Рабочая программа по математике ФГОС 5-9 класс
рабочая программа по алгебре (5, 9 класс) на тему

Дик Жанна Александровна

Рабочая программа

Скачать:

ВложениеРазмер
Файл rabochaya_programma_po_matematike_fgos_dlya_5_a_klassa_1.docx117.97 КБ

Предварительный просмотр:

МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

«СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 101»

Программа рассмотрена

на заседании МО учителей математики, физики и информатики

Руководитель МО

________Шилова Н.М.

Протокол № 1

от 27.08.2015 г.

Программа рекомендована

к работе педагогическим

советом МБОУ «СОШ №101»

Протокол № 1

от 31.08.2015 г.

Утверждаю:

Директор МБОУ «СОШ №101»

___________    Чиконина Г.В.

Приказ № 166а от 01.09.2015 г

Рабочая программа

по математике

для учащихся 5-9 классов

Составитель:

Дик Жанна Александровна,

учитель математики

Новокузнецк 2015 г.

  1.  Пояснительная записка

Рабочая программа по математике разработана в соответствии с требованиями федерального государственного образовательного стандарта основного общего образования (приказ Министерства образования и науки Российской Федерации от 17  декабря  2010 г. № 1897) на основе Примерной основной образовательной программы основного общего образования по математике (одобрена решением федерального учебно-методического объединения по общему образованию, протокол от 8 апреля 2015г. № 1/15).

Изучение математики в 5-9-х классах является фундаментом для математического образования и развития учащихся, доминирующей функцией при её изучении в этом возрасте является интеллектуальное развитие учащихся. Курс построен на взвешенном соотношении новых и ранее усвоенных знаний, обязательных и дополнительных тем для изучения, а также учитывает возрастные и индивидуальные особенности усвоения знаний учащимися.

Обучение математике является важнейшей составляющей основного общего образования и призвано развивать логическое мышление и математическую интуицию учащихся, обеспечить овладение учащимися умениями в решении различных практических и межпредметных задач. Математика входит в предметную область «Математика и информатика».

Основными целями курса математики 5-9 классов являются: осознание значения математики в повседневной жизни человека; формирование представлений о социальных, культурных и исторических факторах становления математической науки; формирование представлений о математике как части общечеловеческой культуры, универсальном языке науки, позволяющем описывать и изучать реальные процессы и явления.

Усвоенные в курсе математики на уровне основного общего образования знания и способы действий необходимы не только для дальнейшего успешного изучения математики и других учебных предметов на уровне среднего общего образования, но и для решения практических задач в повседневной жизни. Достижение перечисленных целей предполагает решение следующих задач:

  • формирование мотивации изучения математики, готовности и способности учащихся к саморазвитию, личностному самоопределению, построению индивидуальной траектории в изучении предмета;
  • формирование у учащихся способности к организации своей учебной деятельности посредством освоения личностных, познавательных, регулятивных и коммуникативных универсальных учебных действий;
  •  формирование специфических для математики стилей мышления, необходимых для полноценного функционирования в современном обществе, в частности логического, алгоритмического и эвристического;
  • формирование геометрического стиля мышления;
  •  освоение знаний по геометрии и овладение умением применять их при решении геометрических задач;
  •  развитие пространственного воображения, познавательного интереса, интеллектуальных и творческих способностей учащихся;
  •  освоение в ходе изучения математики специфических видов деятельности, таких как построение математических моделей, выполнение инструментальных вычислений, овладение символическим языком предмета и др.;
  •  формирование умений представлять информацию в зависимости от поставленных задач в виде таблицы, схемы, графика, диаграммы, использовать компьютерные программы, Интернет при ее обработке;
  •  овладение учащимися математическим языком и аппаратом как средством описания и исследования явлений окружающего мира;
  •  овладение системой математических знаний, умений и навыков, необходимых для решения задач повседневной жизни, изучения смежных дисциплин и продолжения образования;
  •  формирование научного мировоззрения;
  •  воспитание отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.

  1.  Общая характеристика учебного предмета «Математика»

Практическая значимость курса математики 5-9 классов состоит в том, что предметом ее изучения являются пространственные формы и количественные отношения реального мира. В современном мире математическая подготовка необходима каждому человеку, так как математика присутствует во всех сферах человеческой деятельности.

В процессе изучения математики учащиеся 5-9 классов учатся излагать свои мысли ясно и исчерпывающе, приобретают навыки чёткого и грамотного выполнения математических записей, при этом использование математического языка позволяет развивать у учащихся грамотную устную и письменную речь.

Особо акцентируется содержательное раскрытие математических понятий, толкование сущности математических методов и области их применения, демонстрация возможностей применения теоретических знаний для решения задач прикладного характера, например, решение текстовых задач, денежные и процентные расчеты, умение пользоваться количественной информацией, представленной в различных формах, умение «читать» графики. Осознание общего, существенного является основной базой для решения упражнений. Важно приводить детальные пояснения к решению типовых упражнений. Этим раскрывается суть метода, подхода, предлагается алгоритм или эвристическая схема решения упражнений определенного типа.

С точки зрения воспитания творческой личности, особенно важно, чтобы в структуру мышления учащихся, кроме алгоритмических умений и навыков, которые сформулированы в стандартных правилах, формулах и алгоритмах действий, вошли эвристические приемы, как общего, так и конкретного характера. Эти приемы, в частности, формируются при поиске решения задач высших уровней сложности. Для адаптации в современном информационном обществе важным фактором является формирование математического стиля мышления, включающее в себя индукцию и дедукцию, обобщение и конкретизацию, анализ и синтез, классификацию и систематизацию, абстрагирование и аналогию.

Обучение математики дает возможность учащимся научиться планировать свою деятельность, критически оценивать свою деятельность, принимать самостоятельные решения, отстаивать свои взгляды и убеждения.

Курсы математики для 5-6 классов и алгебры для 7-9 классов складываются из содержательных компонентов: арифметики, алгебры, элементов комбинаторики и теории вероятностей, статистики и логики. В курсе геометрии 5-9 классов условно выделяют следующие содержательные линии: наглядная геометрия, геометрические фигуры, измерение геометрических величин, координаты, векторы, логика и множества, геометрия в историческом развитии.

Раздел «Арифметика» призван способствовать приобретению практических навыков вычислений, необходимых для повседневной жизни. Он служит базой для всего дальнейшего изучения математики, способствует логическому развитию и формированию умения пользоваться алгоритмами. Развитие понятия о числе связано с изучением натуральных, целых, рациональных и иррациональных чисел, формированием представлений о действительных числах.

Раздел «Алгебра» нацелен на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира. Одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Основным понятием алгебры является «рациональное выражение».

В разделе «Функции» важной задачей является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов, для формирования у учащихся представлений о роли математики в развитии цивилизации. Изучение этого материала способствует освоению символическим и графическим языками, умению работать с таблицами.

Раздел «Вероятность и статистика» является обязательным компонентом школьного образования, усиливающим его прикладное значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности — умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит учащимся осуществлять рассмотрение разных случаев, перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах. При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы стохастического мышления.

Раздел «Логика и множества» служит цели овладения учащимися элементами математической логики и теории множеств, что вносит важный вклад в развитие мышления и математического языка и нацелен на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи.

Раздел «Математика в историческом развитии» способствует повышению общекультурного уровня учащихся, пониманию роли математики в общечеловеческой культуре, значимости математики в развитии цивилизации и современного общества. Время на изучение этого раздела дополнительно не выделяется, усвоение его не контролируется, хотя исторические аспекты вплетаются в основной материал всех разделов курса.

В разделе «Наглядная геометрия» 5-6 классы основное внимание уделяется геометрическим фигурам на плоскости и в пространстве, геометрическим величинам, понятию равенства фигур и симметрии. У учащихся формируются общие представления о геометрических фигурах, умения их распознавать, называть, изображать, измерять. Это готовит их к изучению систематического курса геометрии в 7 классе.

При изучении учебного предмета учащиеся также будут использовать наблюдение, конструирование, геометрический эксперимент.

Раздел «Геометрические фигуры» призван формировать знания о геометрических фигурах как важнейших математических моделях для описания окружающего мира. Систематическое изучение свойств геометрических фигур вносит важный вклад в формирование логического мышления учащихся за счет применения индуктивных и дедуктивных рассуждений. Решение задач вычислительного характера развивает алгоритмический стиль мышления, работа с бумагой развивает конструкторские умения и др.

Раздел «Измерение геометрических величин» приучает работать с приборами для измерения, пользоваться формулами для вычислений.

Материал, относящийся к содержательным линиям «Координаты» и «Векторы», в значительной степени носит межпредметный характер, так как применяется в разных разделах математики и при изучении смежных предметов.

Линия «Геометрия в историческом развитии» проходит практически через все темы курса и предназначена для формирования представлений о геометрии как части человеческой культуры, для создания культурно-исторической среды обучения. На изучение этого раздела дополнительно время не выделяется, усвоение его не контролируется, но содержание материала вплетается в основной материал всех разделов курса.

Основной формой организации образовательной деятельности является урок. Он позволяет учителю систематически и последовательно излагать преподаваемый предмет. Урок дает учителю возможность применять разнообразные методы обучения, сочетать индивидуальную, групповую и фронтальную работу учащихся. На уроке учащиеся овладевают не только системой знаний, но и методами познавательной деятельности. Это является важным условием включения учащихся в активную самостоятельную работу по овладению знаниями.

Формы контроля: самостоятельные работы, контрольные работы, тестирование, проекты, творческие работы.

  1. Описание места учебного предмета «Математика» в учебном плане

На изучение математики на уровне основного общего образования отводится 986 часов, 5 часов в неделю в 5 классе (34 учебные недели), и по 6 часов в неделю в 6-9 классах (34 учебные недели).

  1. Личностные, метапредметные и предметные результаты освоения учебного предмета «Математика»

Личностныерезультаты:

1) умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

2) критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

3) представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;

4) креативность мышления, инициатива, находчивость, активность при решении математических задач;

5) умение контролировать процесс и результат учебной математической деятельности;

6) способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

7) воспитание российской гражданской идентичности: патриотизма, уважения к Отечеству, осознания вклада отечественных учёных в развитие мировой науки;

8) ответственное отношение к учению, готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;

9) осознанный выбор и построение дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений с учётом устойчивых познавательных интересов, а также на основе формирования уважительного отношения к труду, развитие опыта участия в социально значимом труде;

10) критичность мышления, инициатива, находчивость, активность при решении геометрических задач.

Метапредметные результаты:

1) первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;

2) умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

3) умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

4) умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;

5) умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

6) умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

7) понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

8) умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

9) умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

10) умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе, развивать мотивы и интересы своей познавательной деятельности;

11) умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;

12) умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации;

13) устанавливать причинно-следственные связи, проводить доказательное рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;

14) умение иллюстрировать изученные понятия и свойства фигур, опровергать неверные утверждения;

15) компетентность в области использования информационно-коммуникационных технологий;

16) первоначальные представления об идеях и о методах геометрии как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;

17) умение видеть геометрическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

18) умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме, принимать решение в условиях неполной или избыточной, точной или вероятностной информации;

19) умение понимать и использовать математические средства наглядности (чертежи, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;

20) умение выдвигать гипотезы при решении задачи и понимать необходимость их проверки.

Предметные результаты:

1) овладение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучаемых понятиях (число, геометрическая фигура, уравнение, функция, вероятность) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;

2) умение работать с математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики, использовать различные языки математики, проводить классификации, логические обоснования, доказательства математических утверждений;

3) развитие представлений о числе и числовых системах от натуральных до действительных чисел; овладение навыками  устных, письменных, инструментальных вычислений;

4) овладение символьным языком алгебры, приемами выполнения тождественных преобразований рациональных выражений, решения уравнений, систем уравнений, неравенств и систем неравенств; умение использовать идею координат на плоскости для интерпретации уравнений, неравенств, систем; умение применять алгебраические преобразования, аппарат уравнений и неравенств для решения задач из различных разделов курса;

5) овладение системой функциональных понятий, функциональным языком и символикой; умение использовать функционально-графические представления для описания и анализа реальных зависимостей;

6) овладение основными способами представления и анализа статистических данных; наличие представлений о статистических закономерностях в реальном мире и о различных способах их изучения, о вероятностных моделях;

7) овладение геометрическим языком, умение использовать его для описания предметов окружающего мира; развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;

8) усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне — о простейших пространственных телах, умение применять систематические знания о них для решения геометрических и практических задач;

9) умение измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объемов геометрических фигур;

10) умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера;

11) осознание значения геометрии для повседневной жизни человека;

12) представление о геометрии как сфере математической деятельности, об этапах её развития, о её значимости для развития цивилизации;

13) развитие умений работать с учебным математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли с применением математической терминологии и символики, проводить классификации, логические обоснования;

14) владение базовым понятийным аппаратом по основным разделам содержания;

15) систематические знания о фигурах и их свойствах;

16) практически значимые геометрические умения и навыки, умение применять их к решению геометрических и негеометрических задач, а именно:

  • изображать фигуры на плоскости;
  • использовать геометрический язык для описания предметов окружающего мира;
  • измерять длины отрезков, величины углов, вычислять площади фигур;
  • распознавать и изображать равные, симметричные и подобные фигуры;
  • выполнять построения геометрических фигур с помощью циркуля и линейки;
  • читать и использовать информацию, представленную на чертежах, схемах;
  • проводить практические расчёты.

5. Содержание учебного предмета «Математика»

Математика 5-6 классы

Натуральные числа

Ряд натуральных чисел. Десятичная запись натуральных чисел. Округление натуральных чисел.

Координатный луч.

Сравнение натуральных чисел. Сложение и вычитание натуральных чисел. Свойства сложения.

Умножение и деление натуральных чисел. Свойства умножения. Деление с остатком. Степень числа с натуральным показателем.

Делители и кратные натурального числа. Наибольший общий делитель. Наименьшее общее кратное. Признаки делимости на 2, на 3, на 5, на 9, на 10.

Простые и составные числа. Разложение чисел на простые множители.

Решение текстовых задач арифметическими способами.

Дроби

Обыкновенные дроби. Основное свойство дроби.  Нахождение дроби от числа. Нахождение числа по значению его дроби. Правильные и неправильные дроби. Смешанные числа.

Сравнение обыкновенных дробей и смешанных чисел. Арифметические действия с обыкновенными дробями и смешанными числами.

Десятичные дроби. Сравнение и округление десятичных дробей. Арифметические действия с десятичными дробями. Прикидки результатов вычислений. Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной. Бесконечные периодические десятичные дроби. Десятичное приближение обыкновенной дроби.

Отношение.  Процентное отношение двух чисел. Деление числа в данном отношении. Масштаб.

Пропорция. Основное свойство пропорции. Прямая и обратная пропорциональные зависимости.

Проценты. Нахождение процентов от числа. Нахождение числа по его процентам.

Решение текстовых задач арифметическими способами.

Рациональные числа

Положительные, отрицательные числа и число нуль.

Противоположные числа. Модуль числа.

Целые числа. Рациональные числа. Сравнение рациональных чисел. Арифметические действия с рациональными числами. Свойства сложения и умножения рациональных чисел.

Координатная прямая. Координатная плоскость.

Величины. Зависимости между величинами

Единицы длины, площади, объема, массы, времени, скорости.

Примеры зависимостей между величинами. Представление зависимостей в виде формул. Вычисления по формулам.

Числовые и буквенные выражения. Уравнения

Числовые выражения. Значение числового выражения. Порядок действий в числовых выражениях. Буквенные выражения. Раскрытие скобок. Подобные слагаемые, приведение подобных слагаемых. Формулы.

Уравнения. Корень уравнения. Основные свойства уравнений. Решение текстовых задач с помощью уравнений.

Элементы статистики, вероятности. Комбинаторные задачи

Представление данных в виде таблиц, круговых и столбчатых диаграмм, графиков.

Среднее арифметическое. Среднее значение величины.

Случайное событие. Достоверное и невозможное события. Вероятность случайного события. Решение комбинаторных задач.

Геометрические фигуры.  Измерения геометрических величин

Отрезок. Построение отрезка. Длина отрезка, ломаной.  Измерение длины отрезка, построение отрезка заданной длины. Периметр многоугольника. Плоскость. Прямая. Луч.

Угол. Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира.  Прямоугольник. Квадрат. Треугольник. Виды треугольников. Окружность и круг. Длина окружности. Число π.

Равенство фигур. Понятие и свойства площади. Площадь прямоугольника и квадрата. Площадь круга. Ось симметрии фигуры.

Наглядные представления о пространственных фигурах: прямоугольный параллелепипед, куб, пирамида, цилиндр, конус, шар, сфера. Примеры разверток многогранников, цилиндра, конуса. Понятие и свойства объема. Объем прямоугольного параллелепипеда и куба. Взаимное расположение двух прямых. Перпендикулярные прямые. Параллельные прямые. Осевая и центральная симметрии.         

Математика в историческом развитии

Римская система счисления. Позиционные системы счисления. Обозначение цифр в Древней Руси. Старинные меры длины. Введение метра как единицы длины. Метрическая система мер в России, в Европе. История формирования математических символов. Дроби в Вавилоне, Египте, Риме, на Руси. Открытие десятичных дробей. Мир простых чисел. Золотое сечение. Число нуль. Появление отрицательных чисел.

Л. Ф. Магницкий. П. Л. Чебышев. А. Н. Колмогоров.

Алгебра 7-9 классы

Алгебраические выражения

Выражения с переменными. Значение выражения с переменными. Допустимые значения переменных. Тождество. Тождественные преобразования алгебраических выражений. Доказательство тождеств.

Степень с натуральным показателем и ее свойства. Одночлены. Одночлен стандартного вида. Степень одночлена. Многочлены. Многочлен стандартного вида. Степень многочлена. Сложение, вычитание, умножение многочленов. Формулы сокращенного умножения: квадрат суммы и квадрат разности двух выражений, произведение суммы и разности двух выражений. Разложение многочлена на множители. Вынесение общего множителя за скобки. Метод группировки. Разность квадратов двух выражений. Сумма и разность кубов двух выражений. Квадратный трехчлен. Корень квадратного трехчлена. Свойства квадратного трехчлена. Разложение квадратного трехчлена на множители.

Рациональные выражения. Целые выражения. Дробные выражения. Рациональная дробь. Основное свойство  рациональной дроби. Сложение, вычитание, умножение и деление рациональных дробей. Возведение рациональной дроби в степень. Тождественные преобразования рациональных выражений и их преобразования. Свойства квадратных корней и их применение в вычитаниях.

Уравнения и неравенства

 Уравнение с одной переменной. Корень уравнения. Линейное уравнение. Квадратное уравнение, формула корней квадратного уравнения. Решение рациональных уравнений. Примеры решения уравнений высших степеней: методы замены переменной, разложение на множители.

Уравнение с двумя переменными; решение системы. Система двух линейных уравнений с двумя переменными; решение подстановкой и алгебраическим сложением. Уравнение с несколькими переменными. Примеры решения нелинейных систем. Примеры решения уравнений в целых числах.

Неравенство с одной переменной. Решение неравенства. Линейные неравенства с одной переменной и их системы. Квадратные неравенства. Примеры решения дробно-рациональных неравенств.

Числовые неравенства и их свойства. Доказательство числовых и алгебраических неравенств.

Переход от словесной формулировки соотношений между величинами к алгебраической. Решение текстовых задач алгебраическим способом.

Числовые последовательности

Понятие последовательности. Арифметическая и геометрическая прогрессии. Формулы общего члена арифметической и геометрической прогрессий, суммы первых нескольких членов арифметической и геометрической прогрессий.

Сложные проценты.

Числовые функции

Понятие функции. Область определения функции. Способы задания функции. График функции, возрастание и убывание функции, наибольшее и наименьшее значения функции, нули функции, промежутки знакопостоянства. Чтение графиков функций.

Функции, описывающие прямую и обратную пропорциональную зависимости, их графики. Линейная функция, ее график, геометрический смысл коэффициентов. Гипербола. Квадратичная функция, ее график, парабола. Координаты вершины параболы, ось симметрии. Степенные функции с натуральным показателем, их графики. Графики функций: корень квадратный, корень кубический, модуль. Использование графиков функций для решения уравнений и систем.

Примеры графических зависимостей, отражающих реальные процессы: колебание, показательный рост; числовые функции, описывающие эти процессы.

Параллельный перенос графика вдоль осей координат и симметрия относительно осей.

Координаты

 Изображение чисел точками координатной прямой. Геометрический смысл модуля числа. Числовые промежутки: интервал, отрезок, луч. Формула расстояния между точками координатной прямой.

Декартовы координаты на плоскости; координаты точки. Координаты середины отрезка. Формула расстояния между двумя точками плоскости. Уравнение прямой, угловой коэффициент прямой, условие параллельности прямых. Уравнение окружности с центром в начале координат и в любой заданной точке.

Графическая интерпретация уравнений с двумя переменными и их систем, неравенств с двумя переменными и их систем.

Геометрия 7-9 классы

Простейшие геометрические фигуры

Точка, прямая. Отрезок, луч. Угол. Виды углов. Смежные и вертикальные углы. Биссектриса угла.

Пересекающиеся и параллельные прямые. Перпендикулярные прямые. Признаки параллельности прямых. Свойства параллельных прямых. Перпендикуляр и наклонная к прямой.

Многоугольники

Треугольники. Виды треугольников. Медиана, биссектриса, высота, средняя линия треугольника. Признаки равенства треугольников. Свойства и признаки равнобедренного треугольника. Серединный перпендикуляр отрезка. Сумма углов треугольника. Внешние углы треугольника. Неравенство треугольника. Соотношения между сторонами и углами треугольника. Теорема Пифагора.

Подобные треугольники. Признаки подобия треугольников. Точки пересечения медиан, биссектрис, высот треугольника, серединных перпендикуляров сторон треугольника. Свойство биссектрисы треугольника. Теорема Фалеса. Метрические соотношения в прямоугольном треугольнике. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0 до 180. Формулы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Решение треугольников. Теорема синусов и теорема косинусов.

Четырёхугольники. Параллелограмм. Свойства и признаки параллелограмма. Прямоугольник, ромб, квадрат, их свойства и признаки. Трапеция. Средняя линия трапеции и её свойства.

Многоугольники. Выпуклые многоугольники. Сумма углов выпуклого многоугольника. Правильные многоугольники.

Окружность и круг. Геометрические построения

Окружность и круг. Элементы окружности и круга. Центральные и вписанные углы. Касательная к окружности и её свойства. Взаимное расположение прямой и окружности. Описанная и вписанная окружности треугольника. Вписанные и описанные четырёхугольники, их свойства и признаки. Вписанные и описанные многоугольники.

Геометрическое место точек (ГМТ). Серединный перпендикуляр отрезка и биссектриса угла как ГМТ.

Геометрические построения циркулем и линейкой. Основные задачи на построение: построение угла, равного данному, построение серединного перпендикуляра данного отрезка, построение прямой, проходящей через данную точку и перпендикулярной данной прямой, построение биссектрисы данного угла. Построение треугольника по заданным элементам. Метод ГМТ в задачах на построение.

Измерение геометрических величин

Длина отрезка. Расстояние между двумя точками. Расстояние от точки до прямой. Расстояние между параллельными прямыми.

Периметр многоугольника.

Длина окружности. Длина дуги окружности.

Градусная мера угла. Величина вписанного угла.

Понятия площади многоугольника. Равновеликие фигуры. Нахождение площади квадрата, прямоугольника, параллелограмма, треугольника, трапеции.

Понятие площади круга. Площадь сектора. Отношение площадей подобных фигур.

Декартовые координаты на плоскости

Формула расстояния между двумя точками. Координаты середины отрезка. Уравнение фигуры. Уравнения окружности и прямой. Угловой коэффициент прямой.

Векторы

Понятие вектора. Модуль (длина) вектора. Равные векторы. Коллинеарные векторы. Координаты вектора. Сложение и вычитание векторов. Умножение вектора на число. Скалярное произведение векторов. Косинус угла между двумя векторами.

Геометрические преобразования

Понятие о преобразовании фигуры. Движение фигуры. Виды движения фигуры: параллельный перенос, осевая симметрия, центральная симметрия, поворот. Равные фигуры. Гомотетия. Подобие фигур.

Элементы логики

Определение. Аксиомы и теоремы. Доказательство. Доказательство от противного. Теорема, обратная данной. Необходимое и достаточное условия. Употребление логических связок если...,  то..., тогда и только тогда.

Геометрия в историческом развитии

Из истории геометрии, «Начала» Евклида. История пятого постулата Евклида. Тригонометрия — наука об измерении треугольников. Построение правильных многоугольников. Как зародилась идея координат.

Н.И. Лобачевский. Л. Эйлер. Фалес. Пифагор.

  1. Тематическое планирование с определением основных видов учебной деятельности

Математика. 5 класс
5 часов в неделю, всего 170 часов;

п/п

Название раздела

Количество

 часов

Характеристика деятельности учащихся

1.

Глава 1

Натуральные числа

20

Описывать свойства натурального ряда. Читать и записывать натуральные числа, сравнивать и упорядочивать их.

Распознавать на чертежах, рисунках, в окружающем мире отрезок, прямую, луч, плоскость. Приводить примеры моделей этих фигур.

Измерять длины отрезков. Строить отрезки заданной длины. Решать задачи на нахождение длин отрезков. Выражать одни единицы длин через другие. Приводить примеры приборов со шкалами.

Строить на координатном луче точку с заданной координатой, определять координату точки.

2.

Глава 2

Сложение и вычитание
натуральных чисел

33

Формулировать свойства сложения и вычитания натуральных чисел, записывать эти свойства в виде формул. Приводить примеры числовых и буквенных выражений, формул. Составлять числовые и буквенные выражения по условию задачи. Решать уравнения на основании зависимостей между компонентами действий сложения и вычитания. Решать текстовые задачи с помощью составления уравнений.

Распознавать на чертежах и рисунках углы, многоугольники, в частности треугольники, прямоугольники. Распознавать в окружающем мире модели этих фигур.

С помощью транспортира измерять градусные меры углов, строить углы заданной градусной меры, строить биссектрису данного угла. Классифицировать углы. Классифицировать треугольники по количеству равных сторон и по видам их углов. Описывать свойства прямоугольника.

Находить с помощью формул периметры прямоугольника и квадрата. Решать задачи на нахождение периметров прямоугольника и квадрата, градусной меры углов.

Строить логическую цепочку рассуждений, сопоставлять полученный результат с условием задачи.

Распознавать фигуры, имеющие ось симметрии.

3.

Глава 3

Умножение и деление
натуральных чисел

37

Формулировать свойства умножения и деления натуральных чисел, записывать эти свойства в виде формул. Решать уравнения на основании зависимостей между компонентами арифметических действий.

Находить остаток при делении натуральных чисел. По заданному основанию и показателю степени находить значение степени числа.

Находить площади прямоугольника и квадрата с помощью формул. Выражать одни единицы  площади через другие.

Распознавать на чертежах и рисунках прямоугольный параллелепипед, пирамиду. Распознавать в окружающем мире модели этих фигур.

Изображать развёртки прямоугольного параллелепипеда и пирамиды.

Находить объёмы прямоугольного параллелепипеда и куба с помощью формул. Выражать одни единицы  объёма через другие.

Решать комбинаторные задачи с помощью перебора  вариантов.  

4.

Глава 4

Обыкновенные дроби

18

Распознавать обыкновенную дробь, правильные и неправильные дроби, смешанные числа.

Читать и записывать обыкновенные дроби, смешанные числа. Сравнивать обыкновенные дроби с равными знаменателями. Складывать и вычитать обыкновенные дроби с равными знаменателями. Преобразовывать неправильную дробь в смешанное число, смешанное число в неправильную дробь. Уметь записывать результат деления двух натуральных чисел в виде обыкновенной дроби.

5.

Глава 5

Десятичные дроби

48

Распознавать, читать и записывать десятичные дроби. Называть разряды десятичных знаков в записи десятичных дробей. Сравнивать десятичные дроби. Округлять десятичные дроби и натуральные числа. Выполнять прикидку результатов вычислений. Выполнять арифметические действия над десятичными дробями.

Находить среднее арифметическое нескольких чисел. Приводить примеры средних значений величины. Разъяснять, что такое «один процент». Представлять проценты в виде десятичных дробей и десятичные дроби в виде процентов. Находить процент от числа и число по его процентам.

6.

Повторение и систематизация
учебного материала

14

Математика. 6 класс

6 часов в неделю, всего 204 часов

п/п

Название раздела

Количество

часов

Характеристика деятельности учащихся

1.

Глава 1

Делимость натуральных чисел

22

Формулировать определения понятий: делитель, кратное, простое число, составное число, общий делитель, наибольший общий делитель, взаимно простые числа, общее кратное, наименьшее общее кратное и признаки делимости на 2, на 3, на 5, на 9, на 10.

Описывать правила нахождения наибольшего общего делителя (НОД), наименьшего общего кратного (НОК) нескольких чисел, разложения натурального числа на простые множители.

2.

Глава 2

Обыкновенные дроби

47

Формулировать определения понятий: несократимая дробь, общий знаменатель двух дробей, взаимно обратные числа. Применять основное свойство дроби для сокращения дробей. Приводить дроби к новому знаменателю. Сравнивать обыкновенные дроби.  Выполнять арифметические действия над обыкновенными дробями.

Находить дробь от числа и число по заданному значению его дроби. Преобразовывать обыкновенные дроби в десятичные. Находить десятичное приближение обыкновенной дроби.

3.

Глава 3

Отношения и пропорции

35

Формулировать определения понятий: отношение, пропорция, процентное отношение двух чисел, прямо пропорциональные и обратно пропорциональные величины. Применять основное свойство отношения и основное свойство пропорции. Приводить примеры и описывать свойства величин, находящихся в прямой и обратной пропорциональных зависимостях. Находить процентное отношение двух чисел. Делить число на пропорциональные части.

Записывать с помощью букв основные свойства дроби, отношения, пропорции.

Анализировать информацию, представленную в виде столбчатых и круговых диаграмм. Представлять информацию в виде столбчатых и круговых диаграмм.

Приводить примеры случайных событий. Находить вероятность случайного события в опытах с равновозможными исходами.

Распознавать на чертежах и рисунках окружность, круг, цилиндр, конус, сферу, шар и их элементы. Распознавать в окружающем мире модели этих фигур. Строить с помощью циркуля окружность заданного радиуса. Изображать развёртки цилиндра и конуса. Называть приближённое значение числа π. Находить с помощью формул длину окружности, площадь круга

4.

Глава 4

Рациональные числа  и действия над ними

79

Приводить примеры использования положительных и отрицательных чисел. Формулировать определение координатной прямой. Строить на координатной прямой точку с заданной координатой, определять координату точки.

Характеризовать множество целых чисел. Объяснять понятие множества рациональных чисел.

Формулировать определение модуля числа. Находить модуль числа.

Сравнивать рациональные числа. Выполнять арифметические действия над рациональными числами. Записывать свойства арифметических действий над рациональными числами в виде формул. Называть коэффициент буквенного выражения.

Применять свойства при решении уравнений. Решать текстовые задачи с помощью уравнений.

Распознавать на чертежах и рисунках перпендикулярные и параллельные прямые, фигуры, имеющие ось симметрии, центр симметрии. Указывать в окружающем мире модели этих фигур. Формулировать определение перпендикулярных прямых и  параллельных прямых. Строить с помощью угольника перпендикулярные прямые и параллельные прямые.

Объяснять и иллюстрировать понятие координатной плоскости. Строить на координатной плоскости точки с заданными координатами, определять координаты точек на плоскости. Строить отдельные графики зависимостей между величинами по точкам. Анализировать графики зависимостей между величинами (расстояние, время, температура и т. п.)

5.

Повторение и систематизация
учебного материала

27

Алгебра. 7 класс

4 часа в неделю, всего 136 часов

п/п

Название раздела

Количество

 часов

Характеристика деятельности учащихся

1.

Глава 1

Линейное уравнение с одной переменной

17

Распознавать числовые выражения и выражения с переменными, линейные уравнения. Приводить примеры выражений с переменными, линейных уравнений. Составлять выражение  с переменными по условию задачи. Выполнять преобразования выражений: приводить подобные слагаемые, раскрывать скобки. Находить значение выражения с переменными при заданных значениях переменных. Классифицировать алгебраические выражения. Описывать целые выражения.

Формулировать определение линейного уравнения. Решать линейное уравнение в общем виде. Интерпретировать уравнение как математическую модель реальной ситуации. Описывать схему решения текстовой задачи, применять её для решения задач

2.

Глава 2

Целые выражения

68

Формулировать определения: тождественно равных выражений, тождества, степени с натуральным показателем, одночлена, стандартного вида одночлена, коэффициента одночлена, степени одночлена, многочлена, степени многочлена; свойства: степени с натуральным показателем, знака степени; правила: доказательства тождеств, умножения одночлена на многочлен, умножения многочленов.

Доказывать свойства степени с натуральным показателем. Записывать и доказывать формулы: произведения суммы и разности двух выражений, разности квадратов двух выражений, квадрата суммы и квадрата разности двух выражений, суммы кубов и разности кубов двух выражений.

Вычислять значение выражений с переменными. Применять свойства степени для преобразования выражений. Выполнять умножение одночленов и возведение одночлена в степень. Приводить одночлен к стандартному виду. Записывать многочлен в стандартном виде, определять степень многочлена. Преобразовывать произведение одночлена и многочлена; суммы, разности, произведения двух многочленов в многочлен. Выполнять разложение многочлена на множители способом вынесения общего множителя за скобки, способом группировки, по формулам сокращённого умножения и с применением нескольких способов. Использовать указанные преобразования в процессе решения уравнений, доказательства  утверждений, решения текстовых задач.

3.

Глава 3

Функции

18

Приводить примеры зависимостей между величинами. Различать среди зависимостей функциональные зависимости.

Описывать понятия: зависимой и независимой переменных, функции, аргумента функции; способы задания функции. Формулировать определения: области определения функции, области значений функции, графика функции, линейной функции, прямой пропорциональности.

Вычислять значение функции по заданному значению аргумента. Составлять таблицы значений функции. Строить график функции, заданной таблично. По графику функции, являющейся моделью реального процесса, определять характеристики этого процесса. Строить график линейной функции и прямой пропорциональности. Описывать свойства этих функций.

4.

Глава 4

Системы линейных уравнений
с двумя переменными

25

Приводить примеры: уравнения с двумя переменными; линейного уравнения с двумя переменными; системы двух линейных уравнений с двумя переменными; реальных процессов, для которых уравнение с двумя переменными или система уравнений с двумя переменными являются математическими моделями.

Определять, является ли пара чисел решением данного уравнения с двумя переменными.

Формулировать: определения: решения уравнения с двумя переменными; что значит решить уравнение с двумя переменными; графика уравнения с двумя переменными; линейного уравнения с двумя переменными; решения системы уравнений с двумя переменными; свойства уравнений с двумя переменными.

Описывать: свойства графика линейного уравнения в зависимости от значений коэффициентов, графический метод решения системы двух уравнений с двумя переменными, метод подстановки и метод сложения для решения системы двух линейных уравнений с двумя переменными.

Строить график линейного уравнения с двумя переменными. Решать системы двух линейных уравнений с двумя переменными.

Решать текстовые задачи, в которых система двух линейных уравнений с двумя переменными является математической моделью реального процесса, и интерпретировать результат решения системы.

5.

Повторение и систематизация
учебного материала

8

Алгебра. 8 класс

4 часа в неделю, всего 136 часов

п/п

Название раздела

Количество

часов

Характеристика деятельности учащихся

1.

Глава 1

Рациональные выражения

55

Распознавать целые рациональные выражения, дробные рациональные выражения, приводить примеры таких выражений.

Формулировать:

определения: рационального выражения, допустимых значений переменной, тождественно равных выражений, тождества, равносильных уравнений, рационального уравнения, степени с нулевым показателем, степени с целым отрицательным показателем, стандартного вида числа, обратной пропорциональности;

свойства: основное свойство рациональной дроби, свойства степени с целым показателем, уравнений, функции;

правила: сложения, вычитания, умножения, деления дробей, возведения дроби в степень;

условие равенства дроби нулю.

Доказывать свойства степени с целым показателем.

Описывать графический метод решения уравнений с одной переменной.

Применять основное свойство рациональной дроби для сокращения и преобразования дробей. Приводить дроби к новому (общему) знаменателю. Находить сумму, разность, произведение и частное дробей. Выполнять тождественные преобразования рациональных выражений.

Решать уравнения с переменной в знаменателе дроби.

Применять свойства степени с целым показателем для преобразования выражений.

Записывать числа в стандартном виде.

Выполнять построение и чтение графика функции

2.

Глава 2

Квадратные корни. Действительные числа

30

Описывать: понятие множества, элемента множества, способы задания множеств; множество натуральных чисел, множество целых чисел, множество рациональных чисел, множество действительных чисел и связи между этими числовыми множествами; связь между бесконечными десятичными дробями и рациональными, иррациональными числами.

Распознавать рациональные и иррациональные числа. Приводить примеры рациональных чисел и иррациональных чисел.

Записывать с помощью формул свойства действий с действительными числами.

Формулировать:

определения: квадратного корня из числа, арифметического квадратного корня из числа, равных множеств, подмножества, пересечения множеств, объединения множеств;

свойства: функции y = x2, арифметического квадратного корня, функции .

Доказывать свойства арифметического квадратного корня.

Строить графики функций y = x2и.

Применять понятие арифметического квадратного корня для вычисления значений выражений.

Упрощать выражения, содержащие арифметические квадратные корни. Решать уравнения. Сравнивать значения выражений. Выполнять преобразование выражений с применением вынесения множителя из-под знака корня, внесения множителя под знак корня. Выполнять освобождение от иррациональности в знаменателе дроби, анализ соотношений между числовыми множествами и их элементами.

3.

Глава 3

Квадратные уравнения

36

Распознавать и приводить примеры квадратных уравнений различных видов (полных, неполных, приведённых), квадратных трёхчленов.

Описывать в общем виде решение неполных квадратных уравнений.

Формулировать: определения: уравнения первой степени, квадратного уравнения; квадратного трёхчлена, дискриминанта квадратного уравнения и квадратного трёхчлена, корня квадратного трёхчлена; биквадратного уравнения; свойства квадратного трёхчлена; теорему Виета и обратную ей теорему.

Записывать и доказывать формулу корней квадратного уравнения. Исследовать количество корней квадратного уравнения в зависимости от знака его дискриминанта.

Доказывать теоремы: Виета (прямую и обратную), о разложении квадратного трёхчлена на множители, о свойстве квадратного трёхчлена с отрицательным дискриминантом.

Описывать на примерах метод замены переменной для решения уравнений.

Находить корни квадратных уравнений различных видов. Применять теорему Виета и обратную ей теорему. Выполнять разложение квадратного трёхчлена на множители. Находить корни уравнений, которые сводятся к квадратным. Составлять квадратные уравнения и уравнения, сводящиеся к квадратным, являющиеся математическими моделями реальных ситуаций.

4.

Повторение и систематизация
учебного материала

15

Алгебра. 9 класс

 4 часа в неделю, всего 136 часов

п/п

Название раздела

Количество

 часов

Характеристика деятельности учащихся

1.

Глава 1.

Неравенства

25

Распознавать и приводить примеры числовых неравенств, неравенств с переменными, линейных неравенств с одной переменной, двойных неравенств.

Формулировать: определения: сравнения двух чисел,  решения неравенства с одной переменной, равносильных неравенств, решения системы неравенств с одной переменной, области определения выражения; свойства числовых неравенств, сложения и умножения числовых неравенств.

Доказывать: свойства числовых неравенств, теоремы о сложении и умножении числовых неравенств.

Решать линейные неравенства.

Записывать решения неравенств и их систем в виде числовых промежутков, объединения, пересечения числовых промежутков. Решать систему неравенств с одной переменной. Оценивать значение выражения. Изображать на координатной прямой заданные неравенствами числовые промежутки.

2.

Глава 2

Квадратичная функция

45

Описывать понятие функции как правила, устанавливающего связь между элементами двух множеств.

Формулировать:

определения: нуля функции; промежутков знакопостоянства функции; функции, возрастающей (убывающей) на множестве; квадратичной функции; квадратного неравенства;
свойства квадратичной функции;
правила построения графиков функций с помощью преобразований вида  f(x) →  f(x) + b;
f(x) → f(x + а); f(x) →  kf(x).

Строить графики функций с помощью преобразований вида f(x) → f(x) + b;

f(x) → f(x + а); f(x) →  kf(x).

Строить график квадратичной функции. По графику квадратичной функции описывать её свойства.

Описывать схематичное расположение параболы относительно оси абсцисс в зависимости от знака старшего коэффициента и дискриминанта соответствующего квадратного трёхчлена.

Решать квадратные неравенства, используя схему расположения параболы относительно оси абсцисс.

Описывать графический метод решения системы двух уравнений с двумя переменными, метод подстановки и метод сложения для решения системы двух уравнений с двумя переменными, одно из которых не является линейным.

Решать текстовые задачи, в которых система двух уравнений с двумя переменными является математической моделью реального процесса, и интерпретировать результат решения системы.

3.

Глава 3

Элементы

прикладной

математики

26

Приводить примеры: математических моделей реальных ситуаций; прикладных задач; приближённых величин; использования комбинаторных правил суммы и произведения; случайных событий, включая достоверные и невозможные события; опытов с равновероятными исходами; представления статистических данных в виде таблиц, диаграмм, графиков; использования
вероятностных свойств окружающих явлений.

Формулировать: определения: абсолютной погрешности, относительной погрешности, достоверного события, невозможного события; классическое определение вероятности; правила: комбинаторное правило суммы, комбинаторное правило произведения.

Описывать этапы решения прикладной задачи.

Пояснять и записывать формулу сложных процентов. Проводить процентные расчёты с использованием сложных процентов.

Находить точность приближения по таблице приближённых значений величины. Использовать различные формы записи приближённого значения величины. Оценивать приближённое значение величины.

Проводить опыты со случайными исходами. Пояснять и записывать формулу нахождения частоты случайного события. Описывать статистическую оценку вероятности случайного события. Находить вероятность случайного события
в опытах с равновероятными исходами.

Описывать этапы статистического исследования. Оформлять информацию в виде таблиц и диаграмм. Извлекать информацию из таблиц и диаграмм. Находить и приводить примеры использования статистических характеристик совокупности данных: среднее значение, мода, размах, медиана выборки.

4.

Глава 4

Числовые

последовательности

23

Приводить примеры: последовательностей; числовых последовательностей, в частности арифметической и геометрической прогрессий; использования последовательностей в реальной жизни; задач, в которых рассматриваются суммы с бесконечным числом слагаемых.

Описывать: понятия последовательности, члена последовательности; способы задания последовательности.

Вычислять члены последовательности, заданной формулой n-го члена или рекуррентно.

Формулировать:
определения: арифметической прогрессии, геометрической прогрессии;

свойства членов геометрической и арифметической прогрессий.

Задавать арифметическую и геометрическую прогрессии рекуррентно.

Записывать и пояснять формулы общего члена арифметической и геометрической прогрессий.

Записывать и доказывать: формулы суммы n первых членов арифметической и геометрической прогрессий; формулы, выражающие свойства членов арифметической и геометрической

прогрессий.

Вычислять сумму бесконечной геометрической прогрессии, у которой

| q | < 1. Представлять бесконечные периодические дроби в виде обыкновенных.

5.

Повторение и систематизация
учебного материала

17

Геометрия. 7 класс
2 часа в неделю, всего 68 часов

п/п

Название раздела

Количество

 часов

Характеристика деятельности учащихся

1.

Глава 1

Простейшие геометрические фигуры и их свойства

15

Приводить примеры геометрических фигур.

Описывать точку, прямую, отрезок, луч, угол.

Формулировать:

определения: равных отрезков, середины отрезка, расстояния между двумя точками, дополнительных лучей, развёрнутого угла, равных углов, биссектрисы угла, смежных и вертикальных углов, пересекающихся прямых, перпендикулярных прямых, перпендикуляра, наклонной, расстояния от точки до прямой; свойства: расположения точек на прямой, измерения отрезков и углов, смежных и вертикальных углов, перпендикулярных прямых; основное свойство прямой.

Классифицировать углы.

Доказывать: теоремы о пересекающихся прямых, о свойствах смежных и вертикальных углов, о единственности прямой, перпендикулярной данной (случай, когда точка лежит на данной прямой).

Находить длину отрезка, градусную меру угла, используя свойства их измерений.

Изображать с помощью чертёжных инструментов геометрические фигуры: отрезок, луч, угол, смежные и вертикальные углы, перпендикулярные прямые, отрезки и лучи.

Пояснять, что такое аксиома, определение.

Решать задачи на вычисление и доказательство, проводя необходимые доказательные рассуждения.

2.

Глава 2

Треугольники

18

Описывать смысл понятия «равные фигуры». Приводить примеры равных фигур.

Изображать и находить на рисунках равносторонние, равнобедренные, прямоугольные, остроугольные, тупоугольные треугольники и их элементы.

Классифицировать треугольники по сторонам и углам.

Формулировать: определения: остроугольного, тупоугольного, прямоугольного, равнобедренного, равностороннего, разностороннего треугольников; биссектрисы, высоты, медианы треугольника; равных треугольников; серединного перпендикуляра отрезка; периметра треугольника; свойства: равнобедренного треугольника, серединного перпендикуляра отрезка, основного свойства равенства треугольников; признаки: равенства треугольников, равнобедренного треугольника.

Доказывать теоремы: о единственности прямой, перпендикулярной данной (случай, когда точка лежит вне данной прямой); три признака равенства треугольников; признаки равнобедренного треугольника; теоремы о свойствах серединного перпендикуляра, равнобедренного и равностороннего треугольников.

Разъяснять, что такое теорема, описывать структуру теоремы. Объяснять, какую теорему называют обратной данной, в чём заключается метод доказательства от противного. Приводить примеры использования этого метода.

Решать задачи на вычисление и доказательство.

3.

Глава 3

Параллельные прямые.
Сумма углов треугольника

16

Распознавать на чертежах параллельные прямые.

Изображать с помощью линейки и угольника параллельные прямые.

Описывать углы, образованные при пересечении двух прямых секущей.

Формулировать: определения :параллельных прямых, расстояния между параллельными прямыми, внешнего угла треугольника, гипотенузы и катета;

свойства: параллельных прямых; углов, образованных при пересечении параллельных прямых секущей; суммы углов треугольника; внешнего угла треугольника; соотношений между сторонами и углами треугольника; прямоугольного треугольника; основное свойство параллельных прямых;

признаки: параллельности прямых, равенства прямоугольных треугольников.

Доказывать: теоремы о свойствах параллельных прямых, о сумме углов треугольника, о внешнем угле треугольника, неравенство треугольника, теоремы о сравнении сторон и углов треугольника, теоремы о свойствах прямоугольного треугольника, признаки параллельных прямых, равенства прямоугольных треугольников.

Решать задачи на вычисление и доказательство.

4.

Глава 4

Окружность и круг.
Геометрические построения

16

Пояснять, что такое задача на построение; геометрическое место точек (ГМТ). Приводить примеры ГМТ.

Изображать на рисунках окружность и её элементы; касательную к окружности; окружность, вписанную в треугольник, и окружность, описанную около него. Описывать взаимное расположение окружности и прямой.

Формулировать: определения: окружности, круга, их элементов; касательной к окружности; окружности, описанной около треугольника, окружности, вписанной в треугольник; свойства: серединного перпендикуляра как ГМТ; биссектрисы угла как ГМТ; касательной к окружности; диаметра и хорды; точки пересечения серединных перпендикуляров сторон треугольника; точки пересечения биссектрис углов треугольника; признаки касательной.

Доказывать: теоремы о серединном перпендикуляре и биссектрисе угла как ГМТ; о свойствах касательной; об окружности, вписанной в треугольник, описанной около треугольника; признаки касательной.

Решать основные задачи на построение: построение угла, равного данному; построение серединного перпендикуляра данного отрезка; построение прямой, проходящей через данную точку и перпендикулярной данной прямой; построение биссектрисы данного угла; построение треугольника по двум сторонам и углу между ними; по стороне и двум прилежащим к ней углам. Решать задачи на построение методом ГМТ.

Строить треугольник по трём сторонам.

Решать задачи на вычисление, доказательство и построение.

5.

Обобщение и систематизация
знаний учащихся

3

 

   

Геометрия. 8 класс

2 часа в неделю, всего 68 часов

п/п

Название раздела

Количество

 часов

Характеристика деятельности учащихся

1.

Глава 1

Четырёхугольники

22

Пояснять, что такое четырёхугольник. Описывать элементы четырёхугольника.

Распознавать выпуклые и невыпуклые четырёхугольники.

Изображать и находить на рисунках четырёхугольники разных видов и их элементы.

Формулировать: определения: параллелограмма,  высоты параллелограмма; прямоугольника, ромба, квадрата; средней линии треугольника; трапеции, высоты трапеции, средней линии трапеции; центрального угла окружности, вписанного угла окружности; вписанного и описанного четырёхугольника; свойства: параллелограмма, прямоугольника, ромба, квадрата, средних линий треугольника и трапеции, вписанного угла, вписанного и описанного четырёхугольника; признаки: параллелограмма, прямоугольника, ромба, вписанного и описанного четырёхугольника.

Доказывать: теоремы о сумме углов четырёхугольника, о градусной мере вписанного угла, о свойствах и признаках параллелограмма, прямоугольника, ромба, вписанного и описанного четырёхугольника.

Применять изученные определения, свойства и признаки к решению задач.

2.

Глава 2

Подобие

треугольников

16

Формулировать: определение подобных треугольников; свойства: медиан треугольника, биссектрисы треугольника, пересекающихся хорд, касательной и секущей; признаки подобия треугольников.

Доказывать: теоремы: Фалеса, о пропорциональных отрезках, о свойствах медиан треугольника, биссектрисы треугольника; свойства: пересекающихся хорд, касательной и секущей; признаки подобия треугольников.

Применять изученные определения, свойства и признаки к решению задач.

3.

Глава 3

Решение

 прямоугольных
треугольников

14

Формулировать: определения: синуса, косинуса, тангенса, котангенса острого угла прямоугольного треугольника; свойства: выражающие метрические соотношения в прямоугольном треугольнике и соотношения между сторонами и значениями тригонометрических функций в прямоугольном треугольнике.

Записывать тригонометрические формулы, выражающие связь между тригонометрическими функциями одного и того же острого угла.

Решать прямоугольные треугольники.

Доказывать:

теорему о метрических соотношениях в прямоугольном треугольнике, теорему Пифагора;

формулы, связывающие синус, косинус, тангенс, котангенс одного и того же острого угла.

Выводить основное тригонометрическое тождество и значения синуса, косинуса, тангенса и котангенса для углов 30°, 45°, 60°.

Применять изученные определения, теоремы и формулы к решению задач.

4.

Глава 4

Многоугольники.

Площадь многоугольника

10

Пояснять, что такое площадь многоугольника.

Описывать многоугольник, его элементы; выпуклые и невыпуклые многоугольники.

Изображать и находить на рисунках многоугольник и его элементы; многоугольник, вписанный в окружность, и многоугольник, описанный около окружности.

Формулировать: определения: вписанного и описанного многоугольника, площади многоугольника, равновеликих многоугольников; основные свойства площади многоугольника.

Доказывать: теоремы о сумме углов выпуклого n-угольника, площади прямоугольника, площади треугольника, площади трапеции.

Применять изученные определения, теоремы и формулы к решению задач.

5.

Повторение и систематизация

учебного материала

6

Геометрия. 9 класс
2 часа в неделю, всего 68 часов  

п/п

Название раздела

Количество

 часов

Характеристика деятельности учащихся

1.

Глава 1

Решение треугольников

16

Формулировать: определения: синуса, косинуса, тангенса, котангенса угла от 0° до 180°;

свойство связи длин диагоналей и сторон параллелограмма.

Формулировать и разъяснять основное тригонометрическое тождество. Вычислять значение тригонометрической функции угла по значению одной из его заданных функций.

Формулировать и доказывать теоремы: синусов, косинусов, следствия из теоремы косинусов и синусов, о площади описанного многоугольника.

Записывать и доказывать формулы для нахождения площади треугольника, радиусов вписанной и описанной окружностей треугольника.

Применять изученные определения, теоремы и формулы к решению задач.

2.

Глава 2

Правильные многоугольники

8

Пояснять, что такое центр и центральный угол правильного многоугольника, сектор и сегмент круга.

Формулировать: определение правильного многоугольника; свойства правильного многоугольника.

Доказывать свойства правильных многоугольников.

Записывать и разъяснять формулы длины окружности, площади круга.

Записывать и доказывать формулы длины дуги, площади сектора, формулы для нахождения радиусов вписанной и описанной окружностей правильного многоугольника.

Строить с помощью циркуля и линейки правильные треугольник, четырёхугольник, шестиугольник.

Применять изученные определения, теоремы и формулы к решению задач.

3.

Глава 3

Декартовы координаты на плоскости

11

Описывать прямоугольную систему координат.

Формулировать: определение уравнения фигуры, необходимое и достаточное условия параллельности двух прямых.

Записывать и доказывать формулы расстояния между двумя точками, координат середины отрезка.

Выводить уравнение окружности, общее уравнение прямой, уравнение прямой с угловым коэффициентом.

Доказывать необходимое и достаточное условия параллельности двух прямых.

Применять изученные определения, теоремы и формулы к решению задач.

4.

Глава 4

Векторы

12

Описывать понятия векторных и скалярных величин. Иллюстрировать понятие вектора.

Формулировать: определения: модуля вектора, коллинеарных векторов, равных векторов, координат вектора, суммы векторов, разности векторов, противоположных векторов, умножения вектора на число, скалярного произведения векторов;

свойства: равных векторов, координат равных векторов, сложения векторов, координат вектора суммы и вектора разности двух векторов, коллинеарных векторов, умножения вектора на число, скалярного произведения двух векторов, перпендикулярных векторов.

Доказывать теоремы: о нахождении координат вектора, о координатах суммы и разности векторов, об условии коллинеарности двух векторов, о нахождении скалярного произведения двух векторов, об условии перпендикулярности.

Находить косинус угла между двумя векторами.

Применять изученные определения, теоремы и формулы к решению задач

5.

Глава 5
Геометрические преобразования

13

Приводить примеры преобразования фигур.

Описывать преобразования фигур: параллельный перенос, осевая симметрия, центральная симметрия, поворот, гомотетия, подобие.

Формулировать: определения: движения; равных фигур; точек, симметричных относительно прямой; точек, симметричных относительно точки; фигуры, имеющей ось симметрии; фигуры, имеющей центр симметрии; подобных фигур; свойства: движения, параллельного переноса, осевой симметрии, центральной симметрии, поворота, гомотетии.

Доказывать теоремы: о свойствах параллельного переноса, осевой симметрии, центральной симметрии, поворота, гомотетии, об отношении площадей подобных треугольников.

Применять изученные определения, теоремы и формулы к решению задач.

6.

Повторение и систематизация
учебного материала

8

  1. Описание учебно-методического и материально-технического обеспечения образовательного процесса по предмету «Математика»

Наименование объектов и средств

материально-технического обеспечения

Программы

1.Примерная основная образовательная программа основного общего образования одобрена решением федерального учебно-методического объединения по общему образованию (протокол от 8 апреля 2015 г. № 1/15).

2.Мерзляк, А.Г., Полонский, В.Б. Математика: программы: 5-11 классы [Текст] / [А. Г. Мерзляк, В. Б. Полонский,
М. С. Якир и др.]. - М.: Вентана-Граф, 2014.

Учебники

1. Мерзляк, А. Г.  Математика: 5 кл.: учебник для общеобразовательных учреждений [Текст] / А. Г. Мерзляк, В. Б. Полонский, М. С. Якир. −  М. :Вентана-Граф, 2014.

2.Мерзляк, А. Г.  Математика: 6 кл.: учебник для общеобразовательных учреждений / А. Г. Мерзляк, В. Б. Полонский, М. С. Якир. −  М. Вентана-Граф, 2014

3. Мерзляк, А. Г.  Алгебра: 7 кл.: учебник для общеобразовательных учреждений [Текст] / А. Г. Мерзляк, В. Б. Полонский, М. С. Якир. −  М.:Вентана-Граф, 2014.

4. Мерзляк, А. Г.  Алгебра: 8 кл.: учебник для общеобразовательных учреждений [Текст] / А. Г. Мерзляк, В. Б. Полонский, М. С. Якир. −  М.:Вентана-Граф, 2014.

5. Мерзляк, А. Г.  Алгебра: 9 кл.: учебник для общеобразовательных учреждений [Текст] / А. Г. Мерзляк, В. Б. Полонский, М. С. Якир. −  М.: Вентана-Граф, 2014.

6. Мерзляк, А. Г. Геометрия: 7 класс: учебник для учащихся общеобразовательных учреждений [Текст]  / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М. :Вентана-Граф, 2014.

7. Мерзляк, А. Г. Геометрия: 8 класс: учебник для учащихся общеобразовательных учреждений [Текст] / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М. :Вентана-Граф, 2014.

8. Мерзляк, А. Г. Геометрия: 9 класс: учебник для учащихся общеобразовательных учреждений [Текст] / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М. : Вентана-Граф,2014

Рабочие тетради

1.Мерзляк, А. Г.  Рабочая тетрадь №1, №2 по математике для 5 класса [Текст] / А. Г. Мерзляк, В. Б. Полонский, М. С. Якир. −  М.: Вентана-Граф, 2014.

2.Мерзляк, А. Г.  Рабочая тетрадь №1, №2 по математике для 6 класса [Текст] / А. Г. Мерзляк, В. Б. Полонский, М. С. Якир. −  М.: Вентана-Граф, 2014.

3. Мерзляк, А. Г.   Геометрия: 9 класс: рабочие иитетради № 1, 2 [Текст]     / А.Г. Мерзляк,               В.Б. Полонский, М.С. Якир. — М.: Вентана-Граф.

4.Мерзляк, А. Г.    Геометрия: 8 класс:    рабочие тетради    №1,2 [Текст]   / А.Г. Мерзляк, В.Б.  Полонский, М.С. Якир. — М.: Вентана-Граф.

5. Мерзляк, А. Г.   Геометрия: 7 класс: рабочие тетради №1,2 [Текст] / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М.: Вентана-Граф.

Дидактические материалы

1.Мерзляк, А. Г.  Дидактические материалы по математике для 5 класса [Текст]  / А. Г. Мерзляк, В. Б. Полонский, М. С. Якир. −  М. :Вентана-Граф, 2014.

2.Мерзляк, А. Г.  Дидактические материалы по математике для 6 класса [Текст]  / А. Г. Мерзляк, В. Б. Полонский, М. С. Якир. −  М. :Вентана-Граф, 2014.

3.Мерзляк, А. Г. Дидактические        материалы    по алгебре для 7 класса [Текст] / А. Г. Мерзляк, В. Б. Полонский, М. С. Якир. −  М.: Вентана-Граф, 2014.

4. Мерзляк, А. Г.  Дидактические    материалы    по   алгебре   для   8 класса [Текст]   / А. Г. Мерзляк, В. Б. Полонский, М. С. Якир. −  М.: Вентана-Граф, 2013.

5. Мерзляк, А. Г. Дидактические материалы        по      алгебре для 9      класса [Текст] / А. Г. Мерзляк, В. Б. Полонский, М. С. Якир. −  М.: Вентана-Граф, 2014.

6. Мерзляк, А. Г.  Геометрия: 7 класс: дидактические материалы: сборник задач и контрольных работ [Текст]  / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М.: Вентана-Граф, 2014.

7. Мерзляк, А. Г. Геометрия: 8 класс: дидактические материалы: сборник задач и контрольных работ [Текст]  / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М.: Вентана-Граф, 2014.

8. Мерзляк, А. Г. Геометрия: 9 класс: дидактические материалы: сборник задач и контрольных работ [Текст] / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М. :Вентана-Граф.

Дополнительная литература для учащихся

1. Энциклопедия для детей. Математика. Том 11. – М.: Аванта+, 2003.

2.  Депман, И. Я. За страницами учебника математики : Пособие для учащихся 5 - 6 кл. / И. Я. Депман, Н. Я. Виленкин. - 2. изд. - М. : Просвещение, 1999. - 287, [1] с. : ил., цв. ил.; 22 см.

3. Коликов, А. Ф. Изобретательность в вычислениях / А. Ф. Коликов, А. В. Коликов. - 2-е изд., стер. - Москва :Дрофа, 2009. - 78, [1] с. : ил.; 21 см. - (Познавательно!Занимательно!).

4. Математика в формулах : 5-11 кл. : справ.пособие / ; [ред. Г. Н. Хромова]. - 11-е изд., стер. - М. : Дрофа, 2006 (М. : Типография «Новости»). - 61 с.

Методические пособия для учителя

1. Мерзляк, А. Г.  Геометрия: 7 класс:  методическое пособие [Текст] / Е.В.   Буцко,    А.Г.   Мерзляк, В.Б. Полонский, М.С. Якир. — М.: Вентана-Граф, 2014.

2. Мерзляк, А. Г.   Геометрия: 8 класс: методическое пособие [Текст] /  Е.В. Буцко, А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М.: Вентана-Граф, 2014.

3. Мерзляк, А. Г.   Геометрия: 9 класс: методическое пособие[Текст] / Е.В. Буцко, А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М.: Вентана-Граф.

4. Мерзляк, А. Г.  Математика. Методика обучения. 5 класс. Рабочая тетрадь учителя / А. Г. Мерзляк, В. Б. Полонский, М. С. Якир. −  М.: Вентана-Граф, 2014.

Печатные пособия

1. Таблицы по математике для 5 − 9 классов.

2. Портреты выдающихся деятелей математики.

Компьютерные и информационно коммуникативные средства обучения

1. Электронное приложение к учебнику «Математика 5», 5 класс (Диск CD-ROM).

2. Электронное приложение к учебнику «Математика 6», 6 класс (Диск CD-ROM).

3. http://www.kvant.info/  Научно-популярный физико-математический журнал для школьников и студентов «Квант».

Технические средства

1. Классная доска.

2. Магнитная доска.

3. Мультимедиапроектор.

4. Ноутбук.

Учебно-практическое и учебно-лабораторное оборудование

1. Доска магнитная.

2.  Набор геометрических тел (демонстрационный).

3. Комплект чертёжных инструментов: линейка, транспортир, угольник (30°, 60°),  угольник (45°, 45°), циркуль.

4. Наборы для моделирования (цветная бумага, картон, калька, клей, ножницы, пластилин).

8. Планируемые результаты изучения учебного предмета

Предметные результаты

Математика 5-6 классы

Арифметика

По окончании изучения курса учащийся научится:

  • понимать особенности десятичной системы счисления;
  •  использовать понятия, связанные с делимостью натуральных чисел;
  •  выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;
  •  сравнивать и упорядочивать рациональные числа;
  •  выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применение калькулятора;
  •  использовать понятия и умения, связанные с пропорциональностью величин, процентами, в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчёты;
  •  анализировать графики зависимостей между величинами (расстояние, время; температура и т.п.).

Учащийся получит возможность:

  •  познакомиться с позиционными системами счисления с основаниями, отличными от 10;
  •  расширить и развить представления о натуральных числах и свойствах делимости;
  •  научиться использовать приёмы, рационализирующие вычисления, приобрести навык контролировать вычисления, выбирая подходящий для ситуации способ.

Числовые и буквенные выражения. Уравнения

По окончании изучения курса учащийся научится:

  •  выполнять операции с числовыми выражениями;
  •  выполнять преобразования буквенных выражений (раскрытие скобок, приведение подобных слагаемых);
  •  решать линейные уравнения, решать текстовые задачи алгебраическим методом.

Учащийся получит возможность:

  •  развить представления о буквенных выражениях и их преобразованиях;
  •  овладеть специальными приёмами решения уравнений, применять аппарат уравнений для решения как текстовых так и  практических задач.

Геометрические фигуры.

Измерение геометрических величин

По окончании изучения курса учащийся научится:

  •  распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры и их элементы;
  •  строить углы, определять их градусную меру;
  •  распознавать и изображать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;
  •  определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;
  •  вычислять объём прямоугольного параллелепипеда и куба.

Учащийся получит возможность:

  •  научиться вычислять объём пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;
  •  углубить и развить представления о пространственных геометрических фигурах;
  • научиться  применять понятие развёртки для выполнения практических расчётов.

Элементы статистики, вероятности. Комбинаторные задачи

По окончании изучения курса учащийся научится:

  •  использовать простейшие способы представления и анализа статистических данных;
  •  решать комбинаторные задачи на нахождение количества объектов или комбинаций.

Учащийся получит возможность:

  • приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы;
  • научиться некоторым специальным приемам решения комбинаторных задач.

Алгебра 7-9 классы

Алгебраические выражения

Выпускник научится:

• оперировать понятиями «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные; работать с формулами;

• выполнять преобразования выражений, содержащих степени с целыми показателями и квадратные корни;

• выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями;

• выполнять разложение многочленов на множители.

Выпускник получит возможность научиться:

• выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приёмов;

• применять тождественные преобразования для решения задач из различных разделов курса (например, для нахождения наибольшего/наимень-шего значения выражения).

Уравнения

Выпускник научится:

• решать основные виды рациональных уравнений с одной переменной, системы двух уравнений с двумя переменными;

• понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;

• применять графические представления для исследования уравнений, исследования и решения систем уравнений с двумя переменными.

Выпускник получит возможность:

• овладеть специальными приёмами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;

• применять графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты.

Неравенства

Выпускник научится:

• понимать и применять терминологию и символику, связанные с отношением неравенства, свойства числовых неравенств;

• решать линейные неравенства с одной переменной и их системы; решать квадратные неравенства с опорой на графические представления;

• применять аппарат неравенств для решения задач из различных разделов курса.

Выпускник получит возможность научиться:

• разнообразным приёмам доказательства неравенств; уверенно применять аппарат неравенств для решения разнообразных математических задач и задач из смежных предметов, практики;

• применять графические представления для исследования неравенств, систем неравенств, содержащих буквенные коэффициенты.

Числовые функции

Выпускник научится:

• понимать и использовать функциональные понятия и язык (термины, символические обозначения);

• строить графики элементарных функций; исследовать свойства числовых функций на основе изучения поведения их графиков;

• понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами.

Выпускник получит возможность научиться:

• проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; на основе графиков изученных функций строить более сложные графики (кусочно-заданные, с «выколотыми» точками и т. п.);

• использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса.

Числовые последовательности

Выпускник научится:

• понимать и использовать язык последовательностей (термины, символические обозначения);

• применять формулы, связанные с арифметической и геометрической прогрессией, и аппарат, сформированный при изучении других разделов курса, к решению задач, в том числе с контекстом из реальной жизни.

Выпускник получит возможность научиться:

• решать комбинированные задачи с применением формул n-го члена и суммы первых n членов арифметической и геометрической прогрессии, применяя при этом аппарат уравнений и неравенств;

• понимать арифметическую и геометрическую прогрессию как функции натурального аргумента; связывать арифметическую прогрессию с линейным ростом, геометрическую — с экспоненциальным ростом.

Описательная статистика

Выпускник научится использовать простейшие способы представления и анализа статистических данных.

Выпускник получит возможность приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы.

Случайные события и вероятность

Выпускник научится находить относительную частоту и вероятность случайного события.

Выпускник получит возможность приобрести опыт проведения случайных экспериментов, в том числе с помощью компьютерного моделирования, интерпретации их результатов.

Комбинаторика

Выпускник научится решать комбинаторные задачи на нахождение числа объектов или комбинаций.

Выпускник получит возможность научиться некоторым специальным приемам решения комбинаторных задач.

Геометрия 7-9 классы

Геометрические фигуры

Выпускник научится:

• пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;

• распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;

• находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0° до 180°, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, подобие, симметрии, поворот, параллельный перенос);

• оперировать с начальными понятиями тригонометрии и выполнять элементарные операции над функциями углов;

• решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;

• решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;

• решать простейшие планиметрические задачи в пространстве.

Выпускник получит возможность:

• овладеть методами решения задач на вычисления и доказательства: методом от противного, методом подобия, методом перебора вариантов и методом геометрических мест точек;

• приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;

• овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки:анализ, построение, доказательство и исследование;

• научиться решать задачи на построениеметодомгеометрическогоместаточек и методомподобия;

• приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ;

• приобрести опыт выполнения проектов по темам «Геометрические преобразования на плоскости», «Построение отрезков по формуле».

Измерение геометрических величин

Выпускник научится:

• использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, длины окружности, длины дуги окружности, градусной меры угла;

• вычислять площади треугольников, прямоугольников, параллелограммов, трапеций, кругов и секторов;

• вычислять длину окружности, длину дуги окружности;

• вычислять длины линейных элементов фигур и их углы, используя формулы длины окружности и длины дуги окружности, формулы площадей фигур;

• решать задачи на доказательство с использованием формул длины окружности и длины дуги окружности, формул площадей фигур;

• решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства).

Выпускник получит возможность научиться:

• вычислять площади фигур, составленных из двух или более прямоугольников, параллелограммов, треугольников, круга и сектора;

• вычислять площади многоугольников, используя отношения равновеликости и равносоставленности;

• применять алгебраический и тригонометрический аппарат и идеи движения при решении задач на вычисление площадей многоугольников.

Координаты

Выпускник научится:

• вычислять длину отрезка по координатам его концов; вычислять координаты середины отрезка;

• использовать координатный метод для изучения свойств прямых и окружностей.

Выпускник получит возможность:

• овладеть координатным методом решения задач на вычисления и доказательства;

• приобрести опыт использования компьютерных программ для анализа частных случаев взаимного расположения окружностей и прямых;

• приобрести опыт выполнения проектов на тему «Применение координатного метода при решении задач на вычисления и доказательства».

Векторы

Выпускник научится:

• оперировать с векторами: находить сумму и разность двух векторов, заданных геометрически, находить вектор, равный произведению заданного вектора на число;

• находить для векторов, заданных координатами: длину вектора, координаты суммы и разности двух и более векторов, координаты произведения вектора на число, применяя при необходимости сочетательный, переместительный и распределительный законы;

• вычислять скалярное произведение векторов, находить угол между векторами, устанавливать перпендикулярность прямых.

Выпускник получит возможность:

• овладеть векторным методом для решения задач на вычисления и доказательства;

• приобрести опыт выполнения проектов на тему «применение векторного метода при решении задач на вычисления и доказательства».

Согласовано:

Зам. директора по УВР

______________________Е.М. Синельникова

«___»____________2015г.


По теме: методические разработки, презентации и конспекты

Рабочая программа по математике ФГОС 6 класс

Целью изучения математики в 6 классе является систематическое развитие понятия числа, выработка умений выполнять устно и письменно арифметические действия над числами, переводить практические за...

РАБОЧАЯ ПРОГРАММА ПО МАТЕМАТИКЕ ( ФГОС) (учебник Математика для 5 класса /Н.Я. Виленкин, В.И.Жохов, А.С.Чесноков, С.И.Шварцбурд. - М.: Мнемозина, 2015.)

Общая характеристика программы.Нормативно-методической базой разработки рабочей программы являются:Федеральный закон «Об образовании в Российской Федерации» приказ № 273 -ФЗ от 29.12.2012Федерал...

Рабочая программа по математике ФГОС 5-7 класс

Данная рабочая прогарамма составлена на 5-7 класс по учебнику Никольского....

Рабочая программа по математике (ФГОС) 5-6 класс по учебнику Мерзляк А.Г.

В разработке предствлена рабочая программа и календарно-тематическое планирование по учебнику Мерзляк А.Г. 5-6 класс (5 часов в неделю) с указанием основных УУД...

Рабочая программа по математике ФГОС 5-6 классы

Рабочая программа по математике для 5-6 классов по ФГОС ОО, содержит в себе подробную пояснительную записку, тематическое планирование, график контрольных работ....

Конструктор рабочей программы по математике ФГОС для 5 класса 2022 года

Конструктор рабочей программы по математике ФГОС для 5 класса 2022 года...