются задания, стимулирующие самостоятельное открытие ими математических фактов, новых, ранее неизвестных, приемов и  способов решения задач.

Развивающий и воспитательный потенциал элективного курса полностью соответствует основным идеям, заложенным в федеральных образовательных стандартах второго поколения.

Цели с учетом специфики учебного элективного предмета «Математика для каждого» :

оказание помощи учащимся в выборе дальнейшего профиля обучения в старшей школе: создание условий для самореализации учащихся в процессе учебной деятельности, развитие математических, интеллектуальных способностей учащихся, обобщенных умственных умений.

Задачи учебного  элективного предмета «Математика для каждого»

1.Для достижения поставленных целей в процессе обучения решаются следующие задачи:

2. Расширение и углубление школьного курса математики.

3. Актуализация, систематизация и обобщение знаний учащихся по математике.      Формирование у учащихся понимания роли математических знаний как инструмента, позволяющего выбрать лучший вариант действий из многих возможных.

4. Развитие интереса учащихся к изучению математики.

5. Расширение научного кругозора учащихся.

6. Обучение учащихся решению учебных и жизненных проблем, способам анализа информации, получаемой в разных формах.

7. Формирование понятия о математических методах при решении сложных математических задач.

8. Ориентирование учащихся на профессии, существенным образом связанные с математикой.

Организация занятий элективного предмета  отличается от урочной: учащемуся необходимо давать достаточное время на размышление, приветствовать любые попытки самостоятельных рассуждений, выдвижения гипотез, способов решения задач. В уроке заложена возможность дифференцированного обучения.

Формы и виды контроля

Применяются следующие виды деятельности на занятиях:  обсуждение, тестирование, конструирование тестов, заданий, исследовательская деятельность, работа с текстом, диспут, обзорные лекции,  мини-лекции, семинары и практикумы по решению задач, предусмотрены консультации.

Существенным является организация работы по обучению заполнения бланков итоговой аттестации, что, безусловно, будет способствовать снятию психологического напряжения учащихся перед процедурой экзамена.          

Методы и формы обучения определяются требованиями ФГОС, с  учетом  индивидуальных и возрастных особенностей учащихся, развития и саморазвития личности. В связи с этим определены основные приоритеты методики изучения элективного курса:

  • обучение через опыт и сотрудничество;
  • интерактивность (работа в малых группах, ролевые игры, тренинги, вне занятий - метод проектов);
  • личностно-деятельностный и субъект–субъективный подход (большее внимание к личности учащегося, а не целям учителя, равноправное их взаимодействие).

Формы и методы контроля: тестирование, самопроверка, взаимопроверка учащимися друг друга, собеседование, письменный и устный зачет, проверочные письменные работы, наблюдение. Количество заданий в тестах по каждой теме не одинаково, они носят комплексный характер, и большая часть их призвана выявить уровень знаний и умений тестируемого.

Организация и проведение аттестации учащихся

Предусмотрено проведение  промежуточных зачетов по окончанию каждого модуля, выполнение творческих заданий и итоговой зачетной работы.

При прослушивании блоков лекционного материала и проведения семинара, закрепляющего знания учащихся, предусматривается индивидуальное или групповое домашнее задание, содержащее элементы исследовательской работы, задачи для самостоятельного решения. Защита решений и результатов исследований проводится на выделенном для этого занятии и оценивается по пятибалльной системе или системе «зачет-незачет», в зависимости от уровня подготовленности группы.

Методические рекомендации по реализации программы

Основным дидактическим средством для предлагаемого предмета являются тексты рассматриваемых типов задач, которые могут быть выбраны из разнообразных сборников, различных вариантов, открытого банка заданий ГИА  или составлены учителем.

Для более эффективной работы учащихся целесообразно в качестве дидактических средств использовать медиа ресурсы, организовывать самостоятельную работу учащихся с использованием дистанционных образовательных технологий, в том числе  осуществлять консультационные процедуры через форум, чат, электронную почту.

Место учебного элективного  предмета «Математика для каждого» в учебном плане

Варианты конструирования учебного плана элективного предмета

Предмет построен по модульному принципу  для наполнения учебного плана. Выбраны  3 модуля по 11 часов и 1 час итоговое занятие. За год  34 урока.

Элективный  предмет на 34 часа

№ п\п

Название модуля

Количество часов

1

Модуль №1(Неравенства)

11

2

Модуль №2 (Функции. Координаты и графики)

11

3

Модуль №3 (Текстовые задачи)

11

7

Итоговое занятие

1

Итого

34

Общая характеристика элективного  учебного предмета «Математика для каждого»

Элективный предмет «Математика для каждого» обеспечивает изучение других дисциплин. В первую очередь это относится к предметам естественно-научного цикла, в частности к физике. Развитие логического мышления учащихся при обучении предмета способствует усвоению предметов гуманитарного цикла. Практические умения и навыки алгебраического характера необходимы для трудовой и профессиональной подготовки школьников.

В курсе  можно выделить следующие основные содержательные линии:

  • неравенства
  • функции;
  • задачи

Содержание каждого из этих разделов разворачивается в содержательно-методическую линию, пронизывающую все основные содержательные линии. При этом каждый модульслужит цели овладения учащимися некоторыми элементами универсального математического языка, вторая  способствует созданию общекультурного, гуманитарного фона изучения курса.

Содержание линий служит базой для дальнейшего изучения учащимися математики, способствует развитию их логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни, способствует формированию у учащихся математического аппарата для решения задач из разделов математики, смежных предметов и окружающей реальности. Язык алгебры подчёркивает значение математики как языка для построения математических моделей процессов и явлений реального мира.

Развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики, и овладение навыками дедуктивных рассуждений. Преобразование символьных форм вносит специфический вклад в развитие воображения учащихся, их способностей к математическому творчеству. В основной школе материал группируется вокруг рациональных выражений.

Содержание модуля  «Функции» нацелено на получение школьниками конкретных знаний о функции как о важнейшей математической модели для описания и исследования разнообразных процессов. Изучение этого материала способствует развитию у учащихся умения использовать различные языки математики (словесный, символический, графический), вносит вклад в формирование представлений о роли математики в развитии цивилизации и культуры.

Модуль «Задачи»- обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования у учащихся функциональной грамотности —умения воспринимать и критически анализировать информацию, представленную в различных формах.

Личностные, метапредметные и предметные результаты освоения учебного предмета « Математика для каждого»

Личностными результатами обучения алгебре в основной школе являются:

  • умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
  • критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
  • представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;
  • креативность мышления, инициатива, находчивость, активность при решении математических задач;
  • умение контролировать процесс и результат учебной математической деятельности;
  • способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.

Метапредметными результатами обучения  в основной школе являются:

  • первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;
  • умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
  • умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
  • умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
  • умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
  • умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
  • понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
  • умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
  • умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.

Общими предметными результатами обучения  на элективе являются:

  • овладение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучаемых понятиях (число, одночлен, многочлен, алгебраическая дробь, уравнение, функция, вероятность) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;
  • умение работать с математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики, использовать различные языки математики, проводить классификации, логические обоснования, доказательства математических утверждений;
  • развитие представлений о числе и числовых системах от натуральных до действительных чисел; овладение навыками  устных, письменных, инструментальных вычислений;
  • овладение символьным языком алгебры, приемами выполнения тождественных преобразований рациональных выражений, решения уравнений, систем уравнений; умение использовать идею координат на плоскости для интерпретации уравнений, систем; умение применять алгебраические преобразования, аппарат уравнений для решения задач из различных разделов курса;
  • овладение системой функциональных понятий, функциональным языком и символикой; умение использовать функционально-графические представления для описания и анализа реальных зависимостей;
  • овладение основными способами представления и анализа статистических данных; наличие представлений о статистических закономерностях в реальном мире и о различных способах их изучения, о вероятностных моделях;

умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера.

Содержание учебного элективного предмета «Математика для каждого»

  • Модуль «Неравенства»

Доказательство неравенств:

Модуль суммы меньше или равен сумме модулей. Сумма взаимообратных положительных чисел не меньше 2.Среднее геометрическое не больше среднего арифметического положительных чисел.

Метод интервалов. Рациональные неравенства. Неравенства, содержащие модуль. Иррациональные неравенства.

  • Модуль «Функции. Координаты и графики»

Функции (линейная, обратно-пропорциональная, квадратичная и др.), их свойства и графики.  «Считывание» свойств функции по её графику. Анализирование графиков, описывающих зависимость между величинами. Установление соответствия между графиком функции и её аналитическим заданием. Построение графиков функций и зависимостей, содержащих знак модуля. Графики уравнений.  

  • Модуль «Текстовые задачи»

Типы задач. Методы и способы решения задач. Основные способы моделирования задач. Составления плана решения задач. Равномерное движение. Задачи на движение по реке, суше, воздуху. Задачи на определение средней скорости движения. Задачи «на совместную работу». Основная формула процентов. Простые и сложные проценты. Средний процент изменения величины. Общий процент изменения величины. Процентные вычисления в жизненных ситуациях. Банковские операции.  Задачи связанные с банковскими расчётами. Концентрация вещества. Процентное содержание вещества. Количество вещества. Разноуровневые задачи на смеси, сплавы, растворы. Задачи  на «оптимальное решение».


Поурочное планирование учебного элективного  предмета « Математика для каждого»

урока

Дата

Тема урока

Основные вопросы и понятия

Характеристика деятельности учащихся

 Модуль 1 «Неравенства» 11 часов

1/1

03.09

Модуль суммы.

Доказательство неравенств:

Модуль суммы меньше или равен сумме модулей. Сумма взаимообратных положительных чисел не меньше 2.Среднее геометрическое не больше среднего арифметического положительных чисел.

Метод интервалов. Рациональные неравенства. Неравенства, содержащие модуль. Иррациональные неравенства.

Распознавать линейные, квадратичные  неравенства, доказывать неравенства. Решать неравенства, системы  неравенств,  неравенства с модулем.

Решать неравенства на основе графических представлений

оценивать правильность выполнения действий на уровне адекватной ретроспективной оценки.

строить речевое высказывание в устной и письменной форме. Возводить числовое неравенство с положительными левой и правой частью в степень. Сравнивать степени с разными основаниями и равными показателями.

2/2

10.09.

Среднее геометрическое.

3/3

17.09

Доказательство неравенств

4/4

24.09

Метод интервалов

5/5

01.10

Рациональные неравенства

6/6

08.10

Иррациональные неравенства.

7/7

15.10

Неравенства, содержащие модуль

8/8

22.10

Неравенства, содержащие модуль

9/9

29.10

Решение неравенств

10/10

12.11

Решение неравенств

методом интервалов

11/11

19.11

Решение неравенств

методом интервалов

Модуль 2 « Функции. Координаты и графики» 11 часов

12/1

26.11

  Функции (линейная, квадратичная, их свойства и графики)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  

Функции (линейная, обратно-пропорциональная, квадратичная и др.), их свойства и графики.  «Считывание» свойств функции по её графику. Анализирование графиков, описывающих зависимость между величинами. Установление соответствия между графиком функции и её аналитическим заданием. Построение графиков функций и зависимостей, содержащих знак модуля. Графики уравнений.  

Вычислять значения функций, заданных формулами  составлять таблицы значений функций. Формулировать определение функции. Строить графики функций. Описывать свойства функции на основе её графического представления (область определения, множества значений, промежутки знако постоянства, чётность, нечётность, возрастание, убывание, наибольшее и наименьшее значения). Интерпретировать графики реальных зависимостей. Использовать функциональную символику для записи разнообразных фактов, связанных с  заданными функциями

Применять многообразие свойств и графиков  функции

Строить графики  функций различными методами, применять свойства функций, исследовать функцию. Решать неравенства вида ,  аналитически и графически, решать  уравнения с модулем.

13/2

03.12

Считывание» свойств функции по её графику

14/3

10.12

Построение графиков, содержащих модуль

15/4

17.12

Графики уравнений

16/5

24.12

Кусочно-заданные функции

17/6

14.01

Кусочно-заданные функции

18/7

21.01

Построение графиков кусочно-заданных функций

19/8

28.01

Построение  и анализирование графиков ,описывающих зависимость между величинами

20/9

04.02

Функции с модулем

21/10

11.02

Построение графиков функций, содержащих модуль

22/11

18.02

Построение графиков функций, содержащих модуль

Модуль  3 «Текстовые задачи» 11 часов

23/1

25.02

Типы задач.

Задачи «на движение»

Типы задач. Методы и способы решения задач. Основные способы моделирования задач. Составления плана решения задач. Равномерное движение. Задачи на движение по реке, суше, воздуху. Задачи на определение средней скорости движения. Задачи «на совместную работу». Основная формула процентов. Простые и сложные проценты. Средний процент изменения величины. Общий процент изменения величины. Процентные вычисления в жизненных ситуациях. Банковские операции.  Задачи связанные с банковскими расчётами. Концентрация вещества. Процентное содержание вещества. Количество вещества. Разно уровневые задачи на смеси, сплавы, растворы. Задачи  на «оптимальное решение».

Решать текстовые задачи алгебраическим способом: переходить от словесной формулировки условия задачи к алгебраической модели путем составления уравнения; решать составленное уравнение ;интерпретировать результат

учитывать правило в планировании и контроле способа решения, различать способ и результат действия. ориентироваться на разнообразие способов решения задач, учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве,

контролировать действия партнера.

24/2

04.03

Типы задач.

Задачи «на движение»

25/3

11.03

Задачи «на совместную работу»

26/4

18.03

Задачи «на совместную работу»

27/5

08.04

Процентные вычисления в жизненных ситуациях

28/6

15.04

Процентные вычисления в жизненных ситуациях

29/7

22.04

Задачи, связанные с банковскими расчётами

30/8

29.04

Задачи, связанные с банковскими расчётами

31/9

06.05

Задачи на смеси, сплавы, растворы

32/10

13.05

Задачи на смеси, сплавы, растворы

33/11

20.05

Задачи на «оптимальное решение»

34/1

20.05

Итоговое занятие


Планируемые результаты изучения элективного предмета «Математика для каждого»

Рациональные числа

Выпускник научится:

  1. понимать особенности десятичной системы счисления;
  2. владеть понятиями, связанными с делимостью натуральных чисел;
  3. выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;
  4. сравнивать и упорядочивать рациональные числа;
  5. выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применение калькулятора;
  6. использовать понятия и умения, связанные с пропорциональностью величин, процентами в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчеты.

Выпускник получит возможность:

  1. познакомиться с позиционными системами счисления с основаниями, отличными от 10;
  2. углубить и развить представления о натуральных числах и свойствах делимости;
  3. научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.

Действительные числа

Выпускник научится:

  1. использовать начальные представления о множестве действительных чисел;
  2. владеть понятием квадратного корня, применять его в вычислениях.

Выпускник получит возможность:

  1. развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в человеческой практике;
  2. развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).

Измерения приближения оценки

Выпускник научится:

  1. использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.

Выпускник получит возможность:

  1. понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения;
  2. понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных.

Алгебраические выражения

Выпускник научится:

  1. владеть понятиями «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные; работать с формулами;
  2. выполнять преобразования выражений, содержащих степени с целыми показателями и квадратные корни;
  3. выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями;
  4. выполнять разложение многочленов на множители.

Выпускник получит возможность:

  1. научиться выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приёмов;
  2. применять тождественные преобразования для решения задач из различных разделов курса (например, для нахождения наибольшего/наименьшего значения выражения).

Уравнения

Выпускник научится:

  1. решать основные виды рациональных уравнений с одной переменной, системы двух уравнений с двумя переменными;
  2. понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;
  3. применять графические представления для исследования уравнений, исследования и решения систем уравнений с двумя переменными.

Выпускник получит возможность:

  1. овладеть специальными приёмами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;
  2. применять графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты.

Неравенства

Выпускник научится:

  1. понимать и применять терминологию и символику, связанные с отношением неравенства, свойства числовых неравенств;
  2. решать линейные неравенства с одной переменной и их системы; решать квадратные неравенства с опорой на графические представления;
  3. применять аппарат неравенств для решения задач из различных разделов курса.

Выпускник получит возможность научиться:

  1. разнообразным приёмам доказательства неравенств; уверенно применять аппарат неравенств для решения разнообразных математических задач и задач из смежных предметов, практики;
  2. применять графические представления для исследования неравенств, систем неравенств, содержащих буквенные коэффициенты.

Числовые функции

Выпускник научится:

  1. понимать и использовать функциональные понятия и язык (термины, символические обозначения);
  2. строить графики элементарных функций; исследовать свойства числовых функций на основе изучения поведения их графиков;
  3. понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами.

Выпускник получит возможность научиться:

  1. проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; на основе графиков изученных функций строить более сложные графики (кусочно-заданные, с «выколотыми» точками и т. п.);
  2. использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса.

Числовые последовательности

Выпускник научится:

  1. понимать и использовать язык последовательностей (термины, символические обозначения);
  2. применять формулы, связанные с арифметической и геометрической прогрессий, и аппарат, сформированный при изучении других разделов курса, к решению задач, в том числе с контекстом из реальной жизни.

Выпускник получит возможность научиться:

  1. решать комбинированные задачи с применением формул п-го члена и суммы первых п членов арифметической и геометрической прогрессий, применяя при этом аппарат уравнений и неравенств;
  2. понимать арифметическую и геометрическую прогрессии как функции натурального аргумента; связывать арифметическую прогрессию с линейным ростом, геометрическую – с экспоненциальным ростом.

Статистика

Выпускник научится

использовать простейшие способы представления и анализа статистических данных.

Выпускник получит возможность

приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты

Вероятность

Выпускник научится

  1. находить относительную частоту и вероятность случайного события.

Выпускник получит возможность

  1. приобрести опыт проведения случайных экспериментов, в том числе, с помощью компьютерного моделирования, интерпретации их результатов.

Комбинаторика

Выпускник научится

  1. решать комбинаторные задачи на нахождение числа объектов или комбинаций.

Выпускник получит возможность

  1. научиться некоторым специальным приёмам решения комбинаторных задач.

№ п.п.

Наименование объектов и средств

Примечание

I

Книгопечатная продукция

1.  Аверьянов Д.И.,Алтынов П.И., Баврин Н. Н.Математика: Большой справочник для школьника и поступающих в вузы. - 2-еизд. - М.: Дрофа, 2011.

2.  Бунимович Е.А., Кузнецова Л.В., Рослова Л.О. и др. ГИА-2012: Экзамен в новой форме: Математика : 9-й кл. : Тренировочные варианты экзаменационных работ для проведения государственной итоговой аттестации в новой форме. – М.: Астрель, 2016.

3.  ГИА 2015. Математика. Типовые экзаменационные варианты: 30 вариантов /под ред. Ященко И.В., М.: МЦНМО, 2016.

4. Жигулев Л.А., Зорина Н.А. Итоговая аттестация по алгебре в 9 классе. Учебно-методическое пособие. – СПб.: СмиоПресс, 2009.

5.  Кузнецова Л.В. Суворова С.Б. Сборник заданий для подготовки итоговой аттестации в 9 классе. - М.: Просвещение 2012.

6. Семенов А.В., Трепалин А.С., Ященко И.В., Захаров П.И. /под. ред. И. В. Ященко; Московский центр непрерывного математического образования. — М.: Интеллект-Центр, 2015.

7. Сканави М.И. Сборник задач по математике для поступающих в ВУЗЫ - М.: ОНИКС 21 век, 2001.

8.Ткачева М.В., Федорова Н.Е. Элементы статистики и вероятность. М.: Просвещение, 2007.

 У учителя

У учителя

II

Экранно-звуковые средства и пособия

1 http://www.ed.gov.ru; http://www.edu.ru – Министерство образования РФ.

2 http://www.kokch.kts.ru/cdo – Тестирование online: 5–11 классы.

3 http://www.rusedu.ru – Архив учебных программ информационного образовательного портала RusEdu!.

4 http://mega.km.ru – Мегаэнциклопедия Кирилла и Мефодия.

5 http://www.rubricon.ru; http://www.encyclopedia.ru – сайты «Энциклопедий энциклопедий».

6 http://www.algmir.org/index.html – Мир Алгебры – Образовательный Портал.

7 http://www.bymath.net – Вся элементарная математика.          http://schoolmathematics.ru/apellyaciya-ege-voprosy-i-otvety-vysockij-i-r

III

Оборудование класса

15 парт

30 стульев

Доска школьная


По теме: методические разработки, презентации и конспекты

Рабочая программа элективного курса "Математика в экономике"

  Актуальность элективного курса «Математика в экономике» состоит в том, что он дополняет и развивает школьный курс математики, а так же является информационной поддержкой выбранного...

рабочая программа элективный курс математика-9

В курсе планиметрии встречаются задачи, связанные с «разрезанием фигуры на части и перекладыванием этих частей» при вычислении площадей многоугольников. В основе этого метода лежит понятие рав...

Рабочая программа элективного курса "Математика в жизни человека"

Описание место учебного предмета в учебном планеНа изучение элективного курса «Математика в жизни человека» в 9 классе выделено по 0,5 часа в неделю (17 часов за год).\Пояснительная запискаМатематика ...

Рабочая программа элективного курса «Математика в твоей профессии»

Курс рассчитан на 34 часа для 9 классов предпрофильной подготовки. Концепция модернизации российского образования предусматривает создание системы специализированной подготовки (профильного обуч...

РАБОЧАЯ ПРОГРАММА ЭЛЕКТИВНОГО КУРСА «МАТЕМАТИКА И ЛОГИКА» ПО МАТЕМАТИКЕ ДЛЯ 9 КЛАССА НА 2017-2018 УЧЕБНЫЙ ГОД

Рабочая программа элективного курса " математика и логика" по математике для 9 класса...

Рабочая программа для курса "Математика для каждого"

Рабочая программа для курса "Математика для каждого"...