РАБОЧАЯ ПРОГРАММА по алгебре 7 кл.
рабочая программа по алгебре (7 класс) на тему

Юнева Лариса Сергеевна

Настоящая рабочая программа по алгебре ориентирована на учителей математики, работающих в 7 классах по УМК Ю.Н.Макарычева, и разработана с учётом стандартных нормативных документов; рассчитана на 3 часа в неделю, общий объём 102 часа.

Скачать:

ВложениеРазмер
Файл raboch.progr_.7kl_algebra_3ch.docx161.42 КБ

Предварительный просмотр:

ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ ГОРОДА МОСКВЫ

Государственное бюджетное общеобразовательное

учреждение города Москвы

«Гимназия № 1797 «Богородская»

РАССМОТРЕНО

Методическое объединение

_______________________

Председатель

_______________________

Протокол №__________

от «____»_______201__ г.

СОГЛАСОВАНО

Заместитель директора

        по УР

_____________________

«____»_______201__ г.

     «УТВЕРЖДАЮ»

       Директор

    ГБОУ Гимназия № 1797

   «Богородская»

_____________________. «____»_______201_ г.

РАБОЧАЯ ПРОГРАММА

ПО ПРЕДМЕТУ Алгебра

ДЛЯ_____7______КЛАССА

Составитель:

учитель математики

Юнева Лариса Сергеевна

г. Москва

2015 г.


Пояснительная записка

к рабочей программе по алгебре 7кл

Рабочая программа – это нормативно-управленческий документ учителя, предназначенный для реализации государственного образовательного стандарта, включающего требования к минимуму содержания, уровню подготовки учащихся. Его основная задача – обеспечить выполнение учителем государственных образовательных стандартов и учебного плана по предмету.

Рабочая программа реализует право учителя расширять, углублять, изменять, формировать содержание обучения, определять последовательность изучения материала, распределять учебные часы по разделам, темам, урокам в соответствии с поставленными целями и задачами. При необходимости в течение учебного года учитель может вносить в учебную программу коррективы: изменять последовательность уроков внутри темы, количество часов, переносить сроки проведения контрольных работ. В этом случае необходимо сделать соответствующие примечания в конце программы или в пояснительной записке с указанием причин, по которым были внесены изменения.

Рабочая программа составлена на основе Федерального государственного образовательного стандарта основного общего образования второго поколения (далее – Стандарт) и полностью отражает базовый уровень подготовки школьников. Программа спланирована в соответствии с основными положениями системно-деятельностного подхода в обучении, конкретизирует содержание тем Стандарта и дает примерное распределение учебных часов по разделам курса. Примерное распределение учебных часов по разделам программы и календарно-тематическое планирование соответствуют методическим рекомендациям авторов учебно-методических комплектов. В программе, спланированной достаточно подробно, указывается тип урока, вид контроля, описание приемов, помогающих учителю в формировании у учащихся познавательных, коммуникативных и регулятивных универсальных навыков, а также ведущие технологии, обеспечивающие эффективную работу преподавателя и ученика на уроке.

Рабочая программа учебного курса по алгебре для 7 класса составлена также в соответствии с Примерной программой основного общего образования (базовый уровень) с учетом требований федерального компонента государственного стандарта общего образования и на основе авторской программы Ю. Н. Макарычева. Программа призвана содействовать формированию культурного человека, умеющего мыслить, понимающего идеологию математического моделирования реальных процессов, владеющего математическим языком, как языком, организующим деятельность,  умеющего самостоятельно добывать информацию и пользоваться ею на практике, владеющего литературной речью и умеющего в случае необходимости построить ее по законам математической речи.

Настоящая рабочая программа разработана в соответствии со следующими нормативными документами:

  1. Федеральный государственный общеобразовательный стандарт основного общего образования (Министерство образования и науки Российской Федерации. М. Просвещение. 2011 – 48с (Стандарты второго поколения)
  2. Примерная основная образовательная программа образовательного учреждения. Основная школа. Серия: Стандарты второго поколения М: Просвещение. 2011 – 352с.
  3. Примерные программы по учебным предметам. Математика 5-9 классы  - 3-е издание, переработанное – М. Просвещение. 2011 – 64с (Стандарты второго поколения)
  4. «Математика». Сборник рабочих программ. 7-9 классы  [Т.А.Бурмистрова]. – М.: Просвещение, 2011. – 96с.

Из основных содержательно-методических линий школьного курса алгебры приоритетной в программе является функционально-графическая линия.

  Данная рабочая программа рассчитана на 1 год, преимущественно на алгоритмический уровень. Программа конкретизирует содержание тем образовательного стандарта и дает примерное распределение учебных часов по разделам курса в соответствии с методическими рекомендациями авторов учебно-методического комплекта для изучения предметной области «Математика и информатика» для учащихся 7 классов общеобразовательного учреждения, в состав которого входят:

Для учащихся:

1. Макарычев, Ю. Н. Алгебра: учебник для 7 класса общеобразовательных учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова; под ред. С. А. Теляковского. - М.: Просвещение, 2015.

2. Дидактические материалы по алгебре для 7 класса / В.И. Жохов, Ю.Н. Макарычев, Н.Г. Миндюк. – М.: Просвещение, 2014.

3. Алгебра: Дидакт. материалы для 7 кл. / Л. И. Звавич, Л. В. Кузнецова, С. Б»     Суворова.-  М.: Просвещение, 2015.

Для учителя:

1. Макарычев, Ю. Н. Алгебра: учебник для 7 класса общеобразовательных учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова; под ред. С. А. Теляковского. - М.: Просвещение, 2015.

2. Изучение алгебры в 7—9 классах: пособие для учителей / Ю. Н. Макарычев, Н. Г. Миндюк, С. Б. Суворова..— М.: Просвещение, 2011.

3. Дидактические материалы по алгебре для 7 класса / В.И. Жохов, Ю.Н. Макарычев, Н.Г. Миндюк. – М.: Просвещение, 2014.

4. Алгебра: Дидакт. материалы для 7 кл. / Л. И. Звавич, Л. В. Кузнецова, С. Б. Суворова.-  М.: Просвещение, 2015.

5. Программы общеобразовательных учреждений. Алгебра. 7-9 классы. Составитель: Бурмистрова Т.А. – М.: Просвещение, 2009 г.

6. Элементы статистики и теории вероятностей авторы Ю.Н. Макарычев, Н.Г. Миндюк; под редакцией С.А. Теляковского. М., Просвещение 2009 г.

   Программа выполняет две основные функции.

Информационно-методическая функция позволяет всем участникам образовательного процесса получать представления о целях, содержании, общей стратегии обучения, воспитания и развития учащихся средствами

данного учебного предмета.

Организационно-планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, определение его количественных и качественных характеристик на каждом из этапов.

Описание места учебного предмета в учебном плане

Описание места учебного предмета в учебном плане

Согласно Федеральному базисному учебному плану для образовательных учреждений Российской Федерации для обязательного изучения математики на этапе основного общего образования на изучение алгебры в 7 классе отводится 102 часа из расчета 3 часа в неделю (34 учебных недели). В том числе контрольных работ - 10 (включая итоговую контрольную работу)

Структура документа

Структурными элементами рабочей программы являются:

  • титульный лист;
  • пояснительная записка;
  • основное содержание учебной программы с распределением учебных часов по разделам курса и рекомендуемую последовательность изучения тем и разделов;
  • требования к уровню подготовки;
  • календарно-тематическое планирование;
  • контрольные параметры оценки достижений;
  • список литературы для учащихся;
  • список литературы для учителя;
  • перечень тем проектов, рефератов, исследовательских работ по предмету.

Структура документа

Структурными элементами рабочей программы являются: титульный лист; пояснительная записка; основное содержание учебной программы с распределением учебных часов по разделам курса и рекомендуемая последовательность изучения тем и разделов; информация об используемом учебно-методическом комплекте. Изложены цели и задачи обучения, основные требования к уровню подготовки учащихся с указанием личностных, метапредметных и предметных результатов освоения курса алгебры 7 класса. Программа содержит тематическое планирование с указанием темы и типа урока, а также основных видов учебной деятельности и планируемых результатов; программно-методическое обеспечение; контрольные параметры оценки достижений; список литературы; примерные контрольные работы; перечень WEB-сайтов для дополнительного образования по предмету, перечень тем проектов, рефератов, исследовательских работ по предмету, описание учебно-методического и материально-технического обеспечения.

Общая характеристика учебного предмета, курса

В  курсе алгебры 7 класса можно выделить следующие основные содержательные линии: арифметика; элементы алгебры; вероятность и статистика. Наряду с этим в содержание включены два дополнительных методологических раздела: логика и множества; математика в историческом развитии (темы под рубрикой «Для тех, кто хочет знать больше»), что связано с реализацией целей общеинтеллектуального и общекультурного развития учащихся. Содержание каждого из этих разделов разворачивается в содержательно-методическую линию, пронизывающую все основные содержательные линии. При этом первая линия – «Логика и множества» - служит цели овладения учащимися некоторыми элементами универсального математического языка, вторая – «Математика в историческом развитии» - способствует созданию общекультурного гуманитарного фона изучения курса.

Содержание линии «Арифметика» служит фундаментом для дальнейшего изучения учащимися математики и смежных дисциплин, способствует развитию не только вычислительных навыков, но и логического мышления, формированию умения пользоваться алгоритмами способствует развитию умений планировать и осуществлять деятельность, направленную на решение задач, а также приобретению практических навыков, необходимых в повседневной жизни.

Содержание линии «Алгебра» способствует формированию у учащихся математического аппарата для решения задач из разделов математики, смежных предметов и окружающей реальности. Язык алгебры подчёркивает значение математики как языка для построения математических моделей процессов и явления реального мира.

Развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики, и овладение навыками дедуктивных рассуждений также являются задачами изучения алгебры. Преобразование символьных форм вносит специфический вклад в развитие воображения учащихся, их способностей к математическому творчеству. В основной школе материал группируется вокруг рациональных выражений.

Содержание раздела «Функции» нацелено на получение школьниками конкретных знаний о функции как важнейшей математической модели для описания и исследования разнообразных процессов. Изучение этого материала способствует развитию у учащихся умения использовать различные языки математики(словесный, символьческий2, графический), вносит вклад в формирование представлений о роли математики в развитии цивилизации и культуры.

Раздел «Вероятность и статистика» – обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования у учащихся функциональной грамотности – умения воспринимать и критически анализировать информацию, представленную в различных формах, понимать характер многих реальных зависимостей, производить простейшие расчеты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчёт числа вариантов, в том числе в простейших прикладных задачах.

При изучении статистики и вероятности обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.

Курс алгебры 7 класса характеризуется повышением теоретического обучения, постепенным усилением роли теоретических обобщений и дедуктивных заключений. Прикладная направленность курса обеспечивается систематическим обращением к примерам, раскрывающим возможности применения математики к изучению действительности и решению практических задач.

Цели обучения

Обучение математике в основной школе направлено на достижение следующих целей:

1. В направлении личностного развития:

  • развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;
  • формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих
  • из обыденного опыта;
  • воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;
  • формирование качеств мышления, необходимых для адаптации в современном информационном обществе;
  • развитие интереса к математическому творчеству и математических способностей.

2. В метапредметном направлении:

  • формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
  • развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального
  • опыта математического моделирования;
  • формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры,
  • значимой для различных сфер человеческой деятельности.

Межпредметные связи.

  1. Алгебраические выражения – встречаются в физике при изучении темы: Градуирование пружины и измерение сил динамометром.
  2. Тема Одночлены и многочлены встречается в химии при изучении темы Размеры молекул.
  3. Степень с натуральным показателем, Стандартный вид одночлена, Умножение одночленов, Многочлены, приведение подобных, Сложение и вычитание многочленов, умножение на число и одночлен, Деление одночленов и многочленов, Разложение многочленов на множители – в физике соответственно при изучении тем: Единицы массы, Измерение объемов тел, Измерение массы тела на рычажных весах, Определение плотности твердого тела, Графическое изображение сил, момент силы, Равномерное движение, Взаимодействие тел, масса, плотность, Работа, мощность, энергия, КПД.

3. В предметном направлении:

  • овладение математическими знаниями и умениями, необходимыми для продолжения обучения в старшей школе или иных общеобразовательных
  • учреждениях, изучения смежных дисциплин, применения в повседневной жизни;
  • создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.

Цель изучения курса алгебры в 7 классе

Компетенции

Целью изучения курса алгебры в 7 классе является:

  • сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;
  • овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;
  • изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;
  • развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;
  • сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.

В основе обучения математики лежит овладение учащимися следующими видами компетенций: предметной, коммуникативной, организационной и общекультурной. В соответствии с этими видами компетенций выделены основные содержательно-целевые направления (линии) развития учащихся средствами предмета математика.

Предметная компетенция. Здесь под предметной компетенцией понимается осведомленность школьников о системе основных математических представлений и овладение ими основными предметными умениями. Формируются следующие образующие эту компетенцию представления: о математическом языке как средстве выражения математических законов, закономерностей и т.д.; о математическом моделировании как одном из важных методов познания мира. Формируются следующие образующие эту компетенцию умения: создавать простейшие математические модели, работать с ними и интерпретировать полученные результаты; приобретать и систематизировать знания о способах решения математических задач, а также применять эти знания и умения для решения многих жизненных задач.

Коммуникативная компетенция. Здесь под коммуникативной компетенцией понимается сформированность умения ясно и четко излагать свои мысли, строить аргументированные рассуждения, вести диалог, воспринимая точку зрения собеседника и в то же время подвергая ее критическому анализу. Формируются следующие образующие эту компетенцию умения: извлекать информацию из разного рода источников, преобразовывая ее при необходимости в другие формы (тексты, таблицы, схемы и т.д.).

Организационная компетенция. Здесь под организационной компетенцией понимается сформированность умения самостоятельно находить и присваивать необходимые учащимся новые знания. Формируются следующие образующие эту компетенцию умения: самостоятельно ставить учебную задачу (цель), разбивать ее на составные части, на которых будет основываться процесс ее решения, анализировать результат действия, выявлять допущенные ошибки и неточности, исправлять их и представлять полученный результат в форме, легко доступной для восприятия других людей.

Общекультурная компетенция. Здесь под общекультурной компетенцией понимается осведомленность школьников о математике как элементе общечеловеческой культуры, ее месте в системе других наук, а также ее роли в развитии представлений человечества о целостной картине мира. Формируются следующие образующие эту компетенцию представления: об уровне развития математики на разных исторических этапах; о высокой практической значимости математики с точки зрения создания и развития материальной культуры человечества, а также о важной роли математики с точки зрения формировании таких значимых черт личности, как независимость и критичность мышления, воля и настойчивость в достижении цели и др.

Задачи изучения предмета

В рамках указанных содержательных линий решаются следующие задачи:

систематическое развитие понятия числа, выработка умений выполнять устно и письменно арифметические действия над числами, переводить практические задачи на язык математики; подготовка учащихся к изучению систематических курсов алгебры и геометрии.

Задачи:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
  • формирование интеллекта, а также личностных качеств, необходимых человеку для полноценной жизни, развиваемых математикой: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
  • воспитание отношения к математике как к части общечеловеческой культуры, формирование понимания значимости математики для научно-технического прогресса.

Выбор методов изложения.

Формирование универсальных действий

При выборе методов изложения программного материала приоритет отдается дедуктивным методам. Овладев общими способами действия, ученик применяет полученные при этом знания и умения для решения новых конкретных учебных задач.

На данной ступени общего образования учебный предмет математика является основой развития у обучающихся познавательных универсальных действий, в первую очередь логических и алгоритмических. В процессе знакомства с математическими отношениями, зависимостями у школьников формируются учебные действия планирования последовательности шагов при решении задач; различения способа и результата действия; выбора способа достижения поставленной цели; использования знаково-символических средств для моделирования математической ситуации, представления информации; сравнения и классификации (например, предметов, чисел, геометрических фигур) по существенному основанию. Особое значение имеет математика для формирования общего приёма решения задач как универсального учебного действия.

В условиях интенсификации процессов информатизации общества и образования при формировании универсальных учебных действий, наряду с традиционными методиками, целесообразно широкое использование цифровых инструментов и возможностей современной информационно-образовательной среды. Ориентировка школьников в информационных и коммуникативных технологиях (ИКТ) и формирование способности их грамотно применять (ИКТ-компетентность) являются одними из важных элементов формирования универсальных учебных действий обучающихся на второй ступени общего образования.

При освоении личностных действий ведётся формирование:

  • критического отношения к информации и избирательности её восприятия;
  • уважения к информации о частной жизни и информационным результатам деятельности других людей;
  • основ правовой культуры в области использования информации.

При освоении регулятивных универсальных учебных действий обеспечивается:

  • оценка условий,  алгоритмов и результатов действий, выполняемых в информационной среде;
  • использование результатов действия, размещённых в  информационной среде, для оценки  и коррекции выполненного действия;
  • создание цифрового портфолио учебных достижений учащегося.

При освоении познавательных универсальных учебных действий ИКТ играют ключевую роль в таких общеучебных универсальных действиях, как:

  • поиск информации;
  • фиксация (запись) информации с помощью различных технических средств;
  • структурирование информации, её организация и представление в виде диаграмм, картосхем, линий времени и пр.;
  • создание простых гипермедиасообщений;
  • построение простейших моделей объектов и процессов.

ИКТ является важным инструментом для формирования коммуникативных универсальных учебных действий. Для этого используются:

  • обмен гипермедиасообщениями;
  • выступление с аудиовизуальной поддержкой;
  • фиксация хода коллективной/личной коммуникации;
  • общение в цифровой среде.

Формирование ИКТ-компетентности обучающихся происходит в рамках системно-деятельностного подхода.

Планируемые результаты

изучения учебного предмета

Изучение математики в основной школе дает возможность обучающимся достичь следующих результатов развития:

1. В направлении личностного развития:

  • умение ясно, точно, грамотно излагать свои мысли в устной и письменной форме, понимать смысл поставленной задачи, выстраивать аргументацию,
  • приводить примеры и контрпримеры;
  • критичность мышления, умения распознавать логически некорректные высказывания, отличать гипотезу от факта;
  • представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;
  • креативность мышления, инициатива, находчивость, активность при решении математических задач;
  • умение контролировать процесс и результат учебной математической деятельности;
  • способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.

2. В метапредметном направлении:

  • умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
  • умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; при-
  • нимать решение в условиях неполной и избыточной, точной и вероятностной информации;
  • умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
  • умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
  • умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
  • понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
  • умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
  • умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
  • первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений
  • и процессов.

3. В предметном направлении:

предметным результатом изучения курса является сформированность следующих умений.

Предметная область «Арифметика»

  • переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и обыкновенную – в виде десятичной, записывать большие и малые числа с использованием целых степеней десятки;
  • выполнять арифметические действия с рациональными числами, сравнивать рациональные и действительные числа; находить в несложных случаях
  • значения степеней с целыми показателями; находить значения числовых выражений;
  • округлять целые числа и десятичные дроби, находить приближения чисел с недостатком и с избытком, выполнять оценку числовых выражений;
  • пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные единицы через более мелкие и наоборот;
  • решать текстовые задачи, включая задачи, связанные с отношением и с пропорциональностью величин, дробями и процентами.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • решения несложных практических расчетных задач, в том числе c использованием при необходимости справочных материалов, калькулятора,
  • компьютера;
  • устной прикидки и оценки результата вычислений; проверки результата вычисления с использованием различных приемов;
  • интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений.

Предметная область «Алгебра»

  • составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять
  • соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
  • выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение много-
  • членов на множители; выполнять тождественные преобразования рациональных выражений;
  • решать линейные уравнения, системы двух линейных уравнений с двумя переменными;
  • решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
  • изображать числа точками на координатной прямой;
  • определять координаты точки плоскости, строить точки с заданными координатами.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения расчетов по формулам, для составления формул, выражающих зависимости между реальными величинами; для нахождения нужной формулы в справочных материалах;
  • моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;
  • описания зависимостей между физическими величинами соответствующими формулами, при исследовании несложных практических ситуаций.

Предметная область «Элементы логики, комбинаторики, статистики и теории вероятностей»

  • проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;
  • извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;
  • решать комбинаторные задачи путем систематического перебора возможных вариантов и с использованием правила умножения;
  • вычислять средние значения результатов измерений;
  • находить частоту события, используя собственные наблюдения и готовые статистические данные;
  • находить вероятности случайных событий в простейших случаях.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выстраивания аргументации при доказательстве и в диалоге;
  • распознавания логически некорректных рассуждений;
  • записи математических утверждений, доказательств;
  • анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;
  • решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;
  • решения учебных и практических задач, требующих систематического перебора вариантов;
  • сравнения шансов наступления случайных событий, для оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией;
  • понимания статистических утверждений.

Содержание обучения

Выражения. Тождества. Уравнения. Числовые выражения с переменными. Простейшие преобразования выражений. Уравнение, корень уравнения. Линейное уравнение с одной переменной. Решение текстовых задач методом составления уравнений.

Элементы логики, комбинаторики, статистики.

Простейшие статистические характеристики: среднее арифметическое, мода, медиана, размах.

Функции. Функция, область определения функции. Вычисление значений функции по формуле. График функции. Прямая пропорциональность и ее график. Линейная функция и ее график.

Степень с натуральным показателем. Степень с натуральным показателем и ее свойства. Одночлен. Функции у = х2, у = х3 и их графики.

Многочлены. Многочлен. Сложение, вычитание и умножение многочленов. Разложение многочленов на множители.

Формулы сокращенного умножения. Формулы (а ± b)2 = а2 ± 2аb + b2,  (а ± b)3 = а3 ± За2b + 3ab2 ± b3, (а ± b) (а2  аb + b2) = а3 ± b3. Применение формул сокращенного умножения в преобразованиях выражений.

Системы линейных уравнений. Система уравнений. Решение системы двух линейных уравнений с двумя переменными и ее геометрическая интерпретация. Решение текстовых задач методом составления систем уравнений.

Обобщающее повторение.

Используемый учебно-методический комплект

Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. и др. Алгебра. 7 класс: Учебник для общеобразовательных учреждений. М.: Просвещение, 2013.

Оценка планируемых результатов

Система оценки достижения планируемых результатов освоения основной образовательной программы основного общего образования предполагает комплексный подход к оценке результатов образования.

Система оценки предусматривает уровневый подход к содержанию оценки и инструментарию для оценки достижения планируемых результатов, а также к представлению и интерпретации результатов измерений.

Одним из проявлений уровневого подхода является оценка индивидуальных образовательных достижений на основе «метода сложения», при котором фиксируется достижение уровня, необходимого для успешного продолжения образования и реально достигаемого большинством учащихся, и его превышение, что позволяет выстраивать индивидуальные траектории движения с учётом зоны ближайшего развития, формировать положительную учебную и социальную мотивацию.

Особенности оценки предметных результатов

Оценка предметных результатов представляет собой оценку достижения обучающимся планируемых результатов по отдельным предметам.

Формирование этих результатов обеспечивается за счёт основных компонентов образовательного процесса — учебных предметов.

Основным объектом оценки предметных результатов в соответствии с требованиями Стандарта является способность к решению учебно-познавательных и учебно-практических задач, основанных на изучаемом учебном материале, с использованием способов действий, релевантных содержанию учебных предметов, в том числе метапредметных (познавательных, регулятивных, коммуникативных) действий.

Система оценки предметных результатов освоения учебных программ с учётом уровневого подхода, принятого в Стандарте, предполагает выделение базового уровня достижений как точки отсчёта при построении всей системы оценки и организации индивидуальной работы с обучающимися.

Реальные достижения обучающихся могут соответствовать базовому уровню, а могут отличаться от него как в сторону превышения, так и в сторону недостижения.

Практика показывает, что для описания достижений обучающихся целесообразно установить следующие пять уровней.

Базовый уровень достижений — уровень, который демонстрирует освоение учебных действий с опорной системой знаний в рамках диапазона (круга) выделенных задач. Овладение базовым уровнем является достаточным для продолжения обучения на следующей ступени образования, но не по профильному направлению. Достижению базового уровня соответствует отметка «удовлетворительно» (или отметка «3», отметка «зачтено»).

Превышение базового уровня свидетельствует об усвоении опорной системы знаний на уровне осознанного произвольного овладения учебными действиями, а также о кругозоре, широте (или избирательности) интересов. Целесообразно выделить следующие два уровня, превышающие базовый:

  • • повышенный уровень достижения планируемых результатов, оценка «хорошо» (отметка «4»);
  • • высокий уровень достижения планируемых результатов, оценка «отлично» (отметка «5»).

Повышенный и высокий уровни достижения отличаются по полноте освоения планируемых результатов, уровню овладения учебными действиями и сформированностью интересов к данной предметной области.

Индивидуальные траектории обучения обучающихся, демонстрирующих повышенный и высокий уровни достижений, целесообразно формировать с учётом интересов этих обучающихся и их планов на будущее. При наличии устойчивых интересов к учебному предмету и основательной подготовки по нему такие обучающиеся могут быть вовлечены в проектную деятельность по предмету и сориентированы на продолжение обучения в старших классах по данному профилю.

Для описания подготовки учащихся, уровень достижений которых ниже базового, целесообразно выделить также два уровня:

пониженный уровень достижений, оценка «неудовлетворительно» (отметка «2»);

низкий уровень достижений, оценка «плохо» (отметка «1»).

Недостижение базового уровня (пониженный и низкий уровни достижений) фиксируется в зависимости от объёма и уровня освоенного и неосвоенного содержания предмета.

Как правило, пониженный уровень достижений свидетельствует об отсутствии систематической базовой подготовки, о том, что обучающимся не освоено даже и половины планируемых результатов, которые осваивает большинство обучающихся, о том, что имеются значительные пробелы в знаниях, дальнейшее обучение затруднено. При этом обучающийся может выполнять отдельные задания повышенного уровня. Данная группа обучающихся (в среднем в ходе обучения составляющая около 10%) требует специальной диагностики затруднений в обучении, пробелов в системе знаний и оказании целенаправленной помощи в достижении базового уровня.

Низкий уровень освоения планируемых результатов свидетельствует о наличии только отдельных фрагментарных знаний по предмету, дальнейшее обучение практически невозможно. Обучающимся, которые демонстрируют низкий уровень достижений, требуется специальная помощь не только по учебному предмету, но и по формированию мотивации к обучению, развитию интереса к изучаемой предметной области, пониманию значимости предмета для жизни и др. Только наличие положительной мотивации может стать основой ликвидации пробелов в обучении для данной группы обучающихся.

Описанный выше подход целесообразно применять в ходе различных процедур оценивания: текущего, промежуточного и итогового.

Для формирования норм оценки в соответствии с выделенными уровнями необходимо описать достижения обучающегося базового уровня (в терминах знаний и умений, которые он должен продемонстрировать), за которые обучающийся обоснованно получает оценку «удовлетворительно». После этого определяются и содержательно описываются более высокие или низкие уровни достижений. Важно акцентировать внимание не на ошибках, которые сделал обучающийся, а на учебных достижениях, которые обеспечивают продвижение вперёд в освоении содержания образования.

Для оценки динамики формирования предметных результатов в системе внутришкольного мониторинга образовательных достижений целесообразно фиксировать и анализировать данные о сформированности умений и навыков, способствующих освоению систематических знаний, в том числе:

первичному ознакомлению, отработке и осознанию теоретических моделей и понятий (общенаучных и базовых для данной области знания), стандартных алгоритмов и процедур;

выявлению и осознанию сущности и особенностей изучаемых объектов, процессов и явлений действительности (природных, социальных, культурных, технических и др.) в соответствии с содержанием конкретного учебного предмета, созданию и использованию моделей изучаемых объектов и процессов, схем;

выявлению и анализу существенных и устойчивых связей и отношений между объектами и процессами.

При этом обязательными составляющими системы накопленной оценки являются материалы:

стартовой диагностики;

тематических и итоговых проверочных работ по всем учебным предметам;

творческих работ, включая учебные исследования и учебные проекты.

Решение о достижении или недостижении планируемых результатов или об освоении или неосвоении учебного материала принимается на основе результатов выполнения заданий базового уровня. В период введения Стандарта критерий достижения/освоения учебного материала задаётся как выполнение не менее 50% заданий базового уровня или получение 50% от максимального балла за выполнение заданий базового уровня.

Уровни подготовки учащихся и критерии успешности обучения

Уровни

Оценка

Теория

Практика

1 Узнавание

Алгоритмическая   деятельность с  подсказкой

«3»

Распознавать объект, находить нужную формулу, признак, свойство и т.д.

Уметь выполнять задания по образцу, на непосредственное применение формул, правил, инструкций и т.д.

2 Воспроизведение

Алгоритмическая деятельность без подсказки

«4»

Знать формулировки всех понятий, их свойства, признаки, формулы.

Уметь воспроизвести доказательства, выводы, устанавливать взаимосвязь, выбирать нужное для выполнения данного задания

Уметь работать с учебной и справочной литературой, выполнять задания, требующие несложных преобразований с применением изучаемого материала

3 Понимание

Деятельность при отсутствии явно выраженного алгоритма

«5»

Делать логические заключения, составлять алгоритм, модель несложных ситуаций

Уметь применять полученные знания в различных ситуациях. Выполнять задания комбинированного характера, содержащих несколько понятий.

4 Овладение умственной самостоятельностью

Творческая исследовательская деятельность

«5»

В совершенстве знать изученный материал, свободно ориентироваться в нем. Иметь знания из дополнительных источников. Владеть операциями логического мышления. Составлять модель любой ситуации.

Уметь применять знания в любой нестандартной ситуации. Самостоятельно выполнять творческие исследовательские задания. Выполнять функции консультанта.

 

Особенности контроля и оценки  учебных достижений

Текущий контроль можно осуществлять как в письменной, так и в устной форме. Письменные работы для текущего контроля рекомендуется проводить в форме самостоятельной работы, теста или математического диктанта. Желательно, чтобы работы для текущего контроля состояли из нескольких однотипных заданий, с помощью которых осуществляется всесторонняя проверка только одного определенного умения (например, умения сравнивать числа, умения находить значение функции и др.).

        Тематический контроль проводится в основном в письменной форме. Для тематических проверок выбираются узловые вопросы программы; приемы вычислений, действия с числами, измерение величин и др.

Для обеспечения самостоятельности учащихся подбираются несколько вариантов работы. На выполнение такой работы отводится 15-20 минут урока.

        Итоговый контроль проводится в форме контрольных работ комбинированного характера. В этих работах сначала отдельно оценивается выполнение задач, примеров, а затем выводится итоговая отметка за всю работу. При этом итоговая отметка не выставляется как средний балл, а определяется с учетом тех видов заданий, которые для данной работы являются основными.

В основе оценивания письменных работ лежат следующие показатели: правильность выполнения и объем выполненного задания.

Оценка письменных контрольных работ учащихся.

        Отметка «5»  ставится в следующих случаях:

  • работа выполнена полностью.
  • в логических рассуждениях и обоснованиях нет пробелов и ошибок;
  • в решении нет математических ошибок (возможна одна неточность, описка, не являющаяся следствием незнания или непонимания учебного материала);

        Отметка «4» ставится, если:

  • работа выполнена полностью, но обоснования шагов решения недостаточны (если умения обосновывать рассуждения не являлись специальным объектом проверки);
  • допущена одна ошибка или два-три недочета в выкладках, чертежах или графиках (если эти виды работы не являлись специальным объектом проверки);

        Отметка «3» ставится, если: допущены более одной ошибки или более двух-трех недочетов в выкладках, чертежах или графика, но учащийся владеет обязательными умениями по проверяемой теме.

        Отметка «2» ставится, если: допущены существенные ошибки, показавшие, что учащийся не владеет обязательными знаниями по данной теме в полной мере.

Требования к проведению контрольных работ.

При планировании контрольных работ в каждом классе необходимо предусмотреть равномерное их распределение в течение четверти, не допуская скопления письменных контрольных работ к концу четверти, полугодия. Не желательно проводить контрольные работы в первый день четверти, в первый день после праздника, в понедельник.

Исключение травмирующих учеников факторов при организации   работы:

  • работу в присутствии ассистента (проверяющего) проводит учитель, постоянно работающий с детьми, а не посторонний или малознакомый ученикам человек;
  • учитель во время проведения  работы имеет право свободно общаться с учениками;
  • ассистент (проверяющий) фиксирует все случаи обращения детей к учителю, степень помощи, которая оказывается ученикам со стороны учителя, и при подведении итогов работы может учитывать эти наблюдения.

Каждая работа завершается самопроверкой. Самостоятельно найденные и аккуратно исправленные ошибки не должны служить причиной снижения отметки, выставляемой за работу. Только небрежное их исправление может привести к снижению балла при условии, что в классе проводилась специальная работа по формированию умения вносить исправления.

Оценка устных ответов учащихся.

Ответ оценивается отметкой «5», если ученик:

  •  полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
  • изложил материал грамотным языком в определенной логической последовательности, точно используя математическую терминологию и символику;
  • правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
  • показал умение иллюстрировать теоретические положения конкретными примерами, применять их в новой ситуации при выполнении практического задания;
  • продемонстрировал усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость использованных при ответе умений и навыков;
  • отвечал самостоятельно без наводящих вопросов учителя.
  • Возможны одна – две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил по замечанию учителя.
  • Ответ оценивается отметкой «4», если он удовлетворен в основном требованиям на отметку «5», но при этом имеет один из недостатков:
  • в изложении допущены небольшие пробелы, не исказившие математического содержания ответа, исправленные по замечанию учителя.
  • допущены ошибки или более двух недочетов при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил по замечанию учителя.

Отметка «3»  ставится в следующих случаях:

  •  неполно или непоследовательно раскрыто содержание материала, но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения программного материала (определенные «Требованиями к математической подготовке учащихся»).
  • имелись затруднения или допущены ошибки в определении понятий и, использовании математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
  • ученик не справился  с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
  • при знании теоретического материала выявлена недостаточная сформированность умений и навыков.

Отметка «2»  ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;
  • обнаружено незнание или непонимание учеником большей или наиболее важной части учебного материала;
  • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.

Ценностные ориентиры содержания учебного предмета

  1. Познавательные ценности, которые проявляются:
  • в признании ценности научного знания;
  • в осознании ценности методов исследования живой и неживой природы.
  1. Коммуникативные ценности, основу которых составляют:
  • грамотная речь;
  • правильное использование терминологии и символики;
  • способность открыто выражать и аргументировано отстаивать свою точку зрения;
  • потребность вести диалог, выслушивать мнение оппонента.
  1. Ценность потребности в здоровом образе жизни:
  • потребность в безусловном выполнении правил безопасного использования различных технических устройств в повседневной жизни.

Требования к результатам обучения и освоению содержания курса

Стандарт устанавливает требования к результатам освоения обучающимися основной образовательной программы основного общего образования:

личностным, включающим готовность и способность обучающихся к саморазвитию и личностному самоопределению, сформированность их мотивации к обучению и целенаправленной познавательной деятельности, системы значимых социальных и межличностных отношений, ценностно-смысловых установок, отражающих личностные и гражданские позиции в деятельности, социальные компетенции, правосознание, способность ставить цели и строить жизненные планы, способность к осознанию российской идентичности в поликультурном социуме;

метапредметным, включающим освоенные обучающимися межпредметные понятия и универсальные учебные действия (регулятивные, познавательные, коммуникативные), способность их использования в учебной, познавательной и социальной практике, самостоятельность планирования и осуществления учебной деятельности и организации учебного сотрудничества с педагогами и сверстниками, построение индивидуальной образовательной траектории;

предметным, включающим освоенные обучающимися в ходе изучения учебного предмета умения специфические для данной предметной области, виды деятельности по получению нового знания в рамках учебного предмета, его преобразованию и применению в учебных, учебно-проектных и социально-проектных ситуациях, формирование научного типа мышления, научных представлений о ключевых теориях, типах и видах отношений, владение научной терминологией, ключевыми понятиями, методами и приемами.

Программа позволяет добиваться следующих результатов освоения образовательной программы основного общего образования: Личностные результаты освоения образовательной программы:

  1. воспитание российской гражданской идентичности: патриотизма, уважения к Отечеству; осознание своей этнической принадлежности, знание истории, языка, культуры своего народа на примере содержания текстовых задач;
  2. формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, осознанному выбору и построению дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений, с учётом устойчивых познавательных интересов, а также на основе формирования уважительного отношения к труду, развития опыта участия в социально значимом труде;
  3. формирование осознанного, уважительного и доброжелательного отношения к другому человеку, его мнению, мировоззрению, культуре, языку, вере, гражданской позиции, к истории, культуре, религии, традициям; готовности и способности вести диалог с другими людьми и достигать в нём взаимопонимания;
  4. освоение социальных норм, правил поведения, ролей и форм социальной жизни в группах и сообществах, включая взрослые и социальные сообщества; участие в школьном самоуправлении и  общественной жизни в пределах возрастных компетенций;
  5. развитие морального сознания и компетентности в решении моральных проблем на основе личностного выбора, формирование нравственных чувств и нравственного поведения, осознанного и ответственного отношения к собственным поступкам;
  6. формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, детьми старшего и младшего возраста, взрослыми в процессе образовательной, общественно полезной, учебно-исследовательской, творческой и других видов деятельности;
  7. умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
  8. первоначальное представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;
  9. критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
  10. креативность мышления, инициатива, находчивость, активность при решении арифметических задач;
  11. умение контролировать процесс и результат учебной математической деятельности;
  12. формирование способности к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
  13. формирование ценности  здорового и безопасного образа жизни;
  14. осознание значения семьи в жизни человека и общества, принятие ценности семейной жизни, уважительное и заботливое отношение к членам своей семьи через участие во внеклассной работе;
  15. развитие эстетического сознания, творческой деятельности эстетического характера через выполнение творческих работ

Метапредметные результаты освоения образовательной программы: 

  1. умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности;
  2. умение самостоятельно планировать пути достижения целей,  в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
  3. умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;
  4. умение оценивать правильность выполнения учебной задачи, ее объективную трудность и собственные возможности её решения;
  5. владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной деятельности;
  6. умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;
  7. умение создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач;
  8. смысловое чтение;
  9. умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; формулировать, аргументировать и отстаивать своё мнение;
  10. умение осознанно использовать речевые средства в соответствии с задачей коммуникации для выражения своих чувств, мыслей и потребностей; планирования и регуляции своей деятельности; владение устной и письменной речью, монологической контекстной речью;
  11. формирование и развитие компетентности в области использования информационно-коммуникационных технологий (далее ИКТ– компетенции);
  12. первоначальное представление об идеях и методах математики как об универсальном языке науки и техники;
  13. развитие способности видеть математическую задачу в других дисциплинах, в окружающей жизни;
  14. умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
  15. умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
  16. умение выдвигать гипотезы при решении учебных задач и понимания необходимости их проверки;
  17. понимание сущности алгоритмических предписаний и умения действовать  в соответствии с предложенным алгоритмом;
  18. умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
  19. способность планировать и осуществлять деятельность, направленную на решение задач исследовательского характера

Предметные результаты освоения образовательной программы: 

  1. умение работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики (словесный, символический, графический), развитие способности обосновывать суждения, проводить классификацию;
  2. владение базовым понятийным аппаратом: иметь представление о числе, дроби, процентах, формирование представлений о статистических закономерностях в реальном мире и различных способах их изучения;
  3. умение выполнять арифметические преобразования рациональных выражений, применять их для решения учебных математических задач;
  4. правильно употреблять термины, связанные с различными видами чисел и способами их записи: целое, дробное, переход от одной формы записи к другой (например, проценты в виде десятичной дроби; выделение целой части из неправильной дроби); решать три основные задачи на дроби;
  5. сравнивать числа, упорядочивать наборы чисел, понимать связь отношений «больше», «меньше» с расположением точек на координатной прямой; находить среднее арифметическое нескольких чисел;
  6. владеть навыками вычисления по формулам, знать основные единицы измерения и уметь перейти от одних единиц измерения к другим в соответствии с условиями задачи;
  7. находить числовые значения буквенных выражений;
  8. умение применять изученные понятия, результаты и методы при решении задач из различных разделов курса.

В результате изучения алгебры ученик должен

знать/понимать*

  • существо понятия математического доказательства; примеры доказательств;
  • существо понятия алгоритма; примеры алгоритмов;
  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
  • как потребности практики привели математическую науку к необходимости расширения понятия числа;
  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации.

*   Помимо указанных в данном разделе знаний, в требования к уровню подготовки включаются также знания, необходимые для освоения перечисленных ниже умений.

АЛГЕБРА

уметь

  • выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения степени с натуральным показателем; пользоваться оценкой и прикидкой при практических расчетах;
  • проводить по известным формулам и правилам преобразования буквенных выражений;
  • вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;
  • использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
  • практических расчетов по формулам, используя при необходимости справочные материалы и простейшие вычислительные устройства;

ФУНКЦИИ И ГРАФИКИ

уметь

  • определять значение функции по значению аргумента при различных способах задания функции;
  • строить графики изученных функций;
  • описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;
  • решать уравнения, простейшие системы уравнений;
  • использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
  • описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков;

УРАВНЕНИЯ И НЕРАВЕНСТВА

уметь

  • решать простейшие уравнения и неравенства, и их системы;
  • составлять уравнения и неравенства по условию задачи;
  • использовать для приближенного решения уравнений и неравенств графический метод;
  • изображать на координатной плоскости множества решений простейших уравнений и их систем;
  • использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
  • построения и исследования простейших математических моделей;

ЭЛЕМЕНТЫ КОМБИНАТОРИКИ, СТАТИСТИКИ И ТЕОРИИ ВЕРОЯТНОСТЕЙ

уметь

  • решать простейшие задачи;
  • вычислять в простейших случаях вероятности событий на основе подсчета числа исходов;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • анализа реальных числовых данных, представленных в виде диаграмм, графиков;
  • анализа информации статистического характера.

Формируемые универсальные учебные действия

Личностные УУД

  1. осознают необходимость изучения;
  2. формирование адекватного положительного отношения к школе и к процессу учебной деятельности

Регулятивные УУД

  1. сличают свой способ действия с эталоном;
  2. сличают способ  и результат своих действий с заданным эталоном, обнаруживают отклонения и отличия от эталона;
  3. вносят коррективы и дополнения в составленные планы;
  4. вносят коррективы и дополнения в способ своих действий в случае расхождения эталона, реального действия и его продукта
  5.  выделяют и осознают то, что уже усвоено и что еще подлежит усвоению
  6. осознают качество и уровень усвоения
  7. оценивают достигнутый результат
  8. определяют последовательность промежуточных целей с учетом конечного результата
  9. составляют план и последовательность действий
  10. предвосхищают временные характеристики результата (когда будет результат?)
  11. предвосхищают результат и уровень усвоения (какой будет результат?)
  12. ставят учебную задачу на основе соотнесения того, что уже известно и усвоено, и того, что еще не известно
  13. принимают познавательную цель, сохраняют ее при выполнении учебных действий, регулируют весь процесс их выполнения и четко выполняют требования познавательной задачи
  14. самостоятельно формируют познавательную цель и строят действия в соответствии с ней

Познавательные УУД

  1. умеют выбирать смысловые единицы текста и устанавливать отношения между ними
  2. создают структуру взаимосвязей смысловых единиц текста
  3. выделяют количественные характеристики объектов, заданных словами
  4. восстанавливают предметную ситуацию, описанную в задаче, путем переформулирования, упрощенного пересказа текста, с выделением только существенной для решения задачи информации
  5. выделяют обобщенный смысл и формальную структуру задачи
  6. умеют заменять термины определениями
  7. умеют выводить следствия из имеющихся в условии задачи данных
  8.  выделяют формальную структуру задачи
  9. выделяют объекты и процессы с точки зрения целого и частей
  10. анализируют условия и требования задачи
  11. выбирают вид графической модели, адекватной выделенным смысловым единицам
  12. выбирают знаково-символические средства для построения модели
  13. выражают смысл ситуации различными средствами (рисунки, символы, схемы, знаки)
  14. выражают структуру задачи разными средствами
  15. выполняют операции со знаками и символами
  16. выбирают, сопоставляют и обосновывают способы решения задачи
  17. проводят анализ способов решения задачи с точки зрения их рациональности и экономичности
  18. умеют выбирать обобщенные стратегии решения задачи
  19. выделяют и формулируют познавательную цель
  20. осуществляют поиск и выделение необходимой информации
  21. применяют методы информационного поиска, в том числе с помощью компьютерных средств

Коммуникативные УУД

1) общаются и взаимодействуют с партнерами по совместной деятельности или обмену информации

а) умеют слушать и слышать друг друга

б) с достаточной полнотой и точностью выражают свои мысли в соответствии с задачами и условиями коммуникации

в) адекватно используют речевые средства для дискуссии и аргументации своей позиции

г) умеют представлять конкретное содержание и сообщать его в письменной и устной форме

д) интересуются чужим мнением и высказывают свое

е) вступают в диалог, участвуют в коллективном обсуждении проблем, учатся владеть монологической и диалогической формами речи в соответствии с грамматическими и синтаксическими нормами родного языка

2) учатся действовать с учетом позиции другого и согласовывать свои действия

а)понимают возможность различных точек зрения, не совпадающих с собственной

б) проявляют готовность к обсуждению различных точек зрения и выработке общей (групповой) позиции

в) учатся устанавливать и сравнивать разные точки зрения, прежде чем принимать решение и делать выбор

г) учатся аргументировать свою точку зрения, спорить, отстаивать позицию невраждебным для оппонентов образом

3) учатся организовывать и планировать учебное сотрудничество с учителем и сверстниками

а) определяют цели и функции участников, способы взаимодействия

б) планируют общие способы работы

в) обмениваются знаниями между членами группы для принятия эффективных совместных решений

г) умеют (или развивают способность) брать на себя инициативу в организации совместного действия

д) умеют (или развивают способность) с помощью вопросов добывать недостающую информацию

е) учатся разрешать конфликты – выявлять, идентифицировать проблемы, искать и оценивать альтернативные способы разрешения конфликта, принимать решение и реализовывать его

ж) учатся управлять поведением партнера – убеждать его, контролировать и оценивать его действия

4) работают в группе

а) устанавливают рабочие отношения, учатся эффективно сотрудничать и способствовать продуктивной кооперации

б) развивают умение интегрироваться в группу сверстников и строить продуктивное взаимодействие со сверстниками и взрослыми

в) учатся переводить конфликтную ситуацию в логический план и разрешать ее как задачу через анализ условий

5) придерживаются морально-этических и психологических принципов общения и сотрудничества

а) проявляют уважительное отношение к партнерам, внимание к личности другого, адекватное межличностное восприятие

б) демонстрируют способность к эмпатии, стремление устанавливать доверительные отношения

в) проявляю готовность адекватно реагировать на нужды других, оказывать помощь и эмоциональную поддержку партнерам

6) регулируют собственную деятельность посредством речевых действий

а) используют адекватные языковые средства для отображения своих чувств, мыслей и побуждений

б) описывают содержание совершаемых действий с целью ориентировки предметно-практической или иной деятельности

Содержание учебного предмета

Отбор содержания обучения осуществляется на основе следующих дидактических принципов: систематизация знаний; соответствие обязательному минимуму содержания образования в основной школе; усиление общекультурной направленности материала; учет психолого-педагогических особенностей, актуальных для возрастного периода; создание условий для понимания и осознания воспринимаемого материала.

Тема

Кол-во часов

Кол-во контрольных работ

Элементы содержания

Повторение

3

Глава 1. Выражения. Тождества. Уравнения.

21

2

Числовые выражения, выражения с переменными. Простейшие преобразования выражений. Уравнение, корень уравнения. Линейное уравнение с одной переменной. Решение текстовых задач методом составления уравнений. Статистические характеристики.

Основная цель — систематизировать и обобщить сведения о преобразованиях алгебраических выражений и решении уравнений с одной переменной.

Первая тема курса 7 класса является связующим звеном между курсом математики 5—6 классов и курсом алгебры. В ней закрепляются вычислительные навыки, систематизируются и обобщаются сведения о преобразованиях выражений и решении уравнений.

Нахождение значений числовых и буквенных выражений дает возможность повторить с учащимися правила действий с рациональными числами. Умения выполнять арифметические действия с рациональными числами являются опорными для всего курса алгебры.  Следует  выяснить,  насколько  прочно  овладели ими учащиеся, и в случае необходимости организовать повторение с целью ликвидации выявленных пробелов. Развитию навыков вычислений должно уделяться серьезное внимание и в дальнейшем при изучении других тем курса алгебры.

В        связи с рассмотрением вопроса о сравнении значений выражений расширяются сведения о неравенствах: вводятся знаки неравенств,  дается понятие о двойных неравенствах.

При рассмотрении преобразований выражений формально-оперативные умения остаются на том же уровне, учащиеся поднимаются на новую ступень в овладении теорией. Вводятся понятия «тождественно равные выражения», «тождество», «тождественное преобразование выражений», содержание которых будет постоянно раскрываться и углубляться при изучении преобразований различных алгебраических выражений. Подчеркивается, что основу тождественных преобразований составляют свойства действий над числами.

Усиливается роль теоретических сведений при рассмотрении уравнений. С целью обеспечения осознанного восприятия учащимися алгоритмов решения уравнений вводится вспомогательное понятие равносильности уравнений, формулируются и разъясняются на конкретных примерах свойства равносильности. Дается понятие линейного уравнения и исследуется вопрос о числе его корней. В системе упражнений особое внимание уделяется решению уравнений вида ах = b при различных значениях а и b. Продолжается работа по формированию у учащихся умения использовать аппарат уравнений как средство для решения текстовых  задач. Уровень сложности задач здесь остается таким же, как в 6 классе.

Изучение темы завершается ознакомлением учащихся с простейшими статистическими характеристиками: средним арифметическим, модой, медианой, размахом. Учащиеся должны уметь использовать эти характеристики для анализа ряда данных в несложных ситуациях.

Глава 2.

Функции

11

1

Функция, область определения функции. Вычисление значений функции по формуле. График функции. Прямая пропорциональность и ее график. Линейная функция и ее график.

Основная цель — ознакомить учащихся с важнейшими функциональными понятиями и с графиками прямой пропорциональности и линейной функции общего вида.

Данная тема является начальным этапом в систематической функциональной подготовке учащихся. Здесь вводятся такие понятия, как функция, аргумент, область определения функции, график функции. Функция трактуется как зависимость одной переменной от другой. Учащиеся получают первое представление о способах задания функции. В данной теме начинается работа по формированию у учащихся умений находить по формуле значение функции по известному значению аргумента, выполнять ту же задачу по графику и решать по графику обратную задачу.

Функциональные понятия получают свою конкретизацию при изучении линейной функции и ее частного вида — прямой пропорциональности. Умения строить и читать графики этих функций широко используются как в самом курсе алгебры, так и в курсах геометрии и физики. Учащиеся должны понимать, как влияет знак коэффициента на расположение в координатной плоскости графика функции у = kх, где и k ≠ 0, как зависит от значений k и b взаимное расположение графиков двух функций вида у = kх + b.

Формирование всех функциональных понятий и выработка соответствующих навыков, а также изучение конкретных функций сопровождаются рассмотрением примеров реальных зависимостей между величинами, что способствует усилению прикладной направленности курса алгебры.

Глава 3.

Степень с натуральным показателем

11

1

Степень с натуральным показателем и ее свойства. Одночлен. Функции у = х2, у = х3 и их графики.

Основная цель — выработать умение выполнять действия над степенями с натуральными показателями.

В данной теме дается определение степени с натуральным показателем. В курсе математики б класса учащиеся уже встречались с примерами возведения чисел в степень. В связи с вычислением   значений   степени   в   7   классе   дается   представление нахождении  значений  степени  с  помощью  калькулятора.   Рассматриваются свойства степени с натуральным показателем. На примере   доказательства   свойств  степени учащиеся впервые знакомятся с доказательствами,  проводимыми на алгебраическом материале. Свойства степени с натуральным показателем находят   применение   при   умножении   одночленов   и  возведении одночленов в степень. При нахождении значений выражений, содержащих степени, особое внимание следует обратить на порядок действий.

Рассмотрение функций у = х2, у = х3 позволяет продолжить работу по формированию умений строить и читать графики функций. Важно обратить внимание учащихся на особенности графика функции у = х2: график проходит через начало координат, ось Оу является его осью симметрии, график расположен в верхней полуплоскости.

Умение строить графики функций у = х2 и у = х3 используется для ознакомления учащихся с графическим способом решения уравнений.

Глава 4.

Многочлены

17

2

Многочлен. Сложение, вычитание и умножение многочленов. Разложение многочленов на множители.

Основная цель — выработать умение выполнять сложение, вычитание, умножение многочленов и разложение многочленов на множители.

Данная тема играет фундаментальную роль в формировании умения выполнять тождественные преобразования алгебраических выражений. Формируемые здесь формально-оперативные умения являются опорными при изучении действий с рациональными дробями, корнями, степенями с рациональными показателями.

Изучение темы начинается с введения понятий многочлена, стандартного вида многочлена, степени многочлена. Основное место в этой теме занимают алгоритмы действий с многочленами — сложение, вычитание и умножение. Учащиеся должны понимать, что сумму, разность, произведение многочленов всегда можно представить в виде многочлена. Действия сложения, вычитания и умножения многочленов выступают как составной компонент в заданиях на преобразования целых выражений. Поэтому нецелесообразно переходить к комбинированным заданиям прежде, чем усвоены основные алгоритмы.

Серьезное внимание в этой теме уделяется разложению многочленов на множители с помощью вынесения за скобки общего множителя и с помощью группировки. Соответствующие преобразования находят широкое применение как в курсе 7 класса, так и в последующих курсах, особенно в действиях с рациональными дробями.

В данной теме учащиеся встречаются с примерами использования рассматриваемых преобразований при решении разнообразных задач, в частности при решении уравнений. Это позволяет в ходе изучения темы продолжить работу по формированию умения решать уравнения, а также решать задачи методом составления уравнений. В число упражнений включаются несложные задания на доказательство тождества.

Глава 5.

Формулы сокращенного умножения

18

2

Формулы (а + b)2 = а2 ± 2аb + b2,  (а ± b)3 = а3 ± За2b + Заb2 ± b3, (а ± b) (а2 + аb + b2) = а3 ±b3. Применение формул сокращенного умножения в преобразованиях выражений.

Основная цель — выработать умение применять формулы сокращенного умножения в преобразованиях целых выражений в многочлены и в разложении многочленов на множители.

В данной теме продолжается работа по формированию у учащихся умения выполнять тождественные преобразования целых выражений. Основное внимание в теме уделяется формулам (а - b) (а + b) = а2 - b2, (а ± b)2 = а2 ± 2аb + b2. Учащиеся должны знать эти формулы и соответствующие словесные формулировки, уметь применять их как «слева направо», так и «справа налево».

Наряду с указанными рассматриваются также формулы (а ± b)3 = а3± За2b + Заb2 ± b3, а3 ± b3 = (а ± b) (а2 + аb + b2). Однако они находят меньшее применение в курсе, поэтому не следует излишне увлекаться выполнением упражнений на их использование.

В заключительной части темы рассматривается применение различных приемов разложения многочленов на множители, а также использование преобразований целых выражений для решения широкого круга задач.

Глава 6.

Системы линейных уравнений

14

1

Система уравнений. Решение системы двух линейных уравнений с двумя переменными и его геометрическая интерпретация. Решение текстовых задач методом составления систем уравнений.

Основная цель — ознакомить учащихся со способом решения систем линейных уравнений с двумя переменными, выработать умение решать системы уравнений и применять их при решении текстовых задач.

Изучение систем уравнений распределяется между курсами 7 и 9 классов. В 7 классе вводится понятие системы и рассматриваются системы линейных уравнений.

Изложение начинается с введения понятия «линейное уравнение с двумя переменными». В систему упражнений включаются несложные задания на решение линейных уравнений с двумя переменными в целых числах.

Формируется умение строить график уравнения а + bу = с, где а ≠ 0 или b ≠ 0, при различных значениях а, b, с. Введение графических образов дает возможность наглядно исследовать вопрос о числе решений системы двух линейных уравнений с двумя переменными.

Основное место в данной теме занимает изучение алгоритмов решения систем двух линейных уравнений с двумя переменными способом подстановки и способом сложения. Введение систем позволяет значительно расширить круг текстовых задач, решаемых с помощью аппарата алгебры. Применение систем упрощает процесс перевода данных задачи с обычного языка на язык уравнений.

Итоговое повторение

7

1

Общее кол-во часов

102

10

        Формы организации учебного процесса:

  •  индивидуальные,
  •  групповые,
  • индивидуально-групповые,
  • фронтальные,
  • классные и внеклассные.

        Формы контроля знаний:

        

УР

Устная работа

В течение учебного года на уроках

будет проводиться мониторинг:

- входной контроль (сентябрь);

- промежуточный контроль

(конец каждой четверти или полугодия);

- итоговый контроль (май).

ФР

Фронтальная работа

СР

Самостоятельная работа

ИР

Индивидуальная работа

МД

Математический диктант

КР

Контрольная работа

        Особенности контроля и оценки учебных достижений

        Текущий контроль можно осуществлять как в письменной, так и в устной форме. Письменные работы для текущего контроля рекомендуется проводить в форме самостоятельной работы, теста или математического диктанта. Желательно, чтобы работы для текущего контроля состояли из нескольких однотипных заданий, с помощью которых осуществляется всесторонняя проверка только одного определенного умения (например, умения находить равные элементы и др.).

        Тематический контроль проводится в основном в письменной форме. Для тематических проверок выбираются узловые вопросы программы; измерение величин, доказательства равенства треугольников и др.

Для обеспечения самостоятельности учащихся подбираются несколько вариантов работы. На выполнение такой работы отводится  15-20 минут урока.

        Итоговый контроль проводится в форме контрольных работ комбинированного характера. В этих работах сначала отдельно оценивается выполнение задач, геометрических построений, а затем выводится итоговая отметка за всю работу. При этом итоговая отметка не выставляется как средний балл, а определяется с учетом тех видов заданий, которые для данной работы являются основными.

В основе оценивания письменных работ лежат следующие показатели: правильность выполнения и объем выполненного задания.

        Оценка письменных контрольных работ учащихся.

        Отметка «5» ставится в следующих случаях:

  • работа выполнена полностью.
  • в логических рассуждениях и обоснованиях нет пробелов и ошибок;
  • в решении нет математических ошибок (возможна одна неточность, описка, не являющаяся следствием незнания или непонимания учебного материала);

        Отметка «4» ставится, если:

  • работа выполнена полностью, но обоснования шагов решения недостаточны (если умения обосновывать рассуждения не являлись специальным объектом проверки);
  • допущена одна ошибка или два-три недочета в выкладках или чертежах (если эти виды работы не являлись специальным объектом проверки);

        Отметка «3» ставится, если:  допущены более одной ошибки или более двух-трех недочетов в выкладках или чертежах, но учащийся владеет обязательными умениями по проверяемой теме.

        Отметка «2» ставится, если: допущены существенные ошибки, показавшие, что учащийся не владеет обязательными знаниями по данной теме в полной мере.

        Требования к проведению контрольных работ.

        При планировании контрольных работ в каждом классе необходимо предусмотреть равномерное их распределение в течение четверти, не допуская скопления письменных контрольных работ к концу четверти, полугодия. Не рекомендуется проводить контрольные работы в первый день четверти, в первый день после праздника, в понедельник.

        Каждая работа завершается самопроверкой. Самостоятельно найденные и аккуратно исправленные ошибки не должны служить причиной снижения отметки, выставляемой за работу. Только небрежное их исправление может привести к снижению балла при условии, что в классе проводилась специальная работа по формированию умения вносить исправления

        

Оценка устных ответов учащихся.

        Ответ оценивается отметкой «5», если ученик:

  •  полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
  • изложил материал грамотным языком в определенной логической последовательности, точно используя математическую терминологию и символику;
  • правильно выполнил рисунки, чертежи,  сопутствующие ответу;
  • показал умение иллюстрировать теоретические положения конкретными примерами, применять их в новой ситуации при выполнении практического задания;
  • продемонстрировал усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость использованных при ответе умений и навыков;
  • отвечал самостоятельно без наводящих вопросов учителя.
  • Возможны одна – две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил по замечанию учителя.

        Ответ оценивается отметкой «4», если он удовлетворен в основном требованиям на отметку «5», но при этом имеет один из недостатков:

  • в изложении допущены небольшие пробелы, не исказившие математического содержания ответа, исправленные по замечанию учителя.
  • допущены ошибки или более двух недочетов при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил по замечанию учителя.

        Отметка «3»  ставится в следующих случаях:

  •  неполно или непоследовательно раскрыто содержание материала, но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения программного материала (определенные «Требованиями к математической подготовке учащихся»).
  • имелись затруднения или допущены ошибки в определении понятий и, использовании математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
  • ученик не справился  с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
  • при знании теоретического материала выявлена недостаточная сформированность умений и навыков.

        Отметка «2»  ставится в следующих случаях:

  • не раскрыто основное содержание учебного материала;
  • обнаружено незнание или непонимание учеником большей или наиболее важной части учебного материала;
  • допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах, выкладках, которые не исправлены после нескольких наводящих вопросов учителя.



РАЗВЕРНУТОЕ ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ**

3 часа в неделю по учебнику: Макарычев, Ю. Н. Алгебра: учебник для 7 класса общеобразовательных учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова; под ред. С. А. Теляковского. - М.: Просвещение, 2013

Развёрнутое тематическое планирование представляет собой  основное содержание всех разделов программы и тем занятий, изучаемых в данном классе с указанием количества часов.

№ урока

Наименование темы

Кол-во часов

Форма контроля

Тип урока

Характеристика основных видов деятельности учащихся (на уровне учебных действий)

Дата

Домашнее

задание

1

Повторение. Делимость чисел. Действия с обыкновенными дробями.

1

ФР

Урок обобщающего повторения

2

Повторение. Действия с десятичными дробями. Положительные и отрицательные числа. Проценты

1

ФР

Урок обобщающего повторения

3

Повторение. Пропорции. Решение уравнений. Проценты

1

ФР

Урок обобщающего повторения

Глава 1. Выражения. Тождества. Уравнения.

§ 1. Выражения

5

Выполнять элементарные знаково-символические действия: применять буквы для обозначения чисел, для записи общих утверждений; составлять буквенные выражения по условиям, заданным словесно, рисунком или чертежом; преобразовывать алгебраические суммы и произведения (выполнять приведение подобных слагаемых, раскрытие скобок, упрощение произведений).

Вычислять числовое значение буквенного выражения; находить область допустимых значений переменных в выражении.

Распознавать линейные уравнения.

Решать линейные уравнения.

Решать текстовые задачи алгебраическим способом: переходить от словесной формулировки условия задачи к алгебраической модели путем составления уравнения; решать составленное уравнение; интерпретировать результат.

Извлекать информацию из таблиц и диаграмм, выполнять вычисления по табличным данным. Определять по диаграммам наибольшие и наименьшие данные, сравнивать величины.

Представлять информацию в виде таблиц, столбчатых и круговых диаграмм, в том числе с помощью компьютерных программ.

Приводить примеры числовых данных (цена, рост, время на дорогу и т. д.), находить среднее арифметическое, размах числовых наборов.

Приводить содержательные примеры использования средних для описания данных (уровень воды в водоеме, спортивные показатели, определение границ климатических зон).

4

п.1. Числовые выражения

1

ФР

Урок освоения новых знаний

5

п.2. Выражения с переменными

1

ФР

Урок ознакомления с новым материалом

6

п.2. Выражения с переменными

1

Урок закрепления знаний

7

п.3. Сравнение значений выражений

1

СР

Урок коррекции знаний  и открытия нового знания

§ 2. Преобразование выражений

5

8

п.4. Свойства действий над числами

1

ФР

Урок освоения новых знаний

9

п.5. Тождества. Тождественные преобразования выражений

1

Урок ознакомления с новым материалом

10

п.5. Тождества. Тождественные преобразования выражений

1

Урок обобщения и систематизации знаний

11

Контрольная работа № 1 по теме

«Выражения и тождества»

1

КР

Урок проверки и  оценки знаний

12

Анализ контрольной работы. Решение задач

1

Урок коррекции знаний

§ 3. Уравнения с одной переменной

6

13

п.6. Уравнение и его корни

1

ФР

Урок открытия нового знания

14

п.7. Линейное уравнение  с одной переменной

1

Урок освоения новых знаний

15

п.7. Линейное уравнение  с одной переменной

1

МД

Комбинированный урок

16

п.8. Решение задач с помощью уравнений

1

ФР

Урок ознакомления с новым материалом

17

п.8. Решение задач с помощью уравнений

1

Урок формирования и применения знаний умений и навыков

18

п.8. Решение задач с помощью уравнений

1

СР

Комбинированный урок

§ 4. Статистические характеристики

6

19

п.9. Среднее арифметическое, размах, мода.

1

Урок открытия нового знания

20

п.9. Среднее арифметическое, размах, мода.

1

Урок закрепления знаний

21

п.10. Медиана как статистическая характеристика

1

Урок освоения новых знаний

22

п.10. Медиана как статистическая характеристика

1

Урок обобщения и систематизации знаний

23

Контрольная работа № 2 по теме

«Уравнения»

1

КР

Урок проверки и  оценки знаний

24

Анализ контрольной работы.

п.11. Формулы (Из рубрики «Для тех, кто хочет знать больше»)

1

Урок коррекции знаний  и открытия нового знания

Глава 2. Функции

§ 5. Функции и их графики

5

Вычислять значения функций, заданных формулами (при необходимости использовать калькулятор); составлять таблицы значений функций.

Строить по точкам графики функций. Описывать свойства функции на основе ее графического представления.

Моделировать реальные зависимости формулами и графиками. Читать графики реальных зависимостей.

Использовать функциональную символику для записи разнообразных фактов, связанных с рассматриваемыми функциями, обогащая опыт выполнения знаково-символических действий. Строить речевые конструкции с использованием функциональной терминологии.

Использовать компьютерные программы для построения графиков функций, для исследования положения на координатной плоскости графиков функций в зависимости от значений коэффициентов, входящих в формулу.

Распознавать виды изучаемых функций. Показывать схематически положение на координатной плоскости графиков функций.

25

п.12. Что такое функция

1

Урок ознакомления с новым материалом

26

п.13. Вычисление значений функции по формуле

1

Урок открытия нового знания

27

п.13. Вычисление значений функции по формуле

1

Урок закрепления знаний

28

п.14. График функции

1

ФР

Урок освоения новых знаний

29

п.14. График функции

1

МД

Комбинированный урок

§ 6. Линейная функция

6

30

п.15. Прямая пропорциональность и ее график

1

Урок ознакомления с новым материалом

31

п.15. Прямая пропорциональность и ее график

1

МД

Комбинированный урок

32

п.16. Линейная функция и ее график

1

ФР

Урок открытия нового знания

33

п.16. Линейная функция и ее график

1

Урок обобщения и систематизации знаний

34

Контрольная работа № 3 по теме

«Функции»

1

КР

Урок проверки и  оценки знаний

35

Анализ контрольной работы.

п.17. Задание функции несколькими формулами (Из рубрики «Для тех, кто хочет знать больше»)

1

Урок коррекции знаний  и открытия нового знания

Глава 3. Степень с натуральным показателем

§ 7. Степень и ее свойства

4

Описывать множество целых чисел, множество рациональных чисел, соотношение между этими множествами.

Сравнивать и упорядочивать рациональные числа, выполнять вычисления с рациональными числами, вычислять значения степеней с целым показателем.

Формулировать определение квадратного корня из числа. Использовать график функции

 у = х2 для нахождения квадратных корней. Вычислять точные и приближенные значения корней, используя при необходимости калькулятор; проводить оценку квадратных корней.

Формулировать определение корня третьей степени; находить значения кубических корней

36

п.18. Определение степени с натуральным показателем

1

ФР

Урок освоения новых знаний

37

п.19. Умножение и деление степеней

1

Урок формирования и применения знаний умений и навыков

38

п.20. Возведение в степень произведения и степени

1

Урок ознакомления с новым материалом

39

п.20. Возведение в степень произведения и степени

1

МД

Комбинированный урок

§ 8. Одночлены

7

40

п.21. Одночлен и его стандартный вид

1

Урок открытия нового знания

41

п.22. Умножение одночленов. Возведение одночлена в степень

1

ФР

Урок освоения новых знаний

42

п.22. Умножение одночленов. Возведение одночлена в степень

1

МД

Комбинированный урок

43

п.23. Функции у = х2 и у = х3 и их графики

1

Урок ознакомления с новым материалом

44

п.23. Функции у = х2 и у = х3 и их графики

1

Урок обобщения и систематизации знаний

45

Контрольная работа № 4 по теме

«Степень с натуральным показателем»

1

КР

Урок проверки и  оценки знаний

46

Анализ контрольной работы. О простых и составных числах (Из рубрики «Для тех, кто хочет знать больше»)

1

Урок коррекции знаний  и открытия нового знания

Глава 4. Многочлены

§ 9. Сумма и разность многочленов

3

Формулировать, записывать в символической форме и обосновывать свойства степени с натуральным показателем; применять свойства степени для преобразования выражений и вычислений.

Выполнять действия с многочленами.

Выполнять разложение многочленов на множители.

Распознавать квадратный трехчлен, выяснять возможность разложения на множители, представлять квадратный трехчлен в виде произведения линейных множителей.

Применять различные формы самоконтроля при выполнении преобразований.

47

п.25. Многочлен и его стандартный вид

1

Урок открытия нового знания

48

п.26. Сложение и вычитание многочленов

1

ФР

Урок освоения новых знаний

49

п.26. Сложение и вычитание многочленов

1

МД

Комбинированный урок

§ 10. Произведение одночлена и многочлена

7

50

п.27. Умножение одночлена на многочлен

1

ФР

Урок ознакомления с новым материалом

51

п.27. Умножение одночлена на многочлен

1

Урок формирования и применения знаний умений и навыков

52

п.27. Умножение одночлена на многочлен

1

МД

Комбинированный урок

53

п.28. Вынесение общего множителя за скобки

1

ФР

Урок открытия нового знания

54

п.28. Вынесение общего множителя

за скобки

1

Урок обобщения и систематизации знаний

55

Контрольная работа № 5 по теме

«Сумма и разность многочленов. Многочлены и одночлены»

1

КР

Урок проверки и  оценки знаний

56

Анализ контрольной работы. Решение задач

1

Урок коррекции знаний

§ 11. Произведение многочленов

7

57

п.29. Умножение многочлена на многочлен

1

ФР

Урок освоения новых знаний

58

п.29. Умножение многочлена на многочлен

1

Урок закрепления знаний

59

п.29. Умножение многочлена на многочлен

1

МД

Комбинированный урок

60

п.30. Разложение многочлена на множители способом группировки

1

ФР

Урок ознакомления с новым материалом

61

п.30. Разложение многочлена на множители способом группировки

1

Урок обобщения и систематизации знаний

62

Контрольная работа № 6 по теме

«Произведение многочленов»

1

КР

Урок проверки и  оценки знаний

63

Анализ контрольной работы.

п.31. Деление с остатком. (Из рубрики «Для тех, кто хочет знать больше»)

1

Урок коррекции знаний  и открытия нового знания

Глава 5. Формулы сокращенного умножения

§ 12. Квадрат суммы и квадрат разности

5

Выполнять действия с многочленами.

Выводить формулы сокращенного умножения, применять их в преобразованиях выражений и вычислениях.

Выполнять разложение многочленов на множители.

Распознавать квадратный трехчлен, выяснять возможность разложения на множители, представлять квадратный трехчлен в виде произведения линейных множителей.

Применять различные формы самоконтроля при выполнении преобразований

64

п.32. Возведение в квадрат и в куб суммы и разности двух выражений

1

ФР

Урок открытия нового знания

65

п.32. Возведение в квадрат и в куб суммы и разности двух выражений

1

Урок формирования и применения знаний умений и навыков

66

п.33. Разложение на множители с помощью формул квадрата суммы и квадрата разности

1

Урок освоения новых знаний

67

п.33. Разложение на множители с помощью формул квадрата суммы и квадрата разности

1

Урок закрепления знаний

68

п.33. Разложение на множители с помощью формул квадрата суммы и квадрата разности

1

СР

Комбинированный урок

§ 13. Разность квадратов. Сумма и разность кубов

7

69

п.34. Умножение разности двух выражений на их сумму

1

ФР

Урок ознакомления с новым материалом

70

п.34. Умножение разности двух выражений на их сумму

1

Урок формирования и применения знаний умений и навыков

71

п.35. Разложение разности квадратов на множители

1

Урок открытия нового знания

72

п.35. Разложение разности квадратов на множители

1

МД

Комбинированный урок

73

п.36. Разложение на множители суммы и разности кубов

1

Урок освоения новых знаний, обобщения и систематизации знаний

74

Контрольная работа № 7 по теме

«Формулы сокращенного умножения»

1

КР

Урок проверки и  оценки знаний

75

Анализ контрольной работы. Решение задач

1

Урок коррекции знаний

§ 14. Преобразование целых выражений

6

76

п.37. Преобразование целого выражения в многочлен

1

ФР

Урок ознакомления с новым материалом

77

п.37. Преобразование целого выражения в многочлен

1

Урок формирования и применения знаний умений и навыков

78

п.38. Применение различных способов для разложения на множители

1

ФР

Урок открытия нового знания

79

п.38. Применение различных способов для разложения на множители

1

Урок обобщения и систематизации знаний

80

Контрольная работа № 8 по теме

«Преобразование целых выражений»

1

КР

Урок проверки и  оценки знаний

81

Анализ контрольной работы. Возведение двучлена в степень (Из рубрики «Для тех, кто хочет знать больше»)

1

Урок коррекции знаний  и открытия нового знания

Глава 6. Системы линейных уравнений

§ 15. Линейные уравнения с двумя переменными и их системы

5

Определять, является ли пара чисел решением данного уравнения с двумя переменными; приводить примеры решения уравнений с двумя переменными.

Решать задачи, алгебраической моделью которых является уравнение с двумя переменными; находить целые решения путем перебора.

Решать системы двух уравнений с двумя переменными, указанные в содержании.

Решать текстовые задачи алгебраическим способом:

переходить от словесной формулировки условия задачи к алгебраической модели путем составления системы уравнений; решать составленную систему уравнений; интерпретировать результат.

Строить графики уравнений с двумя переменными. Конструировать эквивалентные речевые высказывания с использованием алгебраического и геометрического языков.

Решать и исследовать уравнения и системы уравнений на основе функционально-графических представлений уравнений

82

п.40. Линейное уравнение с двумя переменными

1

ФР

Урок освоения новых знаний

83

п.41. График линейного уравнения с двумя переменными

1

Урок ознакомления с новым материалом

84

п.41. График линейного уравнения с двумя переменными

1

85

п.42. Системы линейных уравнений с двумя переменными

1

Урок открытия нового знания

86

п.42. Системы линейных уравнений с двумя переменными

1

МД

Комбинированный урок

§ 16. Решение систем линейных уравнений

9

87

п.43. Способ подстановки

1

ФР

Урок освоения новых знаний

88

п.43. Способ подстановки

1

Урок закрепления знаний

89

п.44. Способ сложения

1

Урок ознакомления с новым материалом

90

п.44. Способ сложения

1

МД

Комбинированный урок

91

п.45. Решение задач с помощью систем уравнения

1

ФР

Урок открытия нового знания

92

п.45. Решение задач с помощью систем уравнения

1

Урок формирования и применения знаний умений и навыков

93

п.45. Решение задач с помощью систем уравнения

1

Урок обобщения и систематизации знаний

94

Контрольная работа № 9 по теме

«Системы линейных уравнений и их решения»

1

КР

Урок проверки и  оценки знаний

95

Анализ контрольной работы. Линейные неравенства с двумя переменными и их системы (Из рубрики «Для тех, кто хочет знать больше»)

1

Урок коррекции знаний  и открытия нового знания

Повторение

6

96

Функции

1

ФР

Урок обобщающего повторения

Знать материал, изученный в курсе математики за 7 класс

Уметь применять полученные знания на практике.

Уметь логически мыслить, отстаивать свою точку зрения и выслушивать мнение других, работать в команде.

97

Одночлены. Многочлены

1

ФР

Урок обобщающего повторения

98

Формулы сокращенного умножения

1

ФР

Урок обобщающего повторения

99

Системы линейных уравнений

1

ФР

Урок обобщающего повторения

100

Контрольная работа № 10 (итоговая)

1

КР

Урок проверки и  оценки знаний

101

Анализ контрольной работы. Решение задач

1

Урок коррекции знаний

102

Итоговый урок

1

Урок обобщающего повторения

Итого часов

102

**В течение года возможны коррективы тематического планирования, связанные с объективными причинами.


Технические средства обучения

Компьютер, медиапроектор.

Ресурсное обеспечение рабочей программы

Литература для учащихся

  1. Алгебра. Тесты для промежуточной аттестации. 7-8 класс. Под редакцией Ф.Ф.Лысенко. Ростов-на-Дону: Легион,2007
  2. Алтынов П.И. Алгебра. Тесты. 7-9 классы: Учебно-метод. пособие. П.И.Алтынов. – М.: Дрофа, 1997
  3. Алтынов П.И. Контрольные и зачётные работы по алгебре. 7 кл.: К учебнику «Алгебра. Учебник для 7 кл. Под ред. С.А.Теляковского». – М.: Издательство «Экзамен», 2004
  4. Голобородько В.В., Ершова А.П. и др. Алгебра. Геометрия: Самостоятельные и контрольные работы в 7 классе. М.: Илекса, 2015
  5. Макарычев, Ю. Н. Алгебра: учебник для 7 класса общеобразовательных учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова; под ред. С. А. Теляковского. - М.: Просвещение, 2015.
  6. Звавич, Л. И. Дидактические материалы по алгебре. 7 класс / Л. И. Звавич, Л. В. Кузнецова, С. Б. Суворова. - М.: Просвещение, 2015.
  7. Звавич Л.И., Шляпочник Л.Я. Контрольные и проверочные работы по алгебре. 7-9 кл.: Методическое пособие. – М.: Дрофа, 2000
  8. Левитас Г.Г. Математические диктанты. Алгебра и начала анализа. 7-11 классы. Дидактические материалы. – М.: «Илекса», 2006
  9. Макарычев Ю.Н., Миндюк Н.Г. Алгебра: Элементы статистики и теории вероятностей. 7–9 классы. М.: Просвещение, 2008.
  10. Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебраический тренажёр: Пособие для школьников и абитуриентов. – М.: Илекса, 2003

Литература для учителя

Основная

  1. Алгебра. Тесты для промежуточной аттестации. 7-8 класс. Под редакцией Ф.Ф.Лысенко. Ростов-на-Дону: Легион,2007
  2. Алтынов П.И. Алгебра. Тесты. 7-9 классы: Учебно-метод. пособие. П.И.Алтынов. – М.: Дрофа, 1997
  3. Алтынов П.И. Контрольные и зачётные работы по алгебре. 7 кл.: К учебнику «Алгебра. Учебник для 7 кл. Под ред. С.А.Теляковского». – М.: Издательство «Экзамен», 2004
  4. 20. Арутюнян Е.Б., Волович М.Б., Глазков Ю.А., Левитас Г.Г. Математические диктанты для 5-9 классов: Кн. для учителя. – М.: Просвещение, 1991
  5. Бурмистрова Т.А. Алгебра: Сборник рабочих программ. 7–9 классы. Пособие для учителей общеобразовательных учреждений. М.: Просвещение, 2011.
  6. Голобородько В.В., Ершова А.П. и др. Алгебра. Геометрия: Самостоятельные и контрольные работы в 7 классе. М.: Илекса, 2015.
  7. Дудницын Ю.П., Кронгауз Л.В. Алгебра: Тематические тесты. 7 класс. М.: Просвещение, 2011.
  8. Дюмина Т.Ю., Махонина А.А. Алгебра: порочные планы по учебнику .Н.Макарычева. Волгоград, Издательство «Учитель». 2010
  9. Жохов В.И., Крайнева Л.Б. Уроки алгебры в 7 классе: Книга для учителей. М.: Просвещение, 2011.
  10. Звавич Л.И., Кузнецова Л.В., Суворова С.Б. и др. Алгебра: Дидактические материалы. 7 класс. М.: Просвещение, 2012.
  11. Звавич Л.И., Шляпочник Л.Я. Контрольные и проверочные работы по алгебре. 7-9 кл.: Методическое пособие. – М.: Дрофа, 2000
  12. Ковалёва Г.И. Уроки математики в 7 классе. Поурочные планы. – Волгоград, издательство «Братья Гринины», 2002
  13. Концепция Федеральных государственных образовательных стандартов общего образования / Под ред. А.М. Кондакова, А.А. Кузнецова. М.: Просвещение, 2008.
  14. Левитас Г.Г. Математические диктанты. Алгебра и начала анализа. 7-11 классы. Дидактические материалы. – М.: «Илекса», 2006
  15. Макарычев, Ю. Н. Алгебра: учебник для 7 класса общеобразовательных учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова; под ред. С. А. Теляковского. - М.: Просвещение, 2013.
  16. Макарычев Ю.Н.,  Миндюк Н.Г. , Суворова С.Б. Изучение алгебры в 7–9 классах: Пособие для учителей. М.: Просвещение, 2011.
  17. Макарычев Ю.Н., Миндюк Н.Г. Алгебра: Элементы статистики и теории вероятностей. 7–9 классы. М.: Просвещение, 2008.
  18. Макарычев Ю.Н., Миндюк Н.Г. и др. Алгебра: Учебник для 7 класса общеобразовательных учреждений. М.: Просвещение, 2013.
  19. Мартышова Л.И. Алгебра: Контрольно-измерительные материалы. 7 класс. М.: ВАКО, 2011.
  20. Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебраический тренажёр: Пособие для школьников и абитуриентов. – М.: Илекса, 2003
  21. Миндюк Н.Г. Алгебра. Рабочие программы. Предметная линия учебников Ю.Н. Макарычева и др. 7–9 классы. М.: Просвещение, 2012.
  22. Миндюк Н.Г., Шлыкова И.С. Алгебра: Рабочая тетрадь. 7 класс. М.: Просвещение, 2012.
  23. Национальная образовательная инициатива Наша новая школа: [Электронный документ]. Режим доступа: http://mon.gov.ru/dok/akt/6591
  24. Примерная основная образовательная программа образовательного учреждения. Основная школа. М.: Просвещение, 2011.
  25. Примерные программы основного общего образования. Математика. М.: Просвещение, 2010.
  26. Приоритетный национальный проект «Образование»: [Электронный документ]. Режим доступа: http://mon.gov.ru/pro/pnpo
  27. Рурукин А.Н., Лупенко Г.В., Масленникова И.А. Алгебра: Поурочные разработки. 7 класс. М.: ВАКО, 2013.
  28. Система гигиенических требований к условиям реализации основной образовательной программы основного общего образования: [Электронный документ]. Режим доступа: http://standart.edu.ru
  29. Федеральная целевая программа развития образования на 2011–2015 гг.: [Электронный документ]. Режим доступа: http://mon.gov.ru/press/news/8286
  30. Федеральный государственный образовательный стандарт основного общего образования. М.: Просвещение, 2010.
  31. Федеральный закон от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации».
  32. Формирование универсальных учебных действий в основной школе: от действия к мысли. Система заданий. Пособие для учителя / Под ред. А.Г. Асмолова.
  33. М.: Просвещение, 2010.
  34. Фундаментальное ядро содержания общего образования / Под ред. В.В. Козлова, А.М. Кондакова. М.: Просвещение, 2011.

Дополнительная

  1. Вейцман Л.Р., Вейцман Р.Л. Алгебра: Основные сведения школьного курса. – Донецк: ПКФ «БАО»,1997
  2. Жильцова О.А. Организация исследовательской и проектной деятельности школьников: дистанционная поддержка педагогических инноваций при подготовке
  3. школьников к деятельности в сфере науки и высоких технологий. М.: Просвещение, 2007.
  4. Звавич Л.И., Рязановский А.Р. Алгебра в таблицах. 7-11 классы: Справочное пособие – М.: Дрофа, 1999
  5. Калбергенов Г.Е. Математика в таблицах и схемах. – М.: «Лист», 1997
  6. Колягин Ю.М., Леонтьева М.Р., Макарычев Ю.Н., Миндюк Н.Г., Руденко В.Н., Соколова А.В. Сборник задач по алгебре. Для 6-8 кл. Пособие для учителей. – М.: Просвещение,1975
  7. Кузнецова Л.В. и др. Алгебра: сб. заданий для подготовки к итоговой аттестации в 9 кл. / Л.В. Кузнецова, С.В. Суворова, Е.А. Бунимович и др. – М.: Просвещение, 2009;
  8. Ларичев П.А. Сборник задач по алгебре для 6-8 классов. – М.: Просвещение, 1971
  9. Математика в школе. Научно-теоретический и методический журнал
  10. Мордкович А.Г., Суходский А.М. Справочник школьника по математике, 7-9 классы. Арифметика, тригонометрия, алгебра. – М.: «Аквариум», 1997
  11. Поливанова К.А. Проектная деятельность школьников. М.: Просвещение, 2008.
  12. Я иду на урок математики: 7 класс: Книга для учителя. – М.: Издательство «1 сентября», 2002;

Интернет-ресурсы

1. www.edu - "Российское образование" Федеральный портал. http://www.school.edu.ru/

2. www.school.edu - "Российский общеобразовательный портал".

3. www.school-collection.edu.ru  Единая коллекция цифровых образовательных ресурсов

4. http://ege.edu.ru/ www.mathvaz.ru - docье школьного учителя математики Документация, рабочие материалы для учителя математики
5.
www.it-n.ru "Сеть творческих учителей"

6. www .festival.1september.ru   Фестиваль педагогических идей "Открытый урок"

7. http://www.uroki.net Материалы для уроков, внеклассных мероприятий

8. http://nsportal.ru/shkola/algebra/library/2014/11/23/rabochaya-programma-po-algebre-7-klass-fgos-0

Рабочая программа по алгебре для 7 класса         Составитель Юнева Л.С.


По теме: методические разработки, презентации и конспекты

Рабочая программа по алгебре. 7 класс. Макарычев Ю. Н. Алгебра: учебник для 7 класса общеобразовательных учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова; под ред. С. А. Теляковского. - М.: Просвещение, 2010.

Рабочая программа по алгебре. 7 класс. Макарычев Ю. Н. Алгебра: учебник для 7 класса общеобразовательных учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова; под ред. С. А. Т...

Рабочая программа по алгебре к учебнику «Алгебра. 9 класс» Ю.Н. Макарычев,

Рабочая программа соответствует учебнику «Алгебра. 9 класс»/ Ю.Н. Макарычев, Н.Г. Миндюк и др.; под ред. С.А. Теляковского. М.: Просвещение, 2010. Уровень обучения – базовый. Для более широк...

Рабочие программы по алгебре 8 класс,автор Ю.Н.Макарычев под редакцией Теляковского и по алгебре и началам математического анализа 11 класс, под редакцией А.Н.Колмогорова

Рабочая программа по алгебре 8 класс, автор Ю.Н.Макарычев под редакцией С.А.Теляковского на 2012-2013 уч.годРабочая программа по алгебре и началам анализа 11 класс под редакцией А.Н.Колмогорова на 201...

Рабочая программа по алгебре и началам анализа к УМК Ш.А. Алимова и др. «Алгебра и начала анализа» 10 класс (базовый уровень)

Рабочая программа и тематическое планирование составлено к УМК Ш.А. Алимова и др. «Алгебра и начала анализа», 10-11 класс, М. «Просвещение», 2011 - 1012 годов на основе федерального компонента государ...

Рабочая программа по алгебре 8-9 классы (базовый уровень) к УМК Алгебра 8. Алгебра 9. Макарычев Ю. Н., Миндюк Н.Г. и др

Содержание рабочей программы: Пояснительная записка. Содержание курса. Тематический план. Ожидаемые результаты. Календарно-тематическое планирование. Рабочая программа составлена на основе: - Феде...

Аннотация к рабочей программе по математике (алгебре и началам анализа), 11 класс , профильный уровень; рабочая программа по алгебре и началам анализа профильного уровня 11 класс и рабочая программа по алгебре и началам анализа базового уровня 11 класс

Аннотация к рабочей программе по МАТЕМАТИКЕ (алгебре и началам анализа) Класс: 11 .Уровень изучения учебного материала: профильный.Программа по алгебре и началам анализа для 11 класса составлена на ос...